渤海浮游植物季节变化与水动力关系数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水华是浮游植物在一定条件下快速繁殖的结果,研究浮游植物生长的影响因素,对揭示水华发生的生态机制具有重要意义。论文建立了COHERENS水动力及水质模型,研究渤海浮游植物生长季节性变化与水动力的关系,重点分析温度、盐度和湍流作用等物理环境因子对渤海浮游植物生长的影响,探讨浮游植物水华发生的物理环境。论文从三维水动力及水质方程组出发,考虑气象条件和径流条件,首先建立了符合实际的水动力模型,从调和常数、潮位和温盐三个方面对其进行验证,模拟了温盐的季节性变化和层化特征。模拟结果表明:温跃层从春季开始出现,夏季温跃层结构最为明显,底层南北两侧出现非对称冷核结构,秋季温跃层消失;盐跃层结构在夏季也最明显,表、底层盐度分布差别较大,但相比于温跃层,盐跃层出现时期较为滞后,层化结构较弱。论文建立的水动力数值模型可以较好地反映温盐场长期变化规律。其次,通过调节浮游动物捕食压,底层沉积物中所含硝酸盐和氨氮通量等重要参数,建立符合实际的水质生态模型,验证水质生态要素,模拟并分析叶绿素、硝酸盐和氨氮的时空特征。模拟结果表明:时间序列上,叶绿素年循环呈双峰结构,硝酸盐和氨氮大体经历了冬季积累、夏季消耗的历程;水平分布上,由于水深和河口径流等影响,近岸和河口附近叶绿素浓度、硝酸盐和氨氮始终保持较高浓度。论文建立的水质生态模型能够较准确地模拟表层叶绿素、硝酸盐和氨氮年循环特征。最后,研究了温度、盐度与叶绿素浓度的相关性关系,模拟渤海湍流粘性系数的表层分布,分析温盐和湍流作用对渤海浮游植物生长的影响。研究表明:四季(冬、春、夏和秋)海洋表层温度与叶绿素浓度的相关系数分别为:-0.32、0.83、0.82和-0.21;四季(冬、春、夏和秋)海洋表层盐度与叶绿素浓度的相关系数分别为:-0.54、-0.92、-0.86和-0.53。水平分布上,冬秋季,虽然垂直湍流混合较好,表层营养盐充足,但由于受到温度和光照限制,使得渤海叶绿素含量较低;春夏季,光照和温度适宜,渤海表层叶绿素含量较高,但深水区的湍流混合变小,出现层化结构,营养盐含量降低,使深水区域叶绿素含量较低。浮游植物生长是温度、盐度、湍流作用等多种因素综合作用的结果。
The algal bloom is the process that phytoplankton biomass accumulates rapidly. Studying the phytoplankton growth factors is of great significance to reveal the ecological mechanism of the algal bloom. In the paper, the hydrodynamic and water quality model COHERENS is adopted to simulate the phytoplankton growth seasonal changes and research the relationship between the phytoplankton and hydrodynamic environment in the Bohai Sea. The physical environment of the phytoplankton bloom is explored, focusing on temperature, salinity and turbulence effect.The 3-D hydrodynamic and water quality equations are applied to establish the actual model in which the weather conditions and runoff conditions are considered. The model is verified from the harmonic constants, tide level, temperature and salinity. The seasonal changes and stratification characteristics of temperature and salinity are simulated firstly. The results show that the thermocline gradually emerged from the spring, the strength of thermocline reaches its maximum in the summer. The temperature of the bottom existed asymmetric nuclear structure. After that, the thermocline decreases and finally disappeared in the autumn. The halocline only occurred in the summer, compared to the thermocline, the halocline relatively delayed. It can be found that the long term variation of temperature and salinity can be reasonably simulated with the hydrodynamic model.By adjusting zooplankton prey pressure, nitrate and ammonia nitrogen fluxes in the sediments, and other important parameters, the water quality model is established to simulate the chlorophyll, nitrate and ammonia nitrogen characteristics. The results show that the annual cycle of chlorophyll presents bimodal structure, the nitrate and ammonia shows the process of winter accumulation and summer consumption at time series. In the horizontal distribution, chlorophyll concentration, nitrate and ammonia always maintained a high concentration near coastal and estuarine due to the impact of water depth and runoff. It can be found that the year cycle characteristics of surface chlorophyll, nitrate and ammonia can be accurately simulated with the water quality model.Finally, the paper researches the relationship between the phytoplankton growth and the physical environment, such as temperature, salinity and turbulence effect. The surface distribution of turbulent viscosity in the Bohai Sea is simulated. The results show that the correlation coefficients of sea surface temperature and chlorophyll concentration in winter, spring, summer and autumn are -0.32,0.83,0.82 and -0.21. The correlation coefficients of sea surface salinity and chlorophyll concentration in winter, spring, summer and autumn are-0.54,-0.92,-0.86 and -0.53. In the horizontal distribution, in autumn and winter, the strong vertical turbulent mixing causes the surface nutrients adequate. However, the temperature and light limitation leads to lower chlorophyll content in the Bohai Sea. In spring and summer, the suitable light and temperature makes higher surface chlorophyll content. Nevertheless, the weaker turbulent mixing results in the stratification structure and reduced nutrient concentrations in the abyssal zone. Eventually, the chlorophyll content is low in the abyssal zone. The phytoplankton growth is the result of multiplex factors including temperature, salinity and turbulent effect.
引文
[1]夏斌.2005年夏季环渤海16条主要河流的污染状况及入海通量[D].青岛:中国海洋大学,2007.
    [2]唐启升,苏纪兰.海洋生态系统动力学研究与海洋生物资源可持续利用[J].地球科学进展,2001,16(001):5-11.
    [3]国家海洋局.中国海洋环境质量公报[R].北京:国家海洋局,2010.
    [4]沈永明,郑永红,吴修广.近岸海域污染物迁移转化的三维水质动力学模型[J].自然科学进展,2004,14(6):694-699.
    [5]唐启升,苏纪兰.中国海洋生态系统动力学研究——Ⅰ关键科学问题于研究发展战略[M].北京:科学出版社,2000:25-42,107-252.
    [6] Andersson A, Hajdu S, Haecky P, et al. Succession and growth limitation of phytoplankton in the Gulf of Bothnia(Baltic Sea)[J]. Marine Biology,1996,126(4): 791-801.
    [7]高爽.北黄海叶绿素和初级生产力的时空变化特征及其影响因素[D].青岛:中国海洋大学,2009.
    [8]赵海萍.渤海湾浮游细菌及水层生态水动力学模拟[D].天津:天津大学,2006.
    [9]夏静.长江口浮游植物变化及影响因子初步研究[D].上海:上海师范大学,2005.
    [10]Gao X, Song J. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary [J]. Marine Pollution Bulletin,2005,50(3):327-335.
    [11]郑晓琴.长江口及邻近海域温盐时空变化数值模拟[D].青岛:中国海洋大学,2008.
    [12]金德祥,陈贞奋,刘师成,等.温度和盐度对三种海洋浮游硅藻生长繁殖的影响[J].海洋与湖沼,1965,7(4):373-384.
    [13]何振平,王秀云,樊晓旭,等.温度和光照对塔胞藻生长的影响[J].水产科学,2007,26(4):218-221.
    [14]曾艳艺,黄翔鹄.温度、光照对小环藻生长和叶绿素a含量的影响[J].广东海洋大学学报,2007,27(6):36-40.
    [15]Eppley R W. Temperature and phytoplankton growth in the Sea[J]. Fishery Bulletin,1972, 70(4):1063-1085.
    [16]Blanchard G F, Guarini J M, Richard P, et al. Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos[J]. Marine Ecology Progress Series,1996,134:309-313.
    [17] Li Y, Wang X, Han X, et al. An ecosystem model of the phytoplankton competition in the
    East China Sea, as based on field experiments[J]. Hydrobiologia,2008,600(1):283-296.
    [18]李克强,王修林,韩秀荣,等.莱州湾围隔浮游生态系统氮、磷营养盐迁移-转化模型研究[J].中国海洋大学学报,2007,37(6):987-994.
    [19]Bissinger J E, Montagnes J S, Sharples J, et al. Predicting marine phytoplankton maximum growth rates from temperature:Improving on the Eppley curve using quantile regression[J]. Limnology and Oceanography,2008,53(2):4870-493.
    [20]费尊乐,毛兴华,朱明运,等.渤海生产力研究——Ⅱ.初级生产力及潜在渔获量的估算[J].海洋学报,1988,10(4):481-489.
    [21]谢馥扬.南海时间序列测站(SEATS)碳循环之探讨:一维物理-生地化耦合模式之应用[D].台湾:国立中央大学,2009.
    [22] Sannlento J L, Slater R, Barber R, et al. Response of ocean ecosystems to climate warming[J]. Global Biogeoehemical Cycles,2004,18(3):GB3003.
    [23]邹斌,邹亚荣,金振刚.渤海海温与叶绿素季节空间变化特征分析[J].海洋科学进展,2005,23(4):487-492.
    [24]韩秀荣.长江口及邻近海域浮游植物生长的多环境效应因子影响解析研究[D].青岛:中国海洋大学,2009.
    [25]王朝晖,齐雨藻,尹伊伟,等.1998年春深圳湾环节环沟藻赤潮及其发生原因的探讨[J].海洋科学,2001,25(5):47-50.
    [26]朱明,张学成,茅云翔,等.温度、盐度及光照强度对海链藻(Thalassiosira sp.)生长的影响[J].海洋科学,2003,27(12):58-61.
    [27]徐宁,吕颂辉,段舜.营养物质输入对赤潮发生的影响[J].海洋环境科学,2004,23(2):20-24.
    [28]黄东卫.渤海赤潮生态系统的非线性随机动力学研究[D].天津:天津大学,2004.
    [29] Ji R, Davis C S, Chen C, et al. Influence of ocean freshening on shelf Phytoplankton dynamics[J]. Geophysical Research Letters.2007,34(24):L24607.
    [30]王金辉.长江口3个不同生态系的浮游植物群落[J].青岛海洋大学学报,2002,32(3):422-428.
    [31]魏皓,武建平.浮游植物动力学模型及其在海域富营养化研究中的应用[J].地球科学进展,2001,16(002):220-225.
    [32] Fennel K. Convection and the Timing of Phytoplankton Spring Blooms in the Western Baltic Sea[J]. Estuarine, Coastal and Shelf science,1999,49(1):113-128.
    [33] Azumaya T, Isoda Y, Noriki S. Modeling of the spring bloom in Funka Bay, Japan[J]. Continental Shelf Research,2001,21(5):473-494.
    [34]吴荣军,吕瑞华,朱明远,等.海水混合和层化对叶绿素a垂直分布的影响[J].生态
    环境,2004,13(4):515-519.
    [35]夏洁,高会旺.南黄海东部海域浮游生态系统要素季节变化的模拟研究[J].安全与环境学报,2006,6(004):59-65.
    [36] Kim H, Yoo S, Oh I S. Relationship between Phytoplankton bloom and wind stress in the sub-polar frontal area of the Japan/East Sea. Journal of Marine Systems[J].2007,67(3-4): 205-216.
    [37]Luyten P J, Jones J E, Proctor R, et al. COHERENS-A Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas:User Documentation[R]. MUMM Report, Management Unit of the Mathematical Models of the North Sea,1999.
    [38]Luyten P J. An analytical and numerical study of surface and bottom boundary layers with variable forcing and application to the North Sea[J]. Journal of Marine Systems, 1996,3-4(8):171-189.
    [39]Luyten P J. Modelling physical processes of haline stratification in ROFIs with application to the Rhine outflow region[J]. Journal of Marine Systems,1997,12(1-4): 277-298.
    [40]Luyten P J, DeMulder T. Amodule representing surface fluxes of momentum and heat[R]. Technical Report No.9 MAST-0050-C (MUMM),1992.
    [41]陈秀华,朱良生COHERENS模式在长江口赤潮源推测中的应用[J].海洋通报,2007,26(3):3-11.
    [42]韩树宗,郑运霞,高志刚.9711号台风对日照近海悬沙浓度影响的数值模拟[J].中国海洋大学学报,2008,38(6):868-874.
    [43]李艳芸,李绍武.风暴潮预报模式在渤海海域中的应用研究[J].海洋技术,2006,25(1):101-106.
    [44]武雅洁,梅宁,梁丙臣.高浓热盐水在胶州湾潮流作用下的输移扩散规律研究[J].中国海洋大学学报,2008,38(6):1029-1034.
    [45]梁丙臣.海岸、河口区波-流联合作用下三维悬沙数值模拟及其在黄河三角洲的应用[D].青岛:中国海洋大学,2005.
    [46]Marinov D, Norro A, Zaldivar J M. Application of COHERENS model for hydrodynamic investigation of Sacca di Goro coastal lagoon (Italian Adriatic Sea shore)[J]. Ecological Modelling,2006,193(1-2):52-68.
    [47]陈俊男.以数值方法模拟大鹏湾初级生产力之研究[D].台湾:国立中山大学,2002.
    [48]华祖林,顾莉,查玉含,等.基于COHERENS模型的污染物质输运数值模拟[J].环境科学与技术,2009,32(4):14-18.
    [49]Lacroix G, Ruddick K, Gypens N, et al. Modelling the relative impact of rivers
    (Scheldt/Rhine/Seine) and Western Channel waters on the nutrient and diatoms/Phaeocystis distributions in Belgian waters (Southern North Sea)[J]. Continental Shelf Research,2007,27(10-11):1422-1446.
    [50] Chen C S, Beardsley R C, Cowles G. An Unstructured Grid, Finite-Volume Coastal Ocean Model FVCOM User Manual[M],2006.
    [51]曹颖,朱军政.基于FVCOM模式的温排水三维数值模拟研究[J].水动力学研究与进展,2009,24(4):432-439.
    [52]朱军政,曹颖FVCOM模型在象山港三维潮流盐度计算中的应用[J].海洋环境科学,2010,29(6):899-903.
    [53]吴伦宇,郭佩芳,侍茂崇,等.高盐水排放扩散的三维高分辨率数值模拟[J].中国海洋大学学报,2011,41(6):15-22.
    [54] Qi J H, Chen C S, Beardsley R C, et al. An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE):Implementation, validations and applications [J]. Ocean Modelling,2009,28(1-3):153-166.
    [55] Shore Jennifer A. Modelling the circulation and exchange of Kingston Basin and Lake Ontario with FVCOM[J]. Ocean Modelling,2009,30(2-3):106-114.
    [56]邱照宇.基于FVCOM模拟河流输入对胶州湾水质的影响[D].青岛:中国海洋大学,2010.
    [57]Tian R C, Chen C S. Influence of model geometrical fitting and turbulence parameterization on phytoplankton simulation in the Gulf of Maine [J]. Deep Sea Research Part II:Topical Studies in Oceanography,2006,53(23-24):2808-2832.
    [58] Ji R, Davis C, Chen C S, et. al., Influence of local and external processes on the annual nitrogen cycle and primary productivity on Georges Bank:A 3-D biological-physical modeling study[J]. Journal of Marine Systems,2008,73(1-2):31-47.
    [59]许婷MIKE21HD计算原理及应用实例[J].港工技术,2010,47(5):867-869.
    [60]许婷.丹麦MIKE21模型概述及应用实例[J].水利科技与经济,2010,16(8):867-869.
    [61]王庆改,戴文楠,赵晓宏等.基于Mike21FM的来宾电厂扩建工程温排水数值模拟研究[J].环境科学研究,2009,22(3):322-336.
    [62] Jose F, Stone G W, Forecast of Nearshore wave parameters using MIKE-21 Spectral wave model[J]. Gulf Coast Association of Geological Societies Transactions,2006,56: 323-327.
    [63]王哲,刘凌,宋兰兰Mike21在人工湖生态设计中的应用[J].水电能源科学,2008,26(5):124-127.
    [64]李娜,叶闵.基于MIKE21的三峡库区涪陵段排污口COD扩散特征模拟及对下游水
    质的影响[J].华北水利水电学院学报,2011,32(1):128-131.
    [65]Hamrick J M. A user's manual for the Environmental Fluid Dynamics Computer Code[R]. The College of William and Mary, Virginia Institute of Marine Science,1996
    [66]谢志旺.基于MATLAB的感潮河网多参数水质数学模型方法与应用研究[D].广州:暨南大学,2006.
    [67]陈景秋,赵万星,季振刚.重庆两江汇流水动力模型[J].水动力学研究与进展,2005,12:829-835.
    [68]王翠,孙英兰,张学庆.基于EFDC模型的胶州湾三维潮流数值模拟[J].中国海洋大学学报,2008,38(5):833-840.
    [69]Xie R, Wu D A, Yan Y X. Fine silt particle pathline of dredging sediment in the Yangtze River deepwater navigation channel based on EFDC model [J]. Journal of Hydrodynamics,2010,22(6):760-772.
    [70] Jeong S, Yeon K, Hur Y, et al. Salinity intrusion characteristics analysis using EFDC model in the downstream of Geum River[J]. Japanese Journal of Physiological Psychology and Psychophysiology,2010,22(6):934-939.
    [71]曹晶晶,李瑞杰,秦毅.城市浅水湖泊水质模拟研究——以昆承湖为例[J].水资源保护,2009,25(4):12-16.
    [72]陈异晖.基于EFDC模型的滇池水质模拟[J].云南环境科学,2005,24(4):28-30.
    [73] Wu G Z, Xu Z X. Prediction of algal blooming using EFDC model:Case study in the Daoxiang Lake[J]. Ecological Modelling,2011,222(6):1245-1252.
    [74] He G J, Fang H W, Bai S, et al. Application of a three-dimensional eutrophication model for the Beijing Guanting Reservoir, China[J]. Ecological Modelling,2011,222(8): 1491-1501.
    [75]李林子,钱瑜,张玉超.基于EFDC和WASP模型的突发水污染事故影响的预测预警[J].长江流域资源与环境,2011,20(8):1010-1016.
    [76] Wool T A, Davie S R, Rodriguez H N. Development of three-dimensional hydrodynamic and water quality models to support TMDL decision process for the Neuse River estuary, North Carolina[J]. Journal of Water Resources Planning and Management,2003,129(4): 295-306.
    [77]张学庆,伊希刚,傅莹.基于NPZD生态动力学模型的胶州湾水质数值模拟实验[J].中国环境科学学会学术年会论文集(第三卷),2010,2403-2406.
    [78]邱照宇,娄安刚,杜鹏,等.应用RCA模型对桑沟湾水质的模拟研究[J].海洋环境科学,2010,29(5):736-740.
    [79] Mellor G L, Hakkinen S, Ezer T, et al. A Generalization of a sigma coordinate ocean
    model and an intercomparison of model vertical grids[J]. In:Ocean Forecastings: Conceptual Basis and Applications. N. Pinardi, J. Woods(Eds.), Springer, Berlin,2002, 55-72.
    [80]林俊.风暴作用下的近岸悬浮泥沙数值模拟[D].青岛:中国海洋大学,2007.
    [81]查玉含.基于COHERENS的长江感潮河段三维水流及水质数值模拟[D].南京:河海大学,2007.
    [82] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics,1982,20(4):851-875.
    [83]郑运霞.浪流共同作用下的三维悬沙数值模拟[D].青岛:中国海洋大学,2008.
    [84]尹翠芳.海水淡化浓缩水排放数值模拟研究[D].南京:南京理工大学,2010.
    [85]Steinhorn L. Salt flux and evaporation[J]. Journal of Physical Oceanography,1991, 21(11):1681-1683.
    [86]Tett P. A three layer vertical and microbiological processes model for shelf seas[R]. Proudman Oceanographic Laboratory,1990,14.
    [87]冯士筰,李风岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999:503.
    [88]中国大百科全书编委会.中国大百科全书,大气科学、海洋科学、水文科学卷[M].北京:中国大百科全书出版社,1987.
    [89]陈新平.渤、黄海海温结构及相应环流场的数值模拟研究[D].青岛:中国海洋大学,2006.
    [90]王强.渤海环流的季节变化及浮游生态动力学模拟[D].青岛:中国海洋大学,2004.
    [91]张淑珍,奚盘根,冯士筰.渤海环流数值模拟[J].山东海洋学院学报,1984,14(2):12-19.
    [92]管秉贤,陈上及.中国近海海流系统,全国海洋综合调查报告(第五册)[R],1964,1-85.
    [93]宋文鹏.渤海冬、夏季温盐场结构及其海流特征分析[D].青岛:中国海洋大学,2009.
    [94]万修全.渤海冬夏季环流特征及变异的初步研究[D].青岛:中国海洋大学,2003
    [95]吴德星,万修全,鲍献文,等.渤海1958年和2000年夏季温盐场及环流结构的比较[J].科学通报,2004,49(3):287-292.
    [96]黄祖坷.渤海潮流系统及其变迁[J].青岛海洋大学学报,1991,12(2):1-12.
    [97]陈达熙.渤海、黄海、东海海洋图集—水文[M].北京:海洋出版社,1992,13-96,241-257,416.
    [98]沈育疆.东中国海潮汐数值计算[J].山东海洋学院学报,1980,10(3):26-35.
    [99]张娜,张庆河,张文忠.渤海潮流场特性分析[J].第十四届中国海洋(岸)工程学术
    讨论会论文集,2009,506-512.
    [100] 黄大吉,陈宗镛,苏纪兰.三维陆架海模式在渤海中的应用Ⅰ.潮流、风生环流及其相互作用[J].海洋学报,1996,18(5):1-13.
    [101] 张占海,吴辉碇.渤海潮汐和潮流数值计算[J].海洋预报,1994,11(1):48-54.
    [102] Nakatsuji K, Yamanaka R, Liang S X, et al. Seasonal changes of haroclinic circulation and water exchange in the Bohai Sea[J]. Estuarine and Coastal Modeling, Proceedings,2004,852-870.
    [103] Hainbucher D, Hao W, Pohlmann T, et al. Variability of the Bohai Sea circulation based on model calculations[J]. Journal of Marine Systems,2004,44(3-4):153-174.
    [104] 张娜.渤海潮汐预报及流场特性分析[D].天津:天津大学,2007.
    [105] 方国洪,王骥.渤海天文-气象分潮的分析[J].海洋学报,1986,8(4):399-407.
    [106] 孙湘平,姚静娴,黄易畅,等.中国沿岸海洋水文气象概况[M].北京:科学出版社,1981:112-145.
    [107] Guo B H, Xia Z W. An analytical model of upwelling induced by tidal current past a peninsula[J]. Acta Oceanologica Sinica,1986,8(3):272-283.
    [108] 鲍献文,万修全,吴德星.2000年夏末和翌年初冬渤海水文特征[J].海洋学报(中文版),2004,26(01):14-24.
    [109] 林霄沛,吴德星,鲍献文,等.渤海海峡断面温度结构及流量的季节变化[J].青岛海洋大学学报,2002,32(03):355-360.
    [110] 国家海洋局.中国海洋环境质量公报[R].北京:国家海洋局,2008.
    [111] 李宁.近岸水质的遥感监测和数值模拟研究[D].天津:天津大学,2009.
    [112] 刘浩,潘伟然.营养盐负荷对浮游植物水华影响响的模型研究[J].水科学进展,2008,19(3):345-351.
    [113] 刘浩,尹宝树.渤海生态动力过程的模型研究——Ⅱ.营养盐以及叶绿素a的季节变化[J].海洋学报,2007,29(4):20-33.
    [114] 张金标,宁修仁,江锦祥,等.渤海、黄海、东海海洋图集——生物[M].北京:海洋出版社,1991:1-250.
    [115] 高会旺,王强.1999年渤海浮游植物生物量的数值模拟[J].中国海洋大学学报,2004,34(5):867-873.
    [116] 费尊乐,毛兴华,朱明远,等.渤海生产力研究——叶绿素a、初级生产力与渔业资源开发潜力[J].海洋水产研究,1991,(12):55-69.
    [117] 赵骞,田纪伟,赵仕兰,等.渤海冬夏季营养盐和叶绿素a的分布特征[J].海洋科学,2004,28(4):34-39.
    [118] MOLL A. Regional distribution of primary production in the North Sea simulated by
    a three-dimensional model[J]. Journal of Marine System,1998,16:151-170.
    [119] Fasham M J R, Ducklow H W, McKelvie S M. A nitrogen-based model of plankton dynamics in the oceanic mixed layer[J]. Journal of Marine Research,1990,48(3): 591-639.
    [120] 赵亮,魏皓,冯士榨.渤海氮磷营养盐的循环和收支[J].环境科学,2002,23(1),78-81.
    [121] 杨静,李海,刘钦政,等.2006年夏季渤海初级生产系统的数值模拟研究[J].海洋预报,2010,27(6):35-44.
    [122] 刘浩,尹宝树.渤海生态动力过程的模型研究——Ⅰ.模型描述[J].海洋学报,2006,28(6):21-31.
    [123] Zhang J. Nutrient elements in large Chinese estuaries[J]. Continental Shelf Research, 1996,16(8):1023-1045.
    [124] Zhang J, Yu Z G, Raabe T, et al. Dynamics of inorganic nutrient species in the Bohai seawaters. Journal of Marine System.2004,44(3-4):189-212.
    [125] 张士锋,贾绍凤.海河流域水量平衡与水资源安全问题研究[J].自然资源学报,2003,18(6):684-691.
    [126] 刘天然.南黄海中部春季浮游植物水华过程与物理环境的关系初探[D].青岛:中国海洋大学,2010.
    [127] Gargett A E. The optimal stability "window":a mechanism underlying decadal fluctuations in North Pacific salmon stocks[J]. Fisheries Oceanography,1997,6(2): 109-117.
    [128] Dutkiewicz S, Follows M, Marshall J, et al. Interannual variability in phytoplankton abundances in the North Atlantic [J]. Deep Sea Research Part II:Topical Studies in Oceanography,2001,48(10):2323-2344.
    [129] 韩君.黄海物理环境对浮游植物水华影响的数值研究[D].青岛:中国海洋大学,2008.
    [130] 胡好国,万振文,万振文.南黄海浮游植物季节性变化的数值模拟与影响因子分析[J].海洋学报,2004,26(6):74-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700