长江口杭州湾海洋动力要素对风场响应的FVCOM模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于FVCOM海洋模式,采用无结构、分辨率可变的不规则三角网格及有限体积法,考虑天文潮、径流及台风等作用的影响,建立了包括长江口、杭州湾在内的近海风暴潮数值模型。
     建立了长江口、杭州湾海域三维潮汐潮流水动力模型,与实测资料对比并讨论研究海域的潮汐潮流性质,验证结果表明本文所建立的水动力模型能够准确再现长江口、杭州湾水动力特性,这为下文风暴潮的模拟奠定了水动力基础。
     通过建立四组理想风场试验,讨论了FVCOM模拟的理想风生流分布情况。统计分析自1995年以来22个对长江口、杭州湾影响较为显著的台风,并归纳出直接入侵长江口、杭州湾的两类台风:Ⅰ类为正面登陆型,Ⅱ类为沿海北上型。对台风的风、压场分别采用了WRF模式与台风模型进行模拟,本文中台风模型的气压场计算采用Takahashi和Fujita T.公式,风场采用Ueno Takeo公式。经与实测资料对比后发现,台风模型可以满足FVCOM风暴潮对风、压场的要求,且调试方便,因此采用台风模型结果作为风暴潮的气象强迫。
     基于TC9806及TC0012台风,建立了两类影响长江口、杭州湾的典型风暴潮FVCOM数值模式,并分别建立了天文潮、台风及二者耦合作用下的三组数值试验进行对比分析。结果表明影响单站增、减水的因素除与台风强度有关,还与台风移动的路径有关。表层海流对台风的响应最为显著,且表层流速增幅大于底层;风暴潮过程中单点海流流向仍呈现周期性变化,仅在台风到达时流向出现改变,体现了长江口、杭州湾海域天文潮的主导作用;台风与地形的联合作用使得海流在局地小范围出现环流。台风过程同时造成了海流动量下传,深度直达海底。欧拉余水位受台风强迫,在近岸出现显著变化,余水位增幅可高达近1m。表层余流在台风前方的强风势与海岸地形的共同作用下形成急流,流速可达1-1.5m/s。垂直方向上余流最大梯度出现在岸界与地形共同作用的深度为5-6m的浅水区。
A numerical model for coastal storm surge simulation has been established to cover the Changjiang estuary and Hangzhou Bay based on the Finite Volume Coast and Ocean Model (FVCOM). FVCOM adopts an unstructured, variable resolution triangular grid and finite volume method. In the same time, the model takes the effects of astronomical tides, surface runoff and typhoons into account.
     A 3-D numerical tidal model for the Changjiang estuary and Hangzhou Bay is established at first, and the characteristics of the tide and tidal current have been discussed. The computed results agree with the observation well. The tidal model also laid the groundwork for storm surge simulation.
     Four numerical experiments model for FVCOM ideal wind simulation have been established to test the simulated wind currents.22 typhoons in the Changjiang estuary and Hangzhou Bay are statistically analyzed, and two types of typhoons which invaded directly into Changjiang estuary and Hangzhou Bay are generalized:I is landed on Zhejiang province, II is moved northward on the sea. The WRF model and typhoon model are used to simulate the wind and pressure of the typhoon. The pressure field of typhoon model is computed by used of Takahashi and Fujita T., and the wind field is by Ueno.After comparing with the observed data, the typhoon model meets the storm surge model's requirements, and it's easy to adjust. So the study adopts the result of the typhoon model as meteorological field of the storm surge.
     A storm surge model for the Changjiang estuary and Hangzhou Bay is established considering separately the influence of astronomical tidal, typhoon (TC9806 and TC0012) and their coupling. The set-up and set-down of local water level are impacted by the intensity and the path of the typhoon. The variety of single point of the surface sea current under the three conditions is more obvious than the bottom one; the single point of flow direction under storm takes on the periodic variation still, and the difference happened only when typhoon arrives, it shows the important effect of the astronomical tidal in the Changjiang estuary and Hangzhou Bay; the distribution of the sea surface current is influenced by the intensity and path of the typhoon, and some small circulations appear at local small area under the typhoon and topography's combined action. The oceanic momentum which caused by typhoon transferring downwards can get to the bottom of the sea. The coastal residual water elevation was influenced remarkablely by typhoons, and the effect of storm surge can make a set-up nearly 1m. The surface residual currents generate the jet which mainly repose to the strong wind of typhoon and the jet speed could get 1-1.5m/s. The biggest gradient of residual current in vertical section happens at shallow waters about 5-6m in deep.
引文
[1]刘杰,陈吉余,陈沈良.长江口南汇东滩滩地地貌演变分析[J].泥沙研究,2007,12(6):47-52.
    [2]朱学明.中国近海潮汐潮流的数值模拟与研究[D].青岛:中国海洋大学,2009.
    [3]马进荣.长江口风暴潮流场计算研究[D].南京:南京水利科学研究院,2001.
    [4]章渭林.杭州湾潮波特性及影响因素的讨论[J].海洋通报,1989,8(1):1-10.
    [5]黄华.长江口及杭州湾风暴潮三维数值模拟[D].上海:华东师范大学,2006.
    [6]朱建荣,丁平兴,胡敦欣.2000年8月长江口外海区冲淡水和羽状锋的观测[J].海洋与湖泊,2003,34(3):249-55.
    [7]朱建荣,李永平,沈焕庭.夏季风场对长江冲淡水扩展影响的数值模拟[J].海洋与湖泊,1997.28(1):72-79.
    [8]陈吉余,等.中国海岸发育过程和演变规律[M].上海:上海科学技术出版社,1989.
    [9]章渭林,林传兰.浙江近岸半日分潮波传播特征研究[J].杭州大学学报,1995,22(3):311-321.
    [10]Li Shenduo. On the vertical structure of tidal currents in shallow water near the changjiang river estuary[J], Chinese Journal of Oceanology and Limnology,1987.
    [11]苏纪兰,潘玉球.台湾以北陆架环流动力学初步研究[J].海洋学报,1989,11(1):1-13.
    [12]Le Kentang. A preliminary study of the path of the changjiang diluted water II.The effect of Local Wind on the Path[J],Oceanologia Et Limnologia Sinica,1989.
    [13]朱首贤,丁平兴,石峰岩,朱建荣.杭州湾、长江口余流及其物质输运的模拟研究Ⅱ冬季余流及其对物质的输运作用[J].海洋学报,2000,22(5):1-12.
    [14]胡辉,谷国传,苏诚,等.长江河口盐度锋[J].海洋与湖泊增刊,1995,26(5):23-31.
    [15]唐晓辉,王凡.长江口邻近海域夏、冬季水文特征分析[C].海洋科学集刊,2004,46:42-66.
    [16]于东生,田淳,严以新.长江口悬沙含量垂向分布数值模拟[J].水利水运工程,2004,(1):35-40.
    [17]于东生,田淳,严以新.长江口水流运动特性分析[J].水运工程,2004,360(1):49-53.
    [18]黄广,长江口、杭州湾水沙交换与输移特性研究[D].上海:华东师范大学,2007.
    [19]孔亚珍,丁平兴,贺松林.长江口邻近海域余流的基本特征分析[J].海洋科学进展,2007,25(4):367-375.
    [20]堵盘军,胡克林,孔亚珍,丁平兴ECOMSED模式在杭州湾海域流场模拟中的应用[J].海洋学报,2007.29(1):7-16.
    [21]赵保仁.局地风对黄海和东海近岸浅海海流影响的研究[J].海洋与湖沼,1982,13(6):479-490.
    [22]孙文心,江文胜,李磊.近海环境流体动力学数值模型[M].北京:北京科学出版社,2004.
    [23]Cao Deming, Fang Guohong,A numerical computation of the tides and tidal currents in hangzhou bay[J].Oceanologia Et Limnologia Sinica,1986,(2).
    [24]曹德明,方国红.杭州湾和钱塘江潮波的联合数值模型[J].海洋学报,1988,10(5):521-530.
    [25]Cao Deming, Zhu Yaohua and Wang Xinyi. A three-dimension numerical modelof the tidal motions in hangzhou bay[J],Marine Sciences,1992,(6).
    [26]Li Shenduo, Cao Deming and Fang Guohong. An estimation of turbulence stresses in tidal currents of hangzhou bay[J],Acta Oceanoligica Sinica,1984,(4).
    [27]李身铎,顾思美.杭州湾潮波三维数值模拟[J].海洋与湖泊,1993,24(1):7-15.
    [28]李身铎,孙卫阳.杭州湾潮致余流数值研究[J].海洋与湖泊,1995,26(3):254-261.
    [29]朱建平,李永平,沈焕庭.夏季风场对长江冲淡水扩展影响的数值模拟[J].海洋与湖泊.1997,28(1):72-79.
    [30]朱建荣,沈焕庭,周健.夏季苏北沿岸流对长江冲淡水扩展影响的数值模拟[J].华东师范大学学报(自然科学版),1997,(2):62-67.
    [31]史峰岩,朱首贤,朱建荣,丁平兴.杭州湾、长江口余流及其物质输运作用的数值模拟研究Ⅰ杭州湾、长江口三维联合模型[J].海洋学报,2000,22(5):1-12.
    [32]Zhou Yiren, Chen Yongping and Ma Qinan. Threshold of sediment movement in different wave boundary layers[J]. China Ocean Engineering,2001,(4).
    [33]马启南,陈永平,张金善,龚政.杭州湾的三维水流数值模拟[]J.海洋工程,2001,19(4):58-66.
    [34]杨陇慧,朱建荣,朱首贤.长江口杭州湾及邻近海区潮汐潮流场三维数值模拟[J].华东师范大学学报(自然科学版),2001,(3):74-84.
    [35]倪勇强,耿兆铨,朱军政.杭州湾水动力特性研讨[J].水动力学研究与进展,2003,18(4):439-455.
    [36]龚政,张长宽,郑东生,金勇.长江口正压、斜压诊断及斜压预报模式-三维流场数值模拟[J].海洋工程,2004,22(2):39-45.
    [37]刘新成,卢永金,潘丽红,吴继伟.长江口和杭州湾潮流数值模拟及水体交换的定量研究[J].水动力学研究与进展,2006,21(2):171-180.
    [38]王喜年.关于温带风暴潮[J].海洋预报(增刊),2005,22:17-23.
    [39]Jelesnianski, Jye Chen and Wilson A.Shffer, SLOSH:Sea,lake and overland surges from hurricanes[R]. NOAA Technical Report NWS,1992:48-71.
    [40]GD.Roy. Estimation of expected maximum possible water level along the Meghna estuary using a tide surge interaction model[J]. Environment International,1995,(21):671-677.
    [41]罗义勇,孙文心.北部湾风暴潮的数值模拟-三维流速分解模型的一个应用[J].青岛海洋大学学报,1995,25(1):7-16.
    [42]孙文心,魏更生.交换计算顺序法[J].水动学研究与进展,1995,10(4):391-397.
    [43]朱首贤,沙文钰,丁平兴,等.近岸非对称型台风风场模型[J].华东师范大学学报(自然科学版),2002,(3):66-71.
    [44]端义宏,朱建荣,秦曾灏,龚茂殉.一个高分辨率的长江口台风风暴潮数值预报模式及其应 用[J].海洋学报,2005,27(3):11-19.
    [45]黄华,朱建荣,吴辉.长江口与杭州湾风暴潮三维数值模拟[J].华东师范大学学报(自然科学报),2007,4:9-19.
    [46]Changsheng Chen et al. Physical mechanisms for the offshore detachment of the changjiang diluted water in the east China sea[J]. Journal of Geophysical Research,Vol,2008.
    [47]曹永芳.长江口杭州湾潮汐特性的研究.上海航道局.
    [48]渤海、黄海、东海海洋图集(水文).北京:海洋出版社,1992.
    [49]李培良,左军成,吴德星.渤、黄、东海同化TOPEX/POSEIDON高度计资料的半日潮数值模拟[J].海洋与湖泊,2005,36(1):24-30.
    [50]林炳尧,黄世昌,毛献忠,等.钱塘江河口潮波变化过程[J].水动力学研究与进展,2002,17(6):665-675.
    [51]吴晓燕,管卫兵.象山港内三维动边界潮流的数值模拟[J].海洋学研究,2009,27(2):23-31.
    [52]李磊,杜凌,左军成.渤、黄、东海M2和K1分潮潮流场的有限元模拟[J].中国海洋大学学报,2006,36(6):851-874.
    [53]宋德海,鲍献文,朱学明.基于FVCOM的钦州湾三维潮流数值模拟[J].热带海洋学报,2009,28(2):7-14.
    [54]孙一妹,费建芳,程小平WRF_ROMS-1.2中尺度海气耦合模式介绍[J].海洋预报,2010,27(2):82-88.
    [55]徐建成.派比安台风对上海黄浦江潮位的影响及成因探讨[J].海洋预报,2001,18(1):1-10.
    [56]Fujita T, Pressure distribution in typhoon[J], Geophy Mag,1952,23:437-452.
    [57]李岩,杨支中,沙文任,朱首贤.台风的海面气压场和风场模拟计算[J].海洋预报,2003,20(1):6-13.
    [58]T. Fujita, J. Maeda,N. Ishida, T.Hayashi. An analysis of a pressure pattern in severe Typhoon Bart hitting the Japanese Islands in 1999 and a comparison of the gradient wind with the observed surface wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90:1555-1568.
    [59]盛立芳,吴增茂.一种新的台风海面风场的拟合方法[J].热带气象学报.1993,9(3):266-271.
    [60]王喜年.风暴潮数值模式计算中气压场和风场的处理[J].海洋预报,1986,3(4):56-64.
    [61]Ueno T. Non-Linear numerical studies on tides and surges in the central part of Seto Inland sea[J]. Oceanographical Mag,1962,16(1-2):53-124.
    [62]高志刚.平均海平面上升对东中国海潮汐、风暴潮影响的数值模拟研究[D].青岛:中国海洋大学,2008.
    [63]王跃山.客观分析和四维同化(Ⅱ客观分析的主要方法1)[J].气象科技,2001,(1):1-9.
    [64]陈波,李培良,侍茂崇,等.北部湾潮致余流和风生海流的数值计算与实测资料分析[J].广西科学,2009,16(3):356-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700