G蛋白偶联受体激酶在大鼠肝星状细胞信号转导中的作用及芍药苷对其的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化是由于细胞外基质(extracellular matrix,ECM)的合成大于降解导致过度沉积,是纤维增生与纤维分解不平衡而引起的病理过程。芍药苷(paeoniflorin,Pae)是白芍总苷(total glucosides of paeony,TGP)中的主要有效成分,本课题组以往研究发现,TGP具有抗炎、抗氧化、免疫调节、抗肝损伤和肝纤维化等作用。G蛋白偶联受体激酶(G-protein-coupled receptors kinases,GRKs)是一簇与G蛋白偶联受体(G protein-coupled receptors,GPCRs)快速脱敏相关的激酶,在调节GPCRs信号中起到至关重要的作用。本实验在以往研究基础上,采用猪血清诱导的免疫性肝纤维化模型,首先从整体水平考察了免疫性肝纤维化过程中大鼠肝脏与肝星状细胞(hepatic stellate cell,HSC)中G蛋白偶联受体激酶2(G-protein-coupled receptors kinase 2,GRK2)表达水平的变化;体外选用HSC-T6细胞株,从细胞和分子水平探讨GRK2在HSC表达的变化,以进一步探讨其调节HSC G蛋白偶联信号转导通路以及抑制HSC异常增殖的作用机制,并观察Pae对HSC GRK2表达及转膜的影响,
     目的:采用猪血清诱导的免疫性肝纤维化模型,从病理形态学、免疫组织化学等方面,观察免疫性肝纤维化大鼠肝脏及HSC中GRK2与G蛋白偶联受体激酶3(G-protein-coupled receptors kinase 3,GRK3)的表达情况;以肝纤维化过程中的关键细胞HSC为突破口,观察Pae对rhPDGF-BB刺激HSC-T6增殖的影响以及GRK2在HSC-T6增殖中的作用;探讨G蛋白偶联的信号转导通路在rhPDGF-BB刺激HSC-T6增殖中的作用和G蛋白表达的改变,部分阐明GRK2在HSC信号转导中的调节作用及Pae抑制HSC增殖的分子机制。
     方法:Wistar大鼠腹腔注射猪血清建立免疫性肝纤维化模型,设立正常对照组(0周)、模型组(3、6、9、12、16周),采用HE染色和Masson染色对肝脏组织作病理检查;免疫组织化学染色法、蛋白免疫印迹法检测肝脏中GRK2与GRK3表达水平的变化。原位灌流分离肝纤维化大鼠HSC,Western blot法检测HSC中GRK2表达水平的变化。体外以HSC-T6为模型,设立正常对照组、rhPDGF-BB(50μg·L-1)刺激组、GRK2抑制剂(62.5~1000μmol·L-1)组、Pae(10-4~10-6mol·L-1)组,采用MTT法检测HSC增殖情况;3H-TdR法检测HSC增殖情况;另外,设立正常对照组、rhPDGF-BB(50μg·L-1)刺激组、GRK2抑制剂(250μmol·L-1)组、Pae(10-5mol·L-1)组,采用放射性免疫法测定HSC-T6 cAMP水平;采用Western blot法检测HSC-T6中GRK2、Gαi-1、Gαi-2、Gαs蛋白的表达水平的变化。
     结果:
     1.免疫性肝纤维化大鼠肝脏中GRK2与GRK3的表达情况
     Wistar大鼠腹腔注射猪血清在16周时可以成功建立免疫性肝纤维化模型,在光镜下可见中央静脉和汇管区结缔组织变厚,增生的胶原纤维从汇管区延伸至小叶间,并向邻近的肝小叶伸出纤维索,形成粗大的纤维间隔,并将增生的肝细胞团包绕分隔成大小不等的假小叶。免疫组织化学染色与Western-blot法检测发现免疫性肝纤维化大鼠肝脏中GRK2与GRK3的表达较正常组明显降低,并且伴随造模时间的延长,表达量有下降趋势。
     2. GRK2在免疫性肝纤维化大鼠HSC中的表达
     在造模第3,6,9,12,16周原位灌流法分离、培养大鼠HSC, Western-blot法检测发现,免疫性肝纤维化大鼠HSC中GRK2的表达较正常组明显降低,并且伴随造模时间的延长,表达量有下降趋势。
     3. GRK2抑制剂与Pae对rhPDGF-BB刺激HSC-T6增殖的影响
     体外建立rhPDGF-BB诱导的HSC-T6增殖模型,结果表明Pae在10-4~10-6mol·L-1浓度范围内明显抑制HSC-T6增殖。当加入GRK2抑制剂(5-甲基[2-(5-硝基-2-呋喃基)乙烯基]-2-糠酸酯,C12H9NO6)后,GRK2抑制剂(62.5~1000μmol·L-1)可以明显抑制HSC-T6增殖。
     4. rhPDGF-BB刺激下HSC-T6 G蛋白-AC-cAMP通路的改变
     分离HSC-T6胞浆、胞膜蛋白,应用Western-blot方法,检测rhPDGF-BB(50μg·L-1)刺激HSC-T6中G蛋白-AC-cAMP通路的改变。结果发现,rhPDGF-BB可明显促进HSC-T6胞浆蛋白中GRK2的表达升高,同时降低Gαi-1和Gαi-2的表达,但对Gαs的表达无明显影响。而在HSC-T6胞膜蛋白中,rhPDGF-BB可明显降低GRK2的表达,同时促进Gαi-1和Gαi-2的表达升高。但对Gαs的表达无明显影响。同时rhPDGF-BB可以降低细胞内cAMP水平,促进HSC-T6增殖。
     5. rhPDGF-BB刺激的HSC-T6 G蛋白-AC-cAMP信号通路与GRK2的关系及Pae的作用
     在rhPDGF-BB刺激的HSC-T6中加入GRK2抑制剂(终浓度250μmol·L-1)后,Western blot检测发现,HSC-T6胞浆蛋白中GRK2表达降低,Gαi-1和Gαi-2表达升高,而在胞膜蛋白中GRK2表达升高,Gαi-1和Gαi-2表达降低,同时Gαs的表达均无明显改变。此外,GRK2抑制剂可以明显提高由rhPDGF-BB诱导的HSC-T6 cAMP水平降低,抑制细胞增殖。而在HSC-T6中加入GRK2抑制剂(终浓度250μmol·L-1)与Pae(10-5mol·L-1)共培养后,结果发现,HSC-T6胞浆蛋白中Pae可升高GRK2抑制剂诱导的GRK2表达减少,同时促进了Gαi-1和Gαi-2的表达的下降,而在胞膜蛋白中Pae可降低GRK2抑制剂诱导的GRK2表达升高,同时促进了Gαi-1和Gαi-2的表达的增加,而Gαs的表达均无明显改变。
     结论:
     1.猪血清诱导的免疫性肝纤维化大鼠肝脏组织和HSC中GRK2表达水平随造模时间的延长有下降趋势,提示GRK2可能是导致免疫性肝纤维化大鼠HSC异常增殖的重要分子。
     2.rhPDGF-BB可以明显促进HSC-T6胞浆蛋白中GRK2的表达,降低Gαi-1和Gαi-2的表达,而在胞膜蛋白中,rhPDGF-BB降低GRK2的表达,促进Gαi-1和Gαi-2的表达。同时rhPDGF-BB可以降低细胞内cAMP水平,促进HSC-T6增殖。提示rhPDGF-BB可能改变HSC-T6胞浆胞膜上GRK2蛋白的分布,使HSC-T6 Gαi蛋白偶联的信号通路激活,从而刺激了HSC-T6过度增殖。
     3. GRK2抑制剂可明显抑制rhPDGF-BB诱导的HSC-T6胞浆蛋白中GRK2表达增加,促进Gαi-1和Gαi-2的表达的升高,而在胞膜蛋白中正好与此相反,同时可以升高细胞内cAMP水平,而Pae可能通过改变GRK2的表达和活性,恢复了G蛋白-AC-cAMP信号通路的正常转导,从而抑制HSC-T6增殖、维持其正常功能。
Liver fibrosis is a pathologic process that leads to deposition of an excess of extra cellular matrix (ECM), which is due to the synthesis of ECM exceeding the degradation of ECM. Pae is a principal active ingredient of total glucosides of paeony. Our previous study showed that TGP has anti-inflammatory, anti-oxidative, immunomodulatory, anti-hepatic injury and anti-immunological hepatofibrotic effects. The protein families of GPCR kinases (GRKs) play apivotal role in the process of desensitization of agonist-activated GPCRs.To further research of the antifibrotic treatment, the present study was designed to investigate the expression of GRK2 on porcine serum-induced liver fibrosis rats in vivo.In addition,the expression of GRK2 on HSC-T6 stimulated with recombinant hunman platelet drived growth factor-BB(rhPDGF-BB) were evaluated in vitro.Meanwhile,the effects of Pae on the expression of GRK2 and trarsmembrane in HSC-T6 stimulated with rhPDGF-BB was also investigated.
     OBJECTIVE The animal model of porcine serum-induced liver fibrosis was used to evaluate the expression of GRK2 and GRK3 on the rats liver and HSC according to the changes of histopathological examination and immunohistochemistry examination. Effects of Pae on the proliferation of HSC-T6 stimulated with rhPDGF-BB and the expression of GRK2 were observed. The effect of G protein-AC-cAMP signal pathway and the change of G protein expression in HSC-T6 stimulated with rhPDGF-BB were also investigated. To confirm the effect of GRK2 in HSC through signal transduction pathways and the mechanisms of Pae, the effects of Pae on the signal transduction proteins were measured meanwhile.
     METHODS Rats were intraperitoneally injected with 0.5ml of porcine serum twice a week to establish immunological liver fibrosis model.The rats were randomly divided into normal control group(0wk),liver fibrosis model group(3、6、9、12、16wk).HE stain and Masson stain were used to examine the histopathological change. The expression of GRK2 and GRK3 from rats liver was detected by Western blot analysis and immunohistochemistry staining. Furthmore, the expression of GRK2 from rats HSC by in situ perfusion was detected by Western blot analysis.By using HSC-T6 to establish immunological liver fibrosis model in vitro, the cells were randomly divided into normal control group, rhPDGF-BB ( 50μg·L-1 ) group、GRK2 inhibitor(62.5~1000μmol·L-1)group、Pae(10-4~10-6mol·L-1)group, and the proliferation of HSC was measured by MTT assay and 3H-TdR uptake. Moreover, the cells were randomly divided into normal control group, rhPDGF-BB(50μg·L-1)group、GRK2 inhibitor(250μmol·L-1)group、Pae(10-5mol·L-1)group, and the level of cAMP in HSC-T6 was determined by radioimmunoassay. The expression of GRK2, G protein was detected by Western blot analysis.
     RESULTS
     1.The expression of GRK2 in immunological hepatic fibrosis rats induced by porcine serum
     The immunological liver fibrosis model was successfully induced at the end of 16th week after the injection of porcine serum. By optical microscope, Sparse connective tissue was slightly observed in the portal zone and the walls of central veins in the normal liver. In the liver of model group, excessive accumulation of connective tissue was observed in centrilobular and periportal zones. Prominent fibrotic septa were observed extending in a radial pattern from central veins and portal zones, resulting in the formation of the pseudolobules. Some hepatocytes surrounded by fibrous connective tissues were observed in centrilobular zones. The expression of GRK2 and GRK3 were significantly decreased by Western blot analysis and immunohistochemistry staining.
     2. The expression of GRK2 in HSC isolated from porcine serum indeced liver fibrosis rats
     HSCs were isolated by in situ perfusion and cultivated at different time course(3、6、9、12 and 16week).Furthermore, the GRK2 expression was detected by Western blot analysis. The expression of GRK2 in HSC isolated from fibrotic rats was gradually decreased.
     3. Effect of GRK2 inhibitor and Pae on the proliferation of HSC-T6 stimulated with rhPDGF-BB
     HSC-T6 stimulated with rhPDGF-BB(50μg·L-1) was used as in vitro model to evaluate the effect of GRK2 inhibitor and Pae. Pae at concentration of 10-4~10-6mol·L-1 could significantly inhibit the proliferation of HSC-T6 stimulated with rhPDGF-BB. While incorporating GRK2 inhibitor (62.5~1000μmol·L-1), the proliferation of HSC-T6 stimulated with rhPDGF-BB was inhibited.
     4. Changes of G protein-AC-cAMP pathways in HSC-T6 stimulated with rhPDGF-BB
     The membrane fractions and cytosolic fractions of HSC were obtained by differential centrifugation approach. Then, the change of the expression of G-protein in membrane and cytosolic fractions of HSC-T6 stimulated with rhPDGF-BB(50μg·L-1)were detected by Western-blot.The results showed that the expression of GRK2 was remarkably increased, while Gαi-1 and Gαi-2 were decreased in cytosolic fractions of HSC-T6 stimulated by rhPDGF-BB, but the expression of Gαs had no significant change. On the contrary, the expression of GRK2 was remarkably decreased, while Gαi-1 and Gαi-2 were increased in membrane fractions of HSC-T6 stimulated by rhPDGF-BB, but the expression of Gαs had no significant change. Meanwhile, the level of cAMP in HSC-T6 was obviously decreased after addition of rhPDGF-BB and the proliferation of HSC-T6 was promoted.
     5. Role of GRK2 in G protein-AC-cAMP pathways in HSC-T6 stimulated with rhPDGF-BB and the effect of Pae
     The change of the expression of G-protein in membrane and cytosolic fractions of HSC-T6 stimulated with rhPDGF-BB(50μg·L-1)were detected by Western-blot after addition of GRK2 inhibitor(250μmol·L-1). The results showed that the expression of GRK2 was remarkably decreased, while Gαi-1 and Gαi-2 were increased in cytosolic fractions of HSC-T6 stimulated by rhPDGF-BB and GRK2 inhibitor. On the contrary, the expression of GRK2 was remarkably increased, while Gαi-1 and Gαi-2 were decreased in membrane fractions of HSC-T6 stimulated by rhPDGF-BB and GRK2 inhibitor, but the expression of Gαs had no significant change. Meanwhile, the level of cAMP in HSC-T6 was obviously increased after addition of rhPDGF-BB and GRK2 inhibitor and the proliferation of HSC-T6 is inhibited. When GRK2 inhibitor (250μmol·L-1) and Pae(10-5mol·L-1) were given simultaneously, the expression of GRK2 was remarkably increased and Gαi-1 and Gαi-2 were decreased in cytosolic fractions of HSC-T6 stimulated by rhPDGF-BB. On the contrary, the expression of GRK2 was remarkably decreased and Gαi-1 and Gαi-2 were increased in membrane fractions of HSC-T6 stimulated by rhPDGF-BB, but the expression of Gαs had no significant change. Meanwhile, the level of cAMP in HSC-T6 was decreased after addition of GRK2 inhibitor and Pae.
     CONCLUSIONS
     1. The expression of GRK2 in immunological hepatic fibrosis rats induced by porcine serum was gradually decreased. This suggested that the down-regulation of GRK2 may play an important role in liver fibrosis.
     2. The expression of GRK2 was remarkably increased and Gαi-1 and Gαi-2 were decreased in cytosolic fractions of HSC-T6 stimulated by rhPDGF-BB. On the contrary, the expression of GRK2 was remarkably decreased and Gαi-1 and Gαi-2 were increased in membrane fractions of HSC-T6 stimulated by rhPDGF-BB. Meanwhile, the level of cAMP in HSC-T6 was obviously decreased after addition of rhPDGF-BB and the proliferation of HSC-T6 was promoted. This suggested that rhPDGF-BB induced GRK2 transmembrane from membrane to endochylema and then promote the proliferation of HSC-T6 induced by rhPDGF-BB via Gi-AC-cAMP pathway.
     3. GRK2 inhibitor can inhibit the increased expression of GRK2 in cytosolic fractions of HSC-T6 stimulated by rhPDGF-BB, while promote the expression of Gαi-1 and Gαi-2. Meanwhile, the results was opposite in membrane fractions of HSC-T6 stimulated by rhPDGF-BB. The level of cAMP in HSC-T6 was obviously increased after addition of GRK2 inhibitor and the proliferation of HSC-T6 was inhibited. In addition, Pae can regulate G protein-AC-cAMP signal transduction pathway of HSC-T6, which may be one of the important mechanisms for the effects of Pae on HSC-T6 stimulated by rhPDGF-BB.
引文
1. Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 2002;36:200-9.
    2. Aguilera V, Berenguer M, Rubín A, San-Juan F, Rayón JM, Prieto M, Mir J. Cirrhosis of mixed etiology (hepatitis C virus and alcohol): Posttransplantation outcome-Comparison with hepatitis C virus-related cirrhosis and alcoholic-related cirrhosis. Liver Transpl. 2009 ;15(1):79-87.
    3. Brand?o DF, Ramalho LN, Ramalho FS, Zucoloto S, Martinelli Ade L, Silva Ode C. Liver cirrhosis and hepatic stellate cells. Acta Cir Bras. 2006;21 Suppl 1:54-7.
    4. Urtasun R, Nieto N. Hepatic stellate cells and oxidative stress Rev Esp Enferm Dig. 2007 ;99(4):223-30.
    5. Iimuro Y, Brenner DA. Matrix metalloproteinase gene delivery for liver fibrosis. Pharm Res. 2008 Feb;25(2):249-58. Epub 2007 Jun 19.
    6. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008 ;214(2):199-210.
    7. Tikhonova IG, Costanzi S. Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr Pharm Des, 2009;15(35):4003-16.
    8. Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T, Tesmer JJ. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex. Science,2005 ;310(5754):1686-90.
    9. Tarrant TK, Rampersad RR, Esserman D, Rothlein LR, Liu P, Premont RT, Lefkowitz RJ, Lee DM, Patel DD. Granulocyte chemotaxis and disease expression are differentially regulated by GRK subtype in an acute inflammatory arthritis model (K/BxN). Clin Immunol, 2008 ;129(1):115-22.
    10. Liu DF, Wei W, Song LH. Protective effect of paeoniflorin on immunological liver injury induced by bacillus Calmette-Guerin plus lipopolysaccharide: modulation of tumour necrosis factor-alpha and interleukin-6 MRNA. Clin Exp Pharmacol Physiol.2006;33(4):332-339
    11. Huang ZG, Zhai WR, Zhang YE, Zhang XR. Study of heteroserum-induced rat liver fibrosis model and its mechanism. World J Gastroenterol. 1998 ;4(3):206-209.
    12.胡荣昕,缪伟峰.肝纤维化动物模型的研究概况.实用肝脏病杂志,2007;10(2):133-5
    13. Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, Suzuki Y, Kojima S. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology. 2001 ;120(7):1784-800.
    14. Baba Y, Saeki K, Onodera T, Doi K. Serological and immunohistochemical studies on porcine-serum-induced hepatic fibrosis in rats. Exp Mol Pathol. 2005 ;79(3):229-35.
    15. Li C, Luo J, Li L, Cheng M, Huang N, Liu J, Waalkes MP. The collagenolytic effects of the traditional Chinese medicine preparation, Han-Dan-Gan-Le, contribute to reversal of chemical-induced liver fibrosis in rats. Life Sci. 2003 ;72(14):1563-71.
    16. Eijkelkamp N, Heijnen CJ, Elsenbruch S, Holtmann G, Schedlowski M, Kavelaars A. G protein-coupled receptor kinase 6 controls post-inflammatory visceral hyperalgesia. Brain Behav Immun. 2009 ;23(1):18-26.
    17. Bosselut N, Housset C, Marcelo P, Rey C, Burmester T, Vinh J, Vaubourdolle M, Cadoret A, Baudin B.Proteomics. Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts. 2010;10(5):1017-28.
    18. Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology. 2007 ;46(4):1246-56.
    19. Weiskirchen R, Gressner AM. Isolation and culture of hepatic stellate cells. Methods Mol Med. 2005;117:99-113.
    20. Tan Y, Lv ZP, Bai XC, Liu XY, Zhang XF. Traditional Chinese medicine Bao Gan Ning increase phosphorylation of CREB in liver fibrosis in vivo and in vitro. J Ethnopharmacol. 2006;105(1-2):69-75.
    21 .Guo GH, Tan DM, Zhu PA, Liu F. Hepatitis B virus X protein promotesproliferation and upregulates TGF-beta1 and CTGF in human hepatic stellate cell line, LX-2. Hepatobiliary Pancreat Dis Int. 2009;8(1):59-64.
    22. Parola M, Marra F, Pinzani M. Myofibroblast - like cells and liver fibrogenesis: Emerging concepts in a rapidly moving scenario. Mol Aspects Med. 2008 ;29(1-2):58-66.
    23. Lee TY, Kim KT, Han SY. Expression of ErbB receptor proteins and TGF-alpha during diethylnitrosamine-induced hepatocarcinogenesis in the rat liver. Korean J Hepatol. 2007 ;13(1):70-80.
    24. Muriel P. NF-kappaB in liver diseases: a target for drug therapy. J Appl Toxicol. 2009 ;29(2):91-100.
    25.吴丽,魏伟.肝纤维化的动物模型及治疗药物研究.中国药理学通报,2004;20(5):481-5
    26. Gressner OA, Gressner AM. Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int. 2008 Sep;28(8):1065-79.
    27. Wallace K, Burt AD, Wright MC. Liver fibrosis. Biochem J. 2008;411(1):1-18.
    28. Kmie? Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161:III-XIII, 1-151.
    29. Yang L, Wang Y, Mao H, Fleig S, Omenetti A, Brown KD, Sicklick JK, Li YX, Diehl AM. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol. 2008 ;48(1):98-106.
    30. Breitkopf K, Roeyen C, Sawitza I, Wickert L, Floege J, Gressner AM. Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine. 2005 ;31(5):349-57.
    31. Cant SH, Pitcher JA. G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell. 2005 ;16(7):3088-99.
    32. Milligan G, Kostenis E. Heterotrimeric G-proteins: a short history. Br J Pharmacol. 2006 ;147 Suppl 1:S46-55.
    33. McLaughlin NJ, Banerjee A, Khan SY, Lieber JL, Kelher MR, Gamboni-Robertson F, Sheppard FR, Moore EE, Mierau GW, Elzi DJ, Silliman CC. Platelet-activating factor-mediated endosome formation causes membrane translocation of p67phox and p40phox that requires recruitment and activation of p38 MAPK, Rab5a, and phosphatidylinositol 3-kinase in human neutrophils. J Immunol. 2008 15;180(12):8192-203.
    34. Vroon A, Heijnen CJ, Kavelaars A. GRKs and arrestins: regulators of migration and inflammation. J Leukoc Biol. 2006 ;80(6):1214-21.
    35. Yang W, Xia SH. Mechanisms of regulation and function of G-protein-coupled receptor kinases. World J Gastroenterol. 2006 ;12(48):7753-7.
    36. Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol. 2008 ;153 Suppl 1:S379-88.
    37. Sherrill JD, Miller WE. Desensitization of herpesvirus-encoded G protein-coupled receptors. Life Sci. 2008 ;82(3-4):125-34.
    38. Cant SH, Pitcher JA. G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell. 2005 ;16(7):3088-99.
    39. MétayéT, Perdrisot R, Kraimps JL. GRKs and arrestins: the therapeutic pathway? Med Sci (Paris). 2006;22(5):537-43.
    40. Penela P, Barradas M, Alvarez-Dolado M, Mu?oz A, Mayor F Jr. Effect of hypothyroidism on G protein-coupled receptor kinase 2 expression levels in rat liver, lung, and heart. Endocrinology. 2001 ;142(3):987-91.
    41. Vinge LE, von Lueder TG, Aasum E, Qvigstad E, Gravning JA, How OJ, Edvardsen T, Bj?rnerheim R, Ahmed MS, Mikkelsen BW, Oie E, Attramadal T, Skomedal T, Smiseth OA, Koch WJ, Larsen TS, Attramadal H. Cardiac-restricted expression of the carboxyl-terminal fragment of GRK3 Uncovers Distinct Functions of GRK3 in regulation of cardiac contractility and growth: GRK3 controls cardiac alpha1-adrenergic receptor responsiveness. J Biol Chem. 2008 ;283(16):10601-10.
    42. Small KM, Schwarb MR, Glinka C, Theiss CT, Brown KM, Seman CA, Liggett SB. Alpha2A- and alpha2C-adrenergic receptors form homo- and heterodimers: the heterodimeric state impairs agonist-promoted GRK phosphorylation and beta-arrestin recruitment. Biochemistry. 2006 ;45(15):4760-7.
    43. Yang W, Xia SH. Mechanisms of regulation and function of G-protein-coupled receptor kinases. World J Gastroenterol. 2006 ;12(48):7753-7.
    44. Dromey JR, Pfleger KD. G protein coupled receptors as drug targets: the role of beta-arrestins. Endocr Metab Immune Disord Drug Targets. 2008;8(1):51-61.
    45. Premont RT, Gainetdinov RR. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol. 2007;69:511-34.
    46. Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F Jr. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta. 2007 ;1768(4):913-22.
    47. Eichmann T, Lorenz K, Hoffmann M, Brockmann J, Krasel C, Lohse MJ, Quitterer U. The amino-terminal domain of G-protein-coupled receptor kinase 2 is a regulatory Gbeta gamma binding site. J Biol Chem. 2003 ;278(10):8052-7.
    48. Turner CE. Paxillin interactions. J Cell Sci. 2000 ;113 Pt 23:4139-40.
    49. Cho EY, Cho DI, Park JH, Kurose H, Caron MG, Kim KM. Roles of protein kinase C and actin-binding protein 280 in the regulation of intracellular trafficking of dopamine D3 receptor. Mol Endocrinol. 2007 ;21(9):2242-54.
    50. Trincavelli ML, Tuscano D, Marroni M, Klotz KN, Lucacchini A, Martini C. Involvement of mitogen protein kinase cascade in agonist-mediated human A(3) adenosine receptor regulation. Biochim Biophys Acta. 2002 ;1591(1-3):55-62.
    51. Kara E, Crépieux P, Gauthier C, Martinat N, Piketty V, Guillou F, Reiter E. A phosphorylation cluster of five serine and threonine residues in the C-terminus of the follicle-stimulating hormone receptor is important for desensitization but not for beta-arrestin-mediated ERK activation. Mol Endocrinol. 2006;20(11):3014-26.
    52. Anania FA, Womack L, Jiang M, Saxena NK. Aldehydes potentiate alpha(2)(I)collagen gene activity by JNK in hepatic stellate cells. Free Radic Biol Med. 2001 ;30(8):846-57.
    53. Varela-Rey M, Montiel-Duarte C, Osés-Prieto JA, López-Zabalza MJ, Jaffrèzou JP, Rojkind M, Iraburu MJ. p38 MAPK mediates the regulation of alpha1(I) procollagen mRNA levels by TNF-alpha and TGF-beta in a cell line of rat hepatic stellate cells(1). FEBS Lett. 2002;528(1-3):133-8.
    54.蒋明德.肝纤维化发生中的MAPK信号转导通路.第四军医大学学报,2005;26(8):766-7
    55. Ito K, Caramori G, Adcock IM. Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J Pharmacol Exp Ther. 2007 ;321(1):1-8.
    56. Naga Prasad SV, Barak LS, Rapacciuolo A, Caron MG, Rockman HA. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by beta-adrenergic receptor kinase 1. A role in receptor sequestration. J Biol Chem. 2001 ;276(22):18953-9.
    57. Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med. 2005 ;11(9):952-8.
    58. Pampillo M, Camuso N, Taylor JE, Szereszewski JM, Ahow MR, Zajac M, Millar RP, Bhattacharya M, Babwah AV.Regulation of GPR54 signaling by GRK2 and {beta}-arrestin. Mol Endocrinol. 2009 ;23(12):2060-74.
    59. Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A. 2009 ;106(24):9649-54.
    60 Hardeland R. Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors. 2009 ;35(2):183-92.
    61. Pertuit M, Barlier A, Enjalbert A, Gérard C. Signalling pathway alterations in pituitary adenomas: involvement of Gsalpha, cAMP and mitogen-activated proteinkinases. J Neuroendocrinol. 2009 ;21(11):869-77.
    62. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future. Cell Mol Life Sci. 2005 ;62(5):551-77.
    63. Blumer JB, Smrcka AV, Lanier SM. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther. 2007 ;113(3):488-506.
    64. Dumont JE, Jauniaux JC, Roger PP. The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci. 1989 ;14(2):67-71.
    65.魏伟,徐星铭,沈玉先,丁长海,张安平,徐叔云.褪黑素对类风湿关节炎外周血淋巴细胞增殖反应的影响及其G蛋白-AC-cAMP信号传导机制的研究.中国药理学通报,1998;14(6):530-2.
    1. Tikhonova IG, Costanzi S. Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr Pharm Des, 2009;15(35):4003-16.
    2. Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T, Tesmer JJ. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex. Science,2005 ;310(5754):1686-90.
    3. Tarrant TK, Rampersad RR, Esserman D, Rothlein LR, Liu P, Premont RT, Lefkowitz RJ, Lee DM, Patel DD. Granulocyte chemotaxis and disease expression are differentially regulated by GRK subtype in an acute inflammatory arthritis model (K/BxN). Clin Immunol, 2008 ;129(1):115-22.
    4. Rapacciuolo A, Suvarna S, Barki-Harrington L, Luttrell LM, Cong M, Lefkowitz RJ, Rockman HA. Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates beta-1 adrenergic receptor endocytosis through different pathways. J BiolChem, 2003 ;278(37):35403-11.
    5. Premont RT, Gainetdinov RR. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol, 2007;69:511-34.
    6. Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol,2008 ;153 Suppl 1:S379-88.
    7. Eichmann T, Lorenz K, Hoffmann M, Brockmann J, Krasel C, Lohse MJ, Quitterer U. The amino-terminal domain of G-protein-coupled receptor kinase 2 is a regulatory Gbeta gamma binding site. J Biol Chem,2003 ;278(10):8052-7.
    8. Dhami GK, Dale LB, Anborgh PH, O'Connor-Halligan KE, Sterne-Marr R, Ferguson SS. G Protein-coupled receptor kinase 2 regulator of G protein signaling homology domain binds to both metabotropic glutamate receptor 1a and Galphaq to attenuate signaling. J Biol Chem,2004 ;279(16):16614-20.
    9. Kageyama K, Hanada K, Moriyama T, Nigawara T, Sakihara S, Suda T. G protein-coupled receptor kinase 2 involvement in desensitization of corticotropin-releasing factor (CRF) receptor type 1 by CRF in murine corticotrophs. Endocrinology,2006 ;147(1):441-50.
    10. Thomas WG. Immunoprecipitation and phosphorylation of G protein-coupled receptors. Methods Mol Biol,2009;552:359-71.
    11. Senin II, Fischer T, Komolov KE, Zinchenko DV, Philippov PP, Koch KW. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites. J Biol Chem,2002 ;277(52):50365-72.
    12. Sallese M, Iacovelli L, Cumashi A, Capobianco L, Cuomo L, De Blasi A. Regulation of G protein-coupled receptor kinase subtypes by calcium sensor proteins. Biochim Biophys Acta,2000 ;1498(2-3):112-21.
    13. Binder U, Oberparleiter C, Meyer V, Marx F. The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. Mol Microbiol,2010 ;75(2):294-307.
    14.张国强,顾承东,柴枝楠.血小板活化因子在缺血再灌注中电生理作用的实验研究.中华急诊医学杂志,2002;11:385-8
    15.贺诗鹏,胡雅儿,夏宗勤.受体研究技术.第1版.北京:北京大学医学出版社,2004:391-2
    16. Wang P, Bowl MR, Bender S, Peng J, Farber L, Chen J, Ali A, Zhang Z, Alberts AS, Thakker RV, Shilatifard A, Williams BO, Teh BT. Parafibromin, a component of the human PAF complex, regulates growth factors and is required for embryonic development and survival in adult mice. Mol Cell Biol,2008 ;28(9):2930-40.
    17.孙耕耘,王应灯. G蛋白偶联受体激酶2参与血小板活化因子致肺微血管内皮细胞损伤的机制.中华急诊医学杂志,2004;13:602-5.
    18. Murthy KS, Mahavadi S, Huang J, Zhou H, Sriwai W. Phosphorylation of GRK2 by PKA augments GRK2-mediated phosphorylation, internalization, and desensitization of VPAC2 receptors in smooth muscle. Am J Physiol Cell Physiol,2008 ;294(2):C477-87.
    19. Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJ. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science,2003 ;300(5623):1256-62.
    20. Jiménez-Sainz MC, Murga C, Kavelaars A, Jurado-Pueyo M, Krakstad BF, Heijnen CJ, Mayor F Jr, Aragay AM. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Mol Biol Cell,2006 ;17(1):25-31.
    21. Cant SH, Pitcher JA. G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell,2005 ;16(7):3088-99.
    22. Iwata K, Luo J, Penn RB, Benovic JL. Bimodal regulation of the human H1 histamine receptor by G protein-coupled receptor kinase 2. J Biol Chem, 2005;280(3):2197-204.
    23. Kelley-Hickie LP, Kinsella BT. Homologous desensitization of signalling by the beta (beta) isoform of the human thromboxane A2 receptor. Biochim Biophys Acta,2006 ;1761(9):1114-31.
    24. Marie N, Aguila B, Hasbi A, Davis A, Jauzac P, Allouche S. Different kinases desensitize the human delta-opioid receptor (hDOP-R) in the neuroblastoma cell line SK-N-BE upon peptidic and alkaloid agonists. Cell Signal,2008 ;20(6):1209-20.
    25. Lu M, Staszewski L, Echeverri F, Xu H, Moyer BD. Endoplasmic reticulum degradation impedes olfactory G-protein coupled receptor functional expression. BMC Cell Biol,2004;5:34.
    26. Li H, Armando I, Yu P, Escano C, Mueller SC, Asico L, Pascua A, Lu Q, Wang X, Villar VA, Jones JE, Wang Z, Periasamy A, Lau YS, Soares-da-Silva P, Creswell K, Guillemette G, Sibley DR, Eisner G, Gildea JJ, Felder RA, Jose PA. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. J Clin Invest,2008 ;118(6):2180-9.
    27. Mahavadi S, Huang J, Sriwai W, Rao KR, Murthy KS. Cross-regulation of VPAC2 receptor internalization by m2 receptors via c-Src-mediated phosphorylation of GRK2. Regul Pept,2007 ;139(1-3):109-14.
    28. Alcántara-Hernández R, Casas-González P, García-Sáinz JA. Roles of c-Src in alpha1B-adrenoceptor phosphorylation and desensitization. Auton Autacoid Pharmacol,2008 ;28(1):29-39.
    29. Chen Y, Long H, Wu Z, Jiang X, Ma L. EGF transregulates opioid receptors through EGFR-mediated GRK2 phosphorylation and activation. Mol Biol Cell, 2008 ;19(7):2973-83.
    30. Pitcher JA, Tesmer JJ, Freeman JL, Capel WD, Stone WC, Lefkowitz RJ. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J Biol Chem,1999 ;274(49):34531-4.
    31. MétayéT, Levillain P, Kraimps JL, Perdrisot R. Immunohistochemical detection, regulation and antiproliferative function of G-protein-coupled receptor kinase 2 in thyroid carcinomas. J Endocrinol,2008 ;198(1):101-10.
    32. Lymperopoulos A, Rengo G, Zincarelli C, Soltys S, Koch WJ. Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of Gprotein-coupled receptor kinase-2 activity. Mol Ther,2008 ;16(2):302-7.
    33. Huang S, Patterson E, Yu X, Garrett MW, De Aos I, Kem DC. Proteasome inhibition 1 h following ischemia protects GRK2 and prevents malignant ventricular tachyarrhythmias and SCD in a model of myocardial infarction. Am J Physiol Heart Circ Physiol,2008 ;294(3):H1298-303.
    34. DeFord-Watts LM, Young JA, Pitcher LA, van Oers NS. The membrane-proximal portion of CD3 epsilon associates with the serine/threonine kinase GRK2. J Biol Chem,2007 ;282(22):16126-34.
    35. del Rey A, Renigunta V, Dalpke AH, Leipziger J, Matos JE, Robaye B, Zuzarte M, Kavelaars A, Hanley PJ. Knock-out mice reveal the contributions of P2Y and P2X receptors to nucleotide-induced Ca2+ signaling in macrophages. J Biol Chem,2006 ;281(46):35147-55.
    36. Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem,2010 ;285(10):7805-17.
    37. Lodeiro M, Theodoropoulou M, Pardo M, Casanueva FF, Cami?a JP. c-Src regulates Akt signaling in response to ghrelin via beta-arrestin signaling-independent and -dependent mechanisms. PLoS One,2009;4(3):e4686.
    38. Wu JH, Goswami R, Kim LK, Miller WE, Peppel K, Freedman NJ. The platelet-derived growth factor receptor-beta phosphorylates and activates G protein-coupled receptor kinase-2. A mechanism for feedback inhibition. J Biol Chem,2005 ;280(35):31027-35.
    39. MariggiòS, García-Hoz C, Sarnago S, De Blasi A, Mayor F Jr, Ribas C. Tyrosine phosphorylation of G-protein-coupled-receptor kinase 2 (GRK2) by c-Src modulates its interaction with Galphaq. Cell Signal,2006 ;18(11):2004-12.
    40. Ho AK, McNeil L, Terriff D, Price DM, Chik CL. Role of protein turnover in the activation of p38 mitogen-activated protein kinase in rat pinealocytes. BiochemPharmacol,2005 ;70(12):1840-50.
    41. Metaye T,Gibelin H,Perdrisot R,Kraimps JL.Pathophysiological roles of G-protein-coupled receptor kinases. Cell Signal 2005;17:917-28.
    42. Lombardi MS,Kavelaars A,Cobelens PM,Schmidt RE,Schedlowski M,Heijnen CJ.Adjuvant arthritis induces down-regulation of G protein-coupled receptor kinases in the immune system. J Immunol 2001;166:1635-40.
    43. Penela P, Barradas M, Alvarez-Dolado M, Mu?oz A, Mayor F Jr. Effect of hypothyroidism on G protein-coupled receptor kinase 2 expression levels in rat liver, lung, and heart. Endocrinology. 2001 ;142(3):987-91.
    44. Borkham-Kamphorst E, Kovalenko E, van Roeyen CR, Gassler N, Bomble M, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Lab Invest,2008 ;88(10):1090-100.
    45. Semela D, Das A, Langer D, Kang N, Leof E, Shah V. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology.2008 ;135(2):671-9.
    46. Plewka K, Szuster-Ciesielska A, Kandefer-SzerszeńM. Role of stellate cells in alcoholic liver fibrosis. Postepy Hig Med Dosw (Online),2009 ;63:303-17.
    47. Limaye PB, Bowen WC, Orr AV, Luo J, Tseng GC, Michalopoulos GK. Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium. Hepatology, 2008 ;47(5):1702-13.
    48. Dekkers BG, Schaafsma D, Nelemans SA, Zaagsma J, Meurs H. Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function. Am J Physiol Lung Cell Mol Physiol, 2007 ;292(6):L1405-13.
    49. Baron V, Schwartz M. Cell adhesion regulates ubiquitin-mediated degradation of the platelet-derived growth factor receptor beta. J Biol Chem,2000 ;275(50):39318-23.
    50. McMahon B, Mitchell D, Shattock R, Martin F, Brady HR, Godson C. Lipoxin,leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J, 2002 ;16(13):1817-9.
    51. Ma L, Pei G. Beta-arrestin signaling and regulation of transcription. J Cell Sci, 2007 ;120(Pt 2):213-8.
    52. Kranenburg O, Moolenaar WH. Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene,2001 ;20(13):1540-6.
    53. Gao J, Li J, Ma L. Regulation of EGF-induced ERK/MAPK activation and EGFR internalization by G protein-coupled receptor kinase 2. Acta Biochim Biophys Sin (Shanghai),2005 ;37(8):525-31.
    54. Peart JN, Gross ER, Headrick JP, Gross GJ. Impaired p38 MAPK/HSP27 signaling underlies aging-related failure in opioid-mediated cardioprotection. J Mol Cell Cardiol, 2007 ;42(5):972-80.
    55. Elorza A, Penela P, Sarnago S, Mayor F Jr. MAPK-dependent degradation of G protein-coupled receptor kinase 2. J Biol Chem.,2003 ;278(31):29164-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700