miR-210抑制食管Eca109细胞生长的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国食管癌发病和死亡人数约占全球的二分之一。放射治疗是目前食管癌主要的治疗手段之一,但是5年生存率仅有10%~30%。研究表明,肿瘤乏氧细胞的产生和存在使肿瘤对放疗的抗拒性增加,是影响肿瘤放射治疗疗效的主要原因之一。
     乏氧诱导因子-lα(hypoxia inducible factor-1,HIF-lα)是介导肿瘤细胞的乏氧适应性变化的关键调控因子。近年来的研究表明,miR-210作为HIF-1α新发现的下游靶基因,参与了多种细胞生物学功能的调控,如:能量代谢、细胞周期、DNA损伤修复等。已有研究证实,miR-210过表达可引起肿瘤细胞G1/S期和/或G2/M期阻滞,干扰有丝分裂进程,抑制肿瘤生长。其中G1/S期阻滞与miR-210特异性抑制E2F转录因子3(E2Ftranscription factor3, E2F3)和成纤维细胞生长因子受体样因子1(Fibroblast Growth Factor Receptor-like1,FGFRL1)的表达有关。然而目前关于miR-210诱导G2/M期阻滞所涉及的靶基因还鲜有报道,具体调控机制也尚不明了。有研究称原癌基因(c-MYC)的竞争性抑制剂Max结合蛋白(Max’s next tango,MNT)也是miR-210的靶基因,在乏氧条件下,miR-210可以通过抑制它的表达加速细胞周期进程。因此,miR-210调控细胞周期的机制及其对细胞增殖的具体影响都还有待进一步揭示。
     循环miRNA具有单链小分子特性,多以RNA/蛋白复合体的形式存在,稳定性比其他核酸分子高,RNA酶不易降解,适合作为分子标志物。此前有3项研究分别报道了循环miR-210在胰腺、乳腺、肾脏肿瘤中高表达。尽管上述研究的样本量较小,但结果的一致性表明循环miR-210的差异性表达或可为肿瘤诊断提供帮助。目前还未见食管癌患者循环miR-210表达情况的报道,而且此前的研究多关注于手术对肿瘤患者循环miRNA表达的影响,对于根治性放疗前后循环miRNA表达的变化还鲜有报道。
     本研究首先观察并检测了人食管鳞癌Eca109细胞在乏氧条件下miR-210的表达情况,通过转染miR-210mimics观察miR-210过表达对Eca109细胞增殖、周期、凋亡的影响,并探讨其可能的作用机制;其次,应用生物信息技术筛选出miR-210调控G2/M期转换的可能靶基因Plk1,通过构建荧光素酶报告质粒pmiR-RB-REPORTTM-Plk1,检验Plk1基因mRNA的3'UTR区域是否包含miR-210的作用结合位点,并检测过表达miR-210对Plk1蛋白表达水平的影响,验证Plk1是否是miR-210的直接靶基因;最后,通过检测食管癌患者及健康志愿者血浆miR-210的表达水平,并对比食管癌患者根治性放疗前后血浆miR-210的表达变化,了解血浆miR-210对食管癌的诊断及放疗疗效评估价值。
     第一部分miR-210在乏氧食管Eca109细胞中的表达及其对细胞生物学行为的影响
     目的:检测miR-210在乏氧食管Eca109细胞中的表达水平,并探讨其对细胞增殖、周期、凋亡的影响。
     方法:RT-PCR检测不同乏氧时相食管鳞癌Eca109细胞中miR-210的表达。采用CCK-8增殖实验、EdU增殖实验、流式细胞仪检测miR-210过表达对Eca109细胞增殖、周期、凋亡的影响
     结果:经RT-PCR检测, Eca109细胞乏氧培养12h后miR-210的表达就有明显增高,24h后达峰值,较常氧组差异有统计学意义(P<0.001)。CCK-8及EdU细胞增殖实验显示,miR-210mimics转染24、48h后Eca109/miR-210组增殖细胞活力比例均较Eca109/Control组和Eca109/ncRNA组显著下降,差异有统计学意义(P<0.001)。流式细胞分析显示,转染24h后,同Eca109/Control和Eca109/ncRNA相比,Eca109/miR-210组出G2/M期细胞比例明显增高,差异有统计学意义(P<0.05);转染48h后,Eca109/miR-210组G2/M期增多更为明显(P<0.01)。然而,Eca109/miR-210、Eca109/Control和Eca109/ncRNA三组转染24、48h后细胞凋亡比例未见明显变化。
     结论:miR-210在乏氧食管Eca109细胞中高表达,miR-210过表达抑制细胞增殖,其机制可能与G2/M期阻滞相关。
     第二部分miR-210靶向调控Plk1基因表达的研究
     目的:筛选miR-210调控G2/M期转换的可能靶基因,并验证miR-210对预测靶基因的调控关系。
     方法:应用生物信息学手段对miR-210的可能靶基因进行预测,经酶切及基因测序鉴定构建含有预测靶基因3'-UTR报告载体pmiR-RB-REPORTTM,应用荧光素酶报告系统检测细胞内荧光活性的变化。WesternBlot检测miR-210对预测靶基因蛋白表达的影响。
     结果:通过生物信息学预测,筛选Plk1作为miR-210调控G2/M期转换的潜在靶基因。经过酶切及基因测序鉴定,成功构建含有Plk1基因3'-UTR荧光素酶报告载体pmiR-RB-REPORTTM-Plk1。与共转染pmiR-RB-Report_PLK1+mimicsNC相比,HEK293T/17细胞共转染pmiR-RB-Report_PLK1+mimics210后荧光素酶活性显著下(P<0.01)。转染miR-210mimics48h后,对Eca109细胞进行Plk1蛋白的检测,结果提示与Eca109/Control组及Eca109/NC组比较,Eca109/miR-210组Plk1蛋白表达水平显著下降(P<0.01)。
     结论:miR-210与靶基因Plk1mRNA3'-UTR能够有效结合,miR-210过表达抑制Plk1基因蛋白表达。Plk1是miR-210的直接靶基因。第三部分放疗对食管鳞癌患者血浆miR-210、miR-21表达水平的影响
     目的:检测食管癌患者血浆miR-210、miR-21表达水平,并评估根治性放疗对血浆miR-210、miR-21表达水平的影响。
     方法:采集食管癌初治患者根治性放疗前后及健康志愿者血液标本,应用TaqMan探针实时荧光定量RT-PCR法检测血浆miR-210和miR-21的表达水平。
     结果:22例初治食管鳞癌患者及15例健康志愿者入组,共采集合格血液样本59份。RT-PCR显示,食管癌组血浆miR-210、miR-21的表达较健康对照组明显升高(P<0.01)。血浆miR-210、miR-21表达水平与食管癌病变位置和分化程度无关。根治性放疗后,食管癌组血浆miR-210、miR-21的表达均显著升高,其中miR-210升高的更为显著(P<0.01,P<0.05)。
     结论:miR-210、miR-21在食管癌患者血浆中高表达,根治性放疗影响二者的表达水平。
Esophageal carcinoma is one of the most common malignant diseases inChina, with high incidence and high mortality characteristics.90%of esopha-geal tumors are esophageal squamous cell carcinoma (ESCC) in in Asia-pacific region. Currently radiotherapy is the mainstay in the treatment ofesophageal cancer, but the local failure has remained a major concern, withpersistent or recurrent disease being reported in around60-80%of patients,and an overall5-year survival rate of10%.
     Intratumoral hypoxia is a hallmark of most solid tumors and results fromincreased oxygen consumption and/or insufficient blood supply. Evidenceobtained from radiochemical and radiobiological studies has revealed theseproblems to be caused, at least in part, by a tumor-specific microenvironment,hypoxia. Many of the hypoxia-induced cellular responses are mediatedthrough the hypoxia-inducible factors (HIFs), which regulate genes involvedin angiogenesis, survival, cell metabolism, invasion and other functions.Recently, a number of miRNAs induced during hypoxia have been identified.One of these miRNAs, miR-210, is strongly induced by HIF-lα and haspleiotropic effects. Several recent studies also demonstrated that miR-210inhibited tumor cell proliferation by inducing G0/G1and/or G2/M phase cellcycle arrest. In contrast to other solid tumors, miR-210is frequently under-expressed in ovarian cancers, which potentially leads to increased expressionof E2F transcription factor3(E2F3) which participates in the regulation of thecell cycle. Likewise, miR-210is down-regulated in esophageal squamous cellcarcinoma. MiR-210inhibits cancer cell proliferation and induces G0/G1phase cell cycle arrest by derepressing fibroblast growth factor receptor-like1(FGFRL1) that in turn accelerates cell cycle progression. However, onecannot generally state that miR-210induction in hypoxia negatively regulates cell cycle progression and proliferation. In hepatic cancer cells, miR-210activates the myc pathway, via downregulation of the c-Myc antagonist MNT,and loss of MYC abolished miR-210-mediated override of hypoxia-inducedcell cycle arrest. Therefore, the net impact of miR-210on cell cycle regulationseems to be context dependent.
     In previous studies, the miR-210up/down-regulated expression isreported in other malignancy tissues, such as cancers of the head and neck,pancreas, breast, and ovarian. Recently, studies on the role of circulating miR-210in cancer and its potential utility as prognostic markers have emerged.Lately, the correlation of circulating miR-210levels with breast cancermortality is a striking one. Eun-Jung Jung and colleagues reported plasmamiR-210levels correlate with sensitivity to trastuzumab, tumor presence, andlymph node metastases in breast cancer patients. Another two studies showeda statistically significant four-fold increase of circulating miR-210in expres-sion in pancreatic and clear cell renal cancer patients compared with normalcontrols. Although the results of these three studies were obtained from smallcohorts, the presence of elevated miR-210in the plasma of cancer patientssuggests that this may be an important feature of these diseases, which mayfurther advance our understanding of the underlying pathogenesis of cancers.
     In present study, we investigated the functional role of miR-210in thegrowth of carcinomas and the mechanism by which it acts. Next, we analyzedthe serum miR-210expression level in ESCC patients for the first time.Furthermore, our work also revealed the potential role of serum miR-210levelas response markers during radiotherapy for ESCC patients.
     Part1The expression of miR-210in hypoxic esophageal carcinomaEca109cells and its effects on biological behivior
     Objective: To detect the expression of miR-210in hypoxic esophagealcarcinoma Eca109cells and explore its effects on proliferation, cell cycle andapoptosis.
     Methods: After being treated with hypoxia, miR-210at different hypoxicculture phases were detected by RT-PCR. Furthermore, and the proliferation, cycle distribution and apoptosis of Eca109cells were detected with CCK-8,EdU and flow cytometry after transfection.
     Results: Under hypoxia, the level of miR-210increased obviously.Transfection of miR-210significantly decreased the proliferation of cancercells in CCK-8test and reduced the uptake of EdU, respectively. Transfectionof miR-210resulted in a significant increase in the proportion of cells in G2/Mphase. No significant apoptotic changes were found.
     Conclusion: miR-210was inducted by hypoxia in ESCC cells; miR-210may inhibit proliferation of mainly by inducing cell cycle arrest in G2/Mphase.
     Part2miR-210targeted the expression ofPlk1gene
     Objective: To explore the candidate target of miR-210that reugulatesG2/M arrst.
     Methods: The candidate target of miR-210that reugulate G2/M arrst waspredicted by bioinformation.The dual luciferase vector which contains3'-UTRof the target was constructed, and was regared as the binding sites withmiR-210. The expression of the target gene in Eca109cells was investigatedafter transfection by Western blot.
     Results: Plk1was predicted as the specific target gene of miR-34a bybioinformation method.3'-UTR of Plk1which was contained in the dualluciferase recombinant vector was successfully constructed and vertified byenzyme digestion and gene sequence methods. The results of luciferaseWhenmiR-210oligos were transfected into293T/17cells with the reporter constructpmiR-RB-Report_Plk1, luciferase activity was repressed more than50%compared with transfection of scramble oligos. The level of Plk1proteinexpression in transfected cells with miR-210oligos was significantly decree-ased compared with that of cells with stable integration of the scramblesequence after48hours.
     Conclusion:3'-UTR of Plk1was the binding sites with miR-210andmiR-210inhabited its protein expression, which suggested Plk1was the targetgenes ofmiR-210.
     Part3The effect of radiotherapy on plasma miR-210and miR-21inesophageal cancer patients
     Objective: To analyze the miR-210and miR-21expression level inesophageal cancer patients and reveale the potential role of their level asresponse markers during radiotherapy.
     Methods: Plasma miR-210and miR-21expression level of ESCCpatients during radiotherapy and healthy controls were measured by usingreal-time RT-PCR.
     Results: A totle of55plasma samples from22ESCC patients before&after radiotherapy and15healthy controls were measured. Plasmaconcentration of miR-210and miR-21in ESCC patients were significantlyhigher than that in healthy controls (P=0.0024;P=0.0004). No significantassociation was found between the levels of the two miRNAs and sex, age,tumor location and differentiation. Furthermore, a significant elevation in theserum miR-210and miR-21levels were observed in the postradiotherapysamples versus the preradiotherapy samples (P=0.0025;P=0.0316).
     Conclusion: The results suggested that a statistically significant increaseof plasma miR-210miR-21expression in esophageal cancer patientscompared with normal controls.Their potential utility as prognostic andresponse markers during radiotherapy markers had emerged.
引文
1Parkin D M, Bray F, Ferlay J, et al. Global cancer statistics,2002[J]. CACancer J Clin,2005,55(2):74-108
    2Parkin D M, Bray F I, Devesa S S. Cancer burden in the year2000. Theglobal picture[J]. Eur J Cancer,2001,37Suppl8: S4-66
    3Pisani P, Parkin D M, Bray F, et al. Estimates of the worldwide mortalityfrom25cancers in1990[J]. Int J Cancer,1999,83(1):18-29
    4Brown J M, Wilson W R. Exploiting tumour hypoxia in cancer treatment[J]. Nat Rev Cancer,2004,4(6):437-447
    5Zhu Y, Zhao T, Itasaka S, et al. Involvement of decreased hypoxia-indu-cible factor1activity and resultant G1-S cell cycle transition in radiores-istance of perinecrotic tumor cells[J]. Oncogene,2013,32(16):2058-2068
    6Moeller B J, Cao Y, Li C Y, et al. Radiation activates HIF-1to regulatevascular radiosensitivity in tumors: role of reoxygenation, free radicals,and stress granules[J]. Cancer cell,2004,5(5):429-441
    7Moeller B J, Dewhirst M W. HIF-1and tumour radiosensitivity[J]. Br JCancer,2006,95(1):1-5
    8Moeller B J, Dreher M R, Rabbani Z N, et al. Pleiotropic effects of HIF-1blockade on tumor radiosensitivity[J]. Cancer cell,2005,8(2):99-110
    9Favaro E, Ramachandran A, Mccormick R, et al. MicroRNA-210regulatesmitochondrial free radical response to hypoxia and krebs cycle in cancercells by targeting iron sulfur cluster protein ISCU[J]. PLoS One,2010,5(4): e10345
    10Chan S Y, Zhang Y Y, Hemann C, et al. MicroRNA-210controlsmitochondrial metabolism during hypoxia by repressing the iron-sulfurcluster assembly proteins ISCU1/2[J]. Cell Metab,2009,10(4):273-284
    11Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210linkshypoxia with cell cycle regulation and is deleted in human epithelialovarian cancer[J]. Cancer Biol Ther,2008,7(2):255-264
    12Crosby M E, Kulshreshtha R, Ivan M, et al. MicroRNA regulation of DNArepair gene expression in hypoxic stress[J]. Cancer Res,2009,69(3):1221-1229
    13Tsuchiya S, Fujiwara T, Sato F, et al. MicroRNA-210regulates cancer cellproliferation through targeting fibroblast growth factor receptor-like1(FGFRL1)[J]. J Biol Chem,2011,286(1):420-428
    14Zhang Z, Sun H, Dai H, et al. MicroRNA miR-210modulates cellularresponse to hypoxia through the MYC antagonist MNT[J]. Cell Cycle,2009,8(17):2756-2768
    15Bushati N, Cohen S M. microRNA functions[J]. Annu Rev Cell Dev Biol,2007,23:175-205
    16Cannell I, Kong Y, Bushell M. How do microRNAs regulate geneexpression?[J]. Biochem Soc Trans,2008,36(6):1224
    17Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic genelin-4encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854
    18Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way[J].Cell,2009,136(4):586-591
    19Ullah S, John P, Bhatti A. MicroRNAs with a role in gene regulation andin human diseases[J]. Mol Biol Rep,2014,41(1):225-232
    20Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and otherangiogenic factors under hypoxia[J]. PLoS One,2006,1: e116
    21Kulshreshtha R, Ferracin M, Wojcik S E, et al. A microRNA signature ofhypoxia[J]. Mol Cell Biol,2007,27(5):1859-1867
    22Camps C, Buffa F M, Colella S, et al. hsa-miR-210Is induced by hypoxiaand is an independent prognostic factor in breast cancer[J]. Clinical CancerResearch,2008,14(5):1340-1348
    23Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresseshypoxia-inducible factor-1alpha and Sirtuin1and recapitulates hypoxiapreconditioning in cardiac myocytes[J]. Circ Res,2009,104(7):879-886
    24Lei Z, Li B, Yang Z, et al. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concent-ration[J]. PLoS One,2009,4(10): e7629
    25Huang X, Ding L, Bennewith K L, et al. Hypoxia-inducible mir-210regulates normoxic gene expression involved in tumor initiation[J]. MolCell,2009,35(6):856-867
    26Jing S-W, Wang Y-D, Kuroda M, et al. HIF-1α contributes to hypoxia-induced invasion and metastasis of esophageal carcinoma via inhibitingE-cadherin and promoting MMP-2expression[J]. Acta Med Okayama,2012,66:399-407
    27Nakada C, Tsukamoto Y, Matsuura K, et al. Overexpression of miR-210, adownstream target of HIF1alpha, causes centrosome amplification in renalcarcinoma cells[J]. J Pathol,2011,224(2):280-288
    28He J, Wu J, Xu N, et al. MiR-210disturbs mitotic progression throughregulating a group of mitosis-related genes[J]. Nucleic Acids Res,2013,41(1):498-508
    29Houtgraaf J H, Versmissen J, Van Der Giessen W J. A concise review ofDNA damage checkpoints and repair in mammalian cells[J]. CardiovascRevasc Med,2006,7(3):165-172
    30Yasutis K M, Kozminski K G. Cell cycle checkpoint regulators reach azillion[J]. Cell Cycle,2013,12(10):1501-1509
    31Rieder C L. Mitosis in vertebrates: the G2/M and M/A transitions and theirassociated checkpoints[J]. Chromosome Research,2011,19(3):291-306.
    32Xu B, Kim S-T, Lim D-S, et al. Two molecularly distinct G2/M checkp-oints are induced by ionizing irradiation[J]. Mol Cell Biol,2002,22(4):1049-1059
    33Mitra J, Enders G H. Cyclin A/Cdk2complexes regulate activation ofCdk1and Cdc25phosphatases in human cells[J]. Oncogene,2004,23(19):3361-3367
    34Solc P, Saskova A, Baran V, et al. CDC25A phosphatase controls meiosis Iprogression in mouse oocytes[J]. Dev Biol,2008,317(1):260-269
    35Luo X N, Mookerjee B, Ferrari A, et al. Regulation of phosphoprotein p18in leukemic cells. Cell cycle regulated phosphorylation by p34cdc2kinase[J]. J Biol Chem,1994,269(14):10312-10318
    36Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210linkshypoxia with cell cycle regulation and is deleted in human epithelialovarian cancer[J]. Cancer Biology and Therapy,2008,7(2):255
    37Leone G, Degregori J, Yan Z, et al. E2F3activity is regulated during thecell cycle and is required for the induction of S phase[J]. Genes&development,1998,12(14):2120-2130
    38Humbert P O, Verona R, Trimarchi J M, et al. E2f3is critical for normalcellular proliferation[J]. Genes&development,2000,14(6):690-703
    1Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210linkshypoxia with cell cycle regulation and is deleted in human epithelialovarian cancer[J]. Cancer Biol Ther,2008,7(2):255-264
    2Tsuchiya S, Fujiwara T, Sato F, et al. MicroRNA-210regulates cancer cellproliferation through targeting fibroblast growth factor receptor-like1(FGFRL1)[J]. J Biol Chem,2011,286(1):420-428
    3Huang X, Ding L, Bennewith K L, et al. Hypoxia-inducible mir-210regulates normoxic gene expression involved in tumor initiation[J]. MolCell,2009,35(6):856-867
    4Nakada C, Tsukamoto Y, Matsuura K, et al. Overexpression of miR-210, adownstream target of HIF1alpha, causes centrosome amplification in renalcarcinoma cells[J]. J Pathol,2011,224(2):280-288
    5He J, Wu J, Xu N, et al. MiR-210disturbs mitotic progression throughregulating a group of mitosis-related genes[J]. Nucleic Acids Res,2013,41(1):498-508
    6Boutz P L, Chawla G, Stoilov P, et al. MicroRNAs regulate the expressionof the alternative splicing factor nPTB during muscle development[J].Genes&development,2007,21(1):71-84
    7Thadani R, Tammi M T. MicroTar: predicting microRNA targets from RNAduplexes[J]. BMC Bioinformatics,2006,7Suppl5: S20
    8John B, Enright A J, Aravin A, et al. Human MicroRNA targets[J]. PLoSBiol,2004,2(11): e363
    9Lall S, Grun D, Krek A, et al. A genome-wide map of conservedmicroRNA targets in C. elegans[J]. Curr Biol,2006,16(5):460-471
    10Robins H, Li Y, Padgett R W. Incorporating structure to predict microRNAtargets[J]. Proc Natl Acad Sci U S A,2005,102(11):4006-4009
    11Glover D M, Hagan I M, Tavares A. Polo-like kinases: a team that playsthroughout mitosis[J]. Genes&development,1998,12(24):3777-3787
    12Xu B, Kim S-T, Lim D-S, et al. Two molecularly distinct G2/M checkp-oints are induced by ionizing irradiation[J]. Mol Cell Biol,2002,22(4):1049-1059
    13Mitra J, Enders G H. Cyclin A/Cdk2complexes regulate activation ofCdk1and Cdc25phosphatases in human cells[J]. Oncogene,2004,23(19):3361-3367
    14Solc P, Saskova A, Baran V, et al. CDC25A phosphatase controls meiosis Iprogression in mouse oocytes[J]. Dev Biol,2008,317(1):260-269
    15Luedde T, Rodriguez M E, Tacke F, et al. p18(INK4c) collaborates withother CDK‐inhibitory proteins in the regenerating liver[J]. Hepatology,2003,37(4):833-841
    16Luo X-N, Mookerjee B, Ferrari A, et al. Regulation of phosphoprotein p18in leukemic cells. Cell cycle regulated phosphorylation by p34cdc2kinase[J]. Journal of Biological Chemistry,1994,269(14):10312-10318
    17Wang Y, Jacobs C, Hook K E, et al. Binding of14-3-3beta to the carboxylterminus of Wee1increases Wee1stability, kinase activity, and G2-M cellpopulation[J]. Cell growth&differentiation: the molecular biology journalof the American Association for Cancer Research,2000,11(4):211-219.
    18Barnes E A, Kong M, Ollendorff V, et al. Patched1interacts with cyclin B1to regulate cell cycle progression[J]. The EMBO journal,2001,20(9):2214-2223
    19Golsteyn R M, Schultz S J, Bartek J, et al. Cell cycle analysis andchromosomal localization of human Plk1, a putative homologue of themitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5[J]. JCell Sci,1994,107(6):1509-1517
    20Lowery D M, Lim D, Yaffe M B. Structure and function of Polo-likekinases[J]. Oncogene,2005,24(2):248-259
    21Van Vugt M A, Medema R H. Getting in and out of mitosis with Polo-likekinase-1[J]. Oncogene,2005,24(17):2844-2859
    22Toyoshima‐Morimoto F, Taniguchi E, Nishida E. Plk1promotes nucleartranslocation of human Cdc25C during prophase[J]. EMBO reports,2002,3(4):341-348
    23Nakajima H, Toyoshima-Morimoto F, Taniguchi E, et al. Identification of aConsensus Motif for Plk (Polo-like Kinase) Phosphorylation Reveals Myt1as a Plk1Substrate*[J]. Journal of Biological Chemistry,2003,278(28):25277-25280
    24Yuan J, Eckerdt F, Bereiter-Hahn J, et al. Cooperative phosphorylationincluding the activity of polo-like kinase1regulates the subcellularlocalization of cyclin B1[J]. Oncogene,2002,21(54)
    25Mamely I, Van Vugt M A, Smits V A, et al. Polo-like kinase-1controlsproteasome-dependent degradation of Claspin during checkpoint recovery[J]. Current biology,2006,16(19):1950-1955
    26Watanabe N, Arai H, Nishihara Y, et al. M-phase kinases inducephospho-dependent ubiquitination of somatic Wee1by SCFβ-TrCP[J]. ProcNatl Acad Sci U S A,2004,101(13):4419-4424
    27Kang D, Chen J, Wong J, et al. The checkpoint protein Chfr is a ligase thatubiquitinates Plk1and inhibits Cdc2at the G2to M transition[J]. J CellBiol,2002,156(2):249-260
    28Inoue D, Sagata N. The Polo‐like kinase Plx1interacts with and inhibitsMyt1after fertilization of Xenopus eggs[J]. The EMBO journal,2005,24(5):1057-1067.
    29Kato Y, Ito M, Kawai K, et al. Determinants of ligand specificity in groupsI and IV WW domains as studied by surface plasmon resonance and modelbuilding[J]. Journal of Biological Chemistry,2002,277(12):10173-10177
    30Casenghi M, Barr F A, Nigg E A. Phosphorylation of Nlp by Plk1negatively regulates its dynein-dynactin-dependent targeting to the centro-some[J]. J Cell Sci,2005,118(21):5101-5108
    31Rapley J, Baxter J E, Blot J, et al. Coordinate regulation of the mothercentriole component nlp by nek2and plk1protein kinases[J]. Mol Cell Biol,2005,25(4):1309-1324.
    32Li J, Zhan Q. The role of centrosomal Nlp in the control of mitoticprogression and tumourigenesis[J]. Br J Cancer,2011,104(10):1523-1528.
    33Oshimori N, Ohsugi M, Yamamoto T. The Plk1target Kizuna stabilizesmitotic centrosomes to ensure spindle bipolarity[J]. Nature cell biology,2006,8(10):1095-1101.
    34Reindl W, Yuan J, Kr mer A, et al. A Pan‐Specific Inhibitor of the Polo-Box Domains of Polo‐like Kinases Arrests Cancer Cells in Mitosis[J].Chembiochem,2009,10(7):1145-1148
    1Lu J, Getz G, Miska E A, et al. MicroRNA expression profiles classifyhuman cancers[J]. Nature,2005,435(7043):834-838
    2Jannot G, Simard M. Tumour-related microRNAs functions in Caenor-habditis elegans[J]. Oncogene,2006,25(46):6197-6201
    3Cho W C. OncomiRs: the discovery and progress of microRNAs incancers[J]. Molecular cancer,2007,6(1):60
    4Cho W. MicroRNAs: potential biomarkers for cancer diagnosis, prognosisand targets for therapy[J]. Int J Biochem Cell Biol,2010,42(8):1273-1281
    5Manikandan J, Aarthi J J, Kumar S D, et al. Oncomirs: the potential role ofnon-coding microRNAs in understanding cancer[J]. Bioinformation,2008,2(8)
    6Esteller M. Non-coding RNAs in human disease[J]. Nature ReviewsGenetics,2011,12(12):861-874
    7Wang G, Kwan B C-H, Lai F M-M, et al. Expression of microRNAs in theurinary sediment of patients with IgA nephropathy[J]. Disease markers,2010,28(2):79-86
    8Liu T, Cheng W, Gao Y, et al. Microarray analysis of microRNAexpression patterns in the semen of infertile men with semen abnorm-alities[J]. Mol Med Rep,2012,6(3):535-542
    9Yu L, Todd N W, Xing L, et al. Early detection of lung adenocarcinoma insputum by a panel of microRNA markers[J]. International Journal ofCancer,2010,127(12):2870-2878
    10Xie Y, Todd N W, Liu Z, et al. Altered miRNA expression in sputum fordiagnosis of non-small cell lung cancer[J]. Lung cancer,2010,67(2):170-176
    11El-Hefnawy T, Raja S, Kelly L, et al. Characterization of amplifiable,circulating RNA in plasma and its potential as a tool for cancer diagnostics[J]. Clinical chemistry,2004,50(3):564-573
    12Lawrie C H, Gal S, Dunlop H M, et al. Detection of elevated levels oftumour-associated microRNAs in serum of patients with diffuse largeB-cell lymphoma[J]. British journal of haematology,2008,141(5):672-675
    13Ho A S, Huang X, Cao H, et al. Circulating miR-210as a novel hypoxiamarker in pancreatic cancer[J]. Transl Oncol,2010,3(2):109
    14Zhao A, Li G, Péoc'h M, et al. Serum miR-210as a novel biomarker formolecular diagnosis of clear cell renal cell carcinoma[J]. Exp Mol Pathol,2013,94(1):115-120
    15Jung E J, Santarpia L, Kim J, et al. Plasma microRNA210levels correlatewith sensitivity to trastuzumab and tumor presence in breast cancerpatients[J]. Cancer,2012,118(10):2603-2614
    16Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs asstable blood-based markers for cancer detection[J]. Proceedings of theNational Academy of Sciences,2008,105(30):10513-10518
    17Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: anovel class of biomarkers for diagnosis of cancer and other diseases[J].Cell research,2008,18(10):997-1006
    18Hu Z, Chen X, Zhao Y, et al. Serum MicroRNA signatures identified in agenome-wide serum MicroRNA expression profiling predict survival ofnon–small-cell lung cancer[J]. Journal of Clinical Oncology,2010,28(10):1721-1726
    19Wang J-F, Yu M-L, Yu G, et al. Serum miR-146a and miR-223as potentialnew biomarkers for sepsis[J]. Biochem Biophys Res Commun,2010,394(1):184-188
    20Li L-M, Hu Z-B, Zhou Z-X, et al. Serum microRNA profiles serve asnovel biomarkers for HBV infection and diagnosis of HBV-positivehepatocarcinoma[J]. Cancer Res,2010,70(23):9798-9807
    21Gee H E, Camps C, Buffa F M, et al. hsa‐miR‐210is a marker of tumorhypoxia and a prognostic factor in head and neck cancer[J]. Cancer,2010,116(9):2148-2158
    22Neal C S, Michael M Z, Rawlings L H, et al. The VHL-dependent regula-tion of microRNAs in renal cancer[J]. BMC medicine,2010,8(1):64
    23Mccormick R, Blick C, Ragoussis J, et al. miR-210is a target of hypoxia-inducible factors1and2in renal cancer, regulates ISCU and correlateswith good prognosis[J]. Br J Cancer,2013,108(5):1133-1142
    24Camps C, Buffa F M, Colella S, et al. hsa-miR-210Is induced by hypoxiaand is an independent prognostic factor in breast cancer[J]. Clinical CancerResearch,2008,14(5):1340-1348
    25Foekens J A, Sieuwerts A M, Smid M, et al. Four miRNAs associated withaggressiveness of lymph node-negative, estrogen receptor-positive humanbreast cancer[J]. Proceedings of the National Academy of Sciences,2008,105(35):13021-13026
    26Toyama T, Kondo N, Endo Y, et al. High expression of microRNA-210isan independent factor indicating a poor prognosis in Japanese triple-negative breast cancer patients[J]. Jpn J Clin Oncol,2012,42(4):256-263
    27Liu Y, Han Y, Zhang H, et al. Synthetic miRNA-mowers targeting miR-183-96-182cluster or miR-210inhibit growth and migration and induceapoptosis in bladder cancer cells[J]. PLoS One,2012,7(12): e52280
    28Puissegur M, Mazure N, Bertero T, et al. miR-210is overexpressed in latestages of lung cancer and mediates mitochondrial alterations associatedwith modulation of HIF-1activity[J]. Cell Death&Differentiation,2010,18(3):465-478
    29Eilertsen M, Andersen S, Al-Saad S, et al. Positive prognostic impact ofmiR-210in non-small cell lung cancer[J]. Lung cancer,2013
    30Huang X, Ding L, Bennewith K L, et al. Hypoxia-inducible mir-210regulates normoxic gene expression involved in tumor initiation[J]. MolCell,2009,35(6):856-867
    31Cai H, Lin L, Cai H, et al. Prognostic evaluation of microRNA-210expression in pediatric osteosarcoma[J]. Med Oncol,2013,30(2):1-6
    32Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210linkshypoxia with cell cycle regulation and is deleted in human epithelialovarian cancer[J]. Cancer Biology and Therapy,2008,7(2):255
    33Jing S-W, Wang Y-D, Kuroda M, et al. HIF-1α contributes to hypoxia-induced invasion and metastasis of esophageal carcinoma via inhibitingE-cadherin and promoting MMP-2expression[J]. Acta Med Okayama,2012,66:399-407
    34Jing S, Wang Y, Chen L Q, et al. Hypoxia suppresses E-cadherin andenhances matrix metalloproteinase-2expression favoring esophagealcarcinoma migration and invasion via hypoxia inducible factor-1alphaactivation[J]. Diseases of the Esophagus,2013,26(1):75-83
    35Heneghan H M, Miller N, Lowery A J, et al. Circulating microRNAs asnovel minimally invasive biomarkers for breast cancer[J]. Ann Surg,2010,251(3):499-505
    36Hunter M P, Ismail N, Zhang X, et al. Detection of microRNA expressionin human peripheral blood microvesicles[J]. PLoS One,2008,3(11):e3694
    37Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer ofmRNAs and microRNAs is a novel mechanism of genetic exchangebetween cells[J]. Nat Cell Biol,2007,9(6):654-659
    38Taylor D D, Gercel-Taylor C. MicroRNA signatures of tumor-derivedexosomes as diagnostic biomarkers of ovarian cancer[J]. Gynecol Oncol,2008,110(1):13-21
    39Arroyo J D, Chevillet J R, Kroh E M, et al. Argonaute2complexes carry apopulation of circulating microRNAs independent of vesicles in humanplasma[J]. Proc Natl Acad Sci U S A,2011,108(12):5003-5008
    40Kurashige J, Kamohara H, Watanabe M, et al. Serum microRNA‐21is anovel biomarker in patients with esophageal squamous cell carcinoma[J]. JSurg Oncol,2012,106(2):188-192Journal of Clinical Oncology,2008,26(8):1275-1281
    10Camps C, Buffa F M, Colella S, et al. hsa-miR-210Is induced by hypoxiaand is an independent prognostic factor in breast cancer[J]. Clin CancerRes,2008,14(5):1340-1348
    11Neal C S, Michael M Z, Rawlings L H, et al. The VHL-dependent regula-tion of microRNAs in renal cancer[J]. BMC medicine,2010,8(1):64
    12Tsuchiya S, Fujiwara T, Sato F, et al. MicroRNA-210regulates cancer cellproliferation through targeting fibroblast growth factor receptor-like1(FGFRL1)[J]. J Biol Chem,2011,286(1):420-428
    13Taylor D D, Gercel-Taylor C. MicroRNA signatures of tumor-derivedexosomes as diagnostic biomarkers of ovarian cancer[J]. Gynecol Oncol,2008,110(1):13-21
    14Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210linkshypoxia with cell cycle regulation and is deleted in human epithelialovarian cancer[J]. Cancer Biol Ther,2008,7(2):255-264
    15Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and otherangiogenic factors under hypoxia[J]. PLoS One,2006,1: e116
    16Kulshreshtha R, Ferracin M, Wojcik S E, et al. A microRNA signature ofhypoxia[J]. Mol Cell Biol,2007,27(5):1859-1867
    17Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresseshypoxia-inducible factor-1alpha and Sirtuin1and recapitulates hypoxiapreconditioning in cardiac myocytes[J]. Circ Res,2009,104(7):879-886
    18Lei Z, Li B, Yang Z, et al. Regulation of HIF-1α and VEGF by miR-20btunes tumor cells to adapt to the alteration of oxygen concentration[J].PLoS One,2009,4(10): e7629
    19Crosby M E, Kulshreshtha R, Ivan M, et al. MicroRNA regulation of DNArepair gene expression in hypoxic stress[J]. Cancer Res,2009,69(3):1221-1229
    20Huang X, Ding L, Bennewith K L, et al. Hypoxia-inducible mir-210regulates normoxic gene expression involved in tumor initiation[J]. MolCell,2009,35(6):856-867
    21Huang X, Le Q T, Giaccia A J. MiR-210--micromanager of the hypoxiapathway[J]. Trends Mol Med,2010,16(5):230-237
    22Baskerville S, Bartel D P. Microarray profiling of microRNAs revealsfrequent coexpression with neighboring miRNAs and host genes[J]. Rna,2005,11(3):241-247
    23Favaro E, Ramachandran A, Mccormick R, et al. MicroRNA-210regulatesmitochondrial free radical response to hypoxia and krebs cycle in cancercells by targeting iron sulfur cluster protein ISCU[J]. PLoS One,2010,5(4): e10345
    24Tong W-H, Rouault T A. Functions of mitochondrial ISCU and cytosolicISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis[J].Cell Metab,2006,3(3):199-210
    25Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated microRNA-210modulates mitochondrial function and decreases ISCU and COX10expression[J]. Oncogene,2010,29(30):4362-4368
    26Kuphal S, Winklmeier A, Warnecke C, et al. Constitutive HIF-1activity inmalignant melanoma[J]. European Journal of Cancer,2010,46(6):1159-1169
    27Zhang Z, Sun H, Dai H, et al. MicroRNA miR-210modulates cellularresponse to hypoxia through the MYC antagonist MNT[J]. Cell Cycle,2009,8(17):2756-2768
    28Kim H W, Haider H K, Jiang S, et al. Ischemic preconditioning augmentssurvival of stem cells via miR-210expression by targeting caspase-8-associated protein2[J]. J Biol Chem,2009,284(48):33161-33168
    29Yang W, Sun T, Cao J, et al. Downregulation of miR-210expressioninhibits proliferation, induces apoptosis and enhances radiosensitivity inhypoxic human hepatoma cells in vitro[J]. Exp Cell Res,2012,318(8):944-954
    30Fasanaro P, D'alessandra Y, Di Stefano V, et al. MicroRNA-210modulatesendothelial cell response to hypoxia and inhibits the receptor tyrosinekinase ligand Ephrin-A3[J]. J Biol Chem,2008,283(23):15878-15883
    31Sugiyama T, Kowalczykowski S C. Rad52protein associates withreplication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation[J].Journal of Biological Chemistry,2002,277(35):31663-31672
    32Li Y, Ma X, Zhao J, et al. microRNA-210as a prognostic factor in patientswith breast cancer: meta-analysis[J]. Cancer Biomark,2013,13(6):471-481
    33Toyama T, Kondo N, Endo Y, et al. High expression of microRNA-210isan independent factor indicating a poor prognosis in Japanese triple-negative breast cancer patients[J]. Jpn J Clin Oncol,2012,42(4):256-263
    34Madhavan D, Zucknick M, Wallwiener M, et al. Circulating miRNAs assurrogate markers for circulating tumor cells and prognostic markers inmetastatic breast cancer[J]. Clinical Cancer Research,2012,18(21):5972-5982
    35Jung E J, Santarpia L, Kim J, et al. Plasma microRNA210levels correlatewith sensitivity to trastuzumab and tumor presence in breast cancerpatients[J]. Cancer,2012,118(10):2603-2614
    36Hong L, Yang J, Han Y, et al. High expression of miR-210predicts poorsurvival in patients with breast cancer: a meta-analysis[J]. Gene,2012,507(2):135-138
    1Duffy M J. Role of tumor markers in patients with solid cancers: A criticalreview[J]. Eur J Intern Med,2007,18(3):175-184
    2Rifai N, Gillette M A, Carr S A. Protein biomarker discovery andvalidation: the long and uncertain path to clinical utility[J]. Nat Biotechnol,2006,24(8):971-983
    3Jackson R J, Standart N. How do microRNAs regulate gene expression?[J].Science Signaling,2007,2007(367): re1
    4Stefani G, Slack F J. Small non-coding RNAs in animal development[J].Nature Reviews Molecular Cell Biology,2008,9(3):219-230
    5Esquela-Kerscher A, Slack F J. Oncomirs-microRNAs with a role incancer[J]. Nature Reviews Cancer,2006,6(4):259-269
    6Barba M, Felsani A, Rinaldi M, et al. Reducing the risk of overdiagnosis inlung cancer: a support from molecular biology[J]. J Cell Physiol,2011,226(9):2213-2214
    7Hu Z, Chen X, Zhao Y, et al. Serum microRNA signatures identified in agenome-wide serum microRNA expression profiling predict survival ofnon-small-cell lung cancer[J]. J Clin Oncol,2010,28(10):1721-1726
    8Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancerdiagnosis and prognosis[J]. Expert Rev Mol Diagn,2010,10(3):297-308
    9Cortez M A, Calin G A. MicroRNA identification in plasma and serum: anew tool to diagnose and monitor diseases[J]. Expert Opin Biol Ther,2009,9(6):703-711
    10Wang Q Z, Xu W, Habib N, et al. Potential uses of microRNA in lungcancer diagnosis, prognosis, and therapy[J]. Curr Cancer Drug Targets,2009,9(4):572-594
    11Zhang Z, Sun H, Dai H, et al. MicroRNA miR-210modulates cellularresponse to hypoxia through the MYC antagonist MNT[J]. Cell Cycle,2009,8(17):2756-2768
    12Nakada C, Tsukamoto Y, Matsuura K, et al. Overexpression of miR-210, adownstream target of HIF1alpha, causes centrosome amplification in renalcarcinoma cells[J]. J Pathol,2011,224(2):280-288
    13Mccormick R I, Blick C, Ragoussis J, et al. miR-210is a target ofhypoxia-inducible factors1and2in renal cancer, regulates ISCU andcorrelates with good prognosis[J]. Br J Cancer,2013,108(5):1133-1142
    14Favaro E, Ramachandran A, Mccormick R, et al. MicroRNA-210regulatesmitochondrial free radical response to hypoxia and krebs cycle in cancercells by targeting iron sulfur cluster protein ISCU[J]. PLoS One,2010,5(4): e10345
    15Tsuchiya S, Fujiwara T, Sato F, et al. MicroRNA-210regulates cancer cellproliferation through targeting fibroblast growth factor receptor-like1(FGFRL1)[J]. J Biol Chem,2011,286(1):420-428
    16Crosby M E, Kulshreshtha R, Ivan M, et al. MicroRNA regulation of DNArepair gene expression in hypoxic stress[J]. Cancer Res,2009,69(3):1221-1229
    17Chan S Y, Zhang Y Y, Hemann C, et al. MicroRNA-210controls mitocho-ndrial metabolism during hypoxia by repressing the iron-sulfur clusterassembly proteins ISCU1/2[J]. Cell Metab,2009,10(4):273-284
    18Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated microRNA-210modu-lates mitochondrial function and decreases ISCU and COX10expression[J]. Oncogene,2010,29(30):4362-4368
    19Chio C C, Lin J W, Cheng H A, et al. MicroRNA-210targets antiapoptoticBcl-2expression and mediates hypoxia-induced apoptosis of neurobl-astoma cells[J]. Arch Toxicol,2013,87(3):459-468
    20Cui H, Grosso S, Schelter F, et al. On the Pro-Metastatic Stress Responseto Cancer Therapies: Evidence for a Positive Co-Operation betweenTIMP-1, HIF-1alpha, and miR-210[J]. Front Pharmacol,2012,3:134
    21Fasanaro P, D'alessandra Y, Di Stefano V, et al. MicroRNA-210modulatesendothelial cell response to hypoxia and inhibits the receptor tyrosinekinase ligand Ephrin-A3[J]. J Biol Chem,2008,283(23):15878-15883
    22Fasanaro P, Greco S, Lorenzi M, et al. An integrated approach forexperimental target identification of hypoxia-induced miR-210[J]. J BiolChem,2009,284(50):35134-35143
    23Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210linkshypoxia with cell cycle regulation and is deleted in human epithelialovarian cancer[J]. Cancer Biol Ther,2008,7(2):255-264
    24Grosso S, Doyen J, Parks S K, et al. MiR-210promotes a hypoxicphenotype and increases radioresistance in human lung cancer cell lines[J].Cell Death Dis,2013,4: e544
    25Huang X, Ding L, Bennewith K L, et al. Hypoxia-inducible mir-210regulates normoxic gene expression involved in tumor initiation[J]. MolCell,2009,35(6):856-867
    26Kim J H, Park S G, Song S Y, et al. Reactive oxygen species-responsivemiR-210regulates proliferation and migration of adipose-derived stemcells via PTPN2[J]. Cell Death Dis,2013,4: e588
    27Kopriva S E, Chiasson V L, Mitchell B M, et al. TLR3-induced placentalmiR-210down-regulates the STAT6/interleukin-4pathway[J]. PLoS One,2013,8(7): e67760
    28Li M, Ma X, Li M, et al. Prognostic role of microRNA-210in variouscarcinomas: a systematic review and meta-analysis[J]. Dis Markers,2014,2014:106197
    29Liu F, Lou Y L, Wu J, et al. Upregulation of microRNA-210regulatesrenal angiogenesis mediated by activation of VEGF signaling pathwayunder ischemia/perfusion injury in vivo and in vitro[J]. Kidney BloodPress Res,2012,35(3):182-191
    30Liu T, Zhao L, Chen W, et al. Inactivation of von Hippel-Lindau increasesovarian cancer cell aggressiveness through the HIF1alpha/miR-210/VMP1signaling pathway[J]. Int J Mol Med,2014,33(5):1236-1242
    31Liu Y, Han Y, Zhang H, et al. Synthetic miRNA-mowers targeting miR-183-96-182cluster or miR-210inhibit growth and migration and induceapoptosis in bladder cancer cells[J]. PLoS One,2012,7(12): e52280
    32Manicardi A, Fabbri E, Tedeschi T, et al. Cellular uptakes, biostabilitiesand anti-miR-210activities of chiral arginine-PNAs in leukaemic K562cells[J]. Chembiochem,2012,13(9):1327-1337
    33Mccormick R, Blick C, Ragoussis J, et al. miR-210is a target ofhypoxia-inducible factors1and2in renal cancer, regulates ISCU andcorrelates with good prognosis[J]. Br J Cancer,2013,108(5):1133-1142
    34Merlo A, De Quiros S B, Secades P, et al. Identification of a signaling axisHIF-1alpha/microRNA-210/ISCU independent of SDH mutation thatdefines a subgroup of head and neck paragangliomas[J]. J Clin EndocrinolMetab,2012,97(11): E2194-2200
    35Mutharasan R K, Nagpal V, Ichikawa Y, et al. microRNA-210isupregulated in hypoxic cardiomyocytes through Akt-and p53-dependentpathways and exerts cytoprotective effects[J]. Am J Physiol Heart CircPhysiol,2011,301(4): H1519-1530
    36Ota T, Doi K, Fujimoto T, et al. KRAS up-regulates the expression ofmiR-181a, miR-200c and miR-210in a three-dimensional-specific mannerin DLD-1colorectal cancer cells[J]. Anticancer Res,2012,32(6):2271-2275
    37Pulkkinen K, Malm T, Turunen M, et al. Hypoxia induces microRNAmiR-210in vitro and in vivo ephrin-A3and neuronal pentraxin1are pot-entially regulated by miR-210[J]. FEBS Lett,2008,582(16):2397-2401
    38Tsang V H, Dwight T, Benn D E, et al. Overexpression of miR-210isassociated with SDH-related pheochromocytomas, paragangliomas andGISTs[J]. Endocr Relat Cancer,2014
    39Wang Z, Yin B, Wang B, et al. MicroRNA-210promotes proliferation andinvasion of peripheral nerve sheath tumor cells targeting EFNA3[J]. OncolRes,2014,21(3):145-154
    40Xiao F, Qiu H, Zhou L, et al. WSS25inhibits Dicer, downregulatingmicroRNA-210, which targets Ephrin-A3, to suppress human microva-scular endothelial cell (HMEC-1) tube formation[J]. Glycobiology,2013,23(5):524-535
    41Yang W, Wei J, Sun T, et al. Effects of knockdown of miR-210incombination with ionizing radiation on human hepatoma xenograft in nudemice[J]. Radiat Oncol,2013,8:102
    42Ying Q, Liang L, Guo W, et al. Hypoxia-inducible microRNA-210augments the metastatic potential of tumor cells by targeting vacuolemembrane protein1in hepatocellular carcinoma[J]. Hepatology,2011,54(6):2064-2075
    43Zeng L, He X, Wang Y, et al. MicroRNA-210overexpression inducesangiogenesis and neurogenesis in the normal adult mouse brain[J]. GeneTher,2014,21(1):37-43
    44Zhang G L, Li Y X, Zheng S Q, et al. Suppression of hepatitis B virusreplication by microRNA-199a-3p and microRNA-210[J]. Antiviral Res,2010,88(2):169-175
    45Zhao M, Wang L T, Liang G P, et al. Up-regulation of microRNA-210induces immune dysfunction via targeting FOXP3in CD4(+) T cells ofpsoriasis vulgaris[J]. Clin Immunol,2014,150(1):22-30
    46Bushati N, Cohen S M. microRNA functions[J]. Annu Rev Cell Dev Biol,2007,23:175-205
    47Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and otherangiogenic factors under hypoxia[J]. PLoS One,2006,1: e116
    48Kulshreshtha R, Ferracin M, Wojcik S E, et al. A microRNA signature ofhypoxia[J]. Mol Cell Biol,2007,27(5):1859-1867
    49Camps C, Buffa F M, Colella S, et al. hsa-miR-210Is induced by hypoxiaand is an independent prognostic factor in breast cancer[J]. Clin CancerRes,2008,14(5):1340-1348
    50Liedtke C, Mazouni C, Hess K R, et al. Response to neoadjuvant therapyand long-term survival in patients with triple-negative breast cancer[J].Journal of Clinical Oncology,2008,26(8):1275-1281
    51De Laurentiis M, Cianniello D, Caputo R, et al. Treatment of triplenegative breast cancer (TNBC): current options and future perspectives[J].Cancer treatment reviews,2010,36: S80-S86
    52Carey L, Winer E, Viale G, et al. Triple-negative breast cancer: diseaseentity or title of convenience?[J]. Nature reviews Clinical oncology,2010,7(12):683-692
    53Foekens J A, Sieuwerts A M, Smid M, et al. Four miRNAs associated withaggressiveness of lymph node-negative, estrogen receptor-positive humanbreast cancer[J]. Proceedings of the National Academy of Sciences,2008,105(35):13021-13026
    54Toyama T, Kondo N, Endo Y, et al. High expression of microRNA-210isan independent factor indicating a poor prognosis in Japanese triple-negative breast cancer patients[J]. Jpn J Clin Oncol,2012,42(4):256-263
    55Jung E J, Santarpia L, Kim J, et al. Plasma microRNA210levels correlatewith sensitivity to trastuzumab and tumor presence in breast cancerpatients[J]. Cancer,2012,118(10):2603-2614
    56Hunter M P, Ismail N, Zhang X, et al. Detection of microRNA expressionin human peripheral blood microvesicles[J]. PLoS One,2008,3(11):e3694
    57Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer ofmRNAs and microRNAs is a novel mechanism of genetic exchangebetween cells[J]. Nat Cell Biol,2007,9(6):654-659
    58Rosell R, Wei J, Taron M. Circulating MicroRNA Signatures of Tumor-Derived Exosomes for Early Diagnosis of Non-Small-Cell Lung Cancer[J].Clin Lung Cancer,2009,10(1):8-9
    59Taylor D D, Gercel-Taylor C. MicroRNA signatures of tumor-derivedexosomes as diagnostic biomarkers of ovarian cancer[J]. Gynecol Oncol,2008,110(1):13-21
    60Arroyo J D, Chevillet J R, Kroh E M, et al. Argonaute2complexes carry apopulation of circulating microRNAs independent of vesicles in humanplasma[J]. Proc Natl Acad Sci U S A,2011,108(12):5003-5008
    61Madhavan D, Zucknick M, Wallwiener M, et al. Circulating miRNAs assurrogate markers for circulating tumor cells and prognostic markers inmetastatic breast cancer[J]. Clinical Cancer Research,2012,18(21):5972-5982
    62Neal C S, Michael M Z, Rawlings L H, et al. The VHL-dependent regul-ation of microRNAs in renal cancer[J]. BMC medicine,2010,8(1):64
    63Zhao A, Li G, Peoc'h M, et al. Serum miR-210as a novel biomarker formolecular diagnosis of clear cell renal cell carcinoma[J]. Exp Mol Pathol,2013,94(1):115-120
    64Puissegur M P, Mazure N M, Bertero T, et al. miR-210is overexpressed inlate stages of lung cancer and mediates mitochondrial alterationsassociated with modulation of HIF-1activity[J]. Cell Death Differ,2011,18(3):465-478
    65Eilertsen M, Andersen S, Al-Saad S, et al. Positive prognostic impact ofmiR-210in non-small cell lung cancer[J]. Lung Cancer,2014,83(2):272-278
    66Ho A S, Huang X, Cao H, et al. Circulating miR-210as a novel hypoxiamarker in pancreatic cancer[J]. Transl Oncol,2010,3(2):109
    67Gee H E, Camps C, Buffa F M, et al. hsa-mir-210is a marker of tumorhypoxia and a prognostic factor in head and neck cancer[J]. Cancer,2010,116(9):2148-2158
    68Greither T, Wurl P, Grochola L, et al. Expression of microRNA210associates with poor survival and age of tumor onset of soft-tissue sarcomapatients[J]. Int J Cancer,2012,130(5):1230-1235
    69Cai H, Lin L, Cai H, et al. Prognostic evaluation of microRNA-210expre-ssion in pediatric osteosarcoma[J]. Med Oncol,2013,30(2):1-6
    70Qu A, Du L, Yang Y, et al. Hypoxia-Inducible MiR-210Is an IndependentPrognostic Factor and Contributes to Metastasis in Colorectal Cancer[J].PLoS One,2014,9(3): e90952
    71Jing S, Wang Y, Chen L Q, et al. Hypoxia suppresses E-cadherin andenhances matrix metalloproteinase-2expression favoring esophagealcarcinoma migration and invasion via hypoxia inducible factor-1alphaactivation[J]. Diseases of the Esophagus,2013,26(1):75-83
    72Wang H-L, Li Y, Tian J, et al. Effects of exhaustive exercise on renaltubular apoptosis and HIF-1α expression in rats and result of totalginsenoside intervention[J]. Medical Journal of Chinese People's Libera-tion Army,2014,39(2):161-166
    73Gilkes D M, Semenza G L. Role of hypoxia-inducible factors in breastcancer metastasis[J]. Future Oncology,2013,9(11):1623-1636
    74Isa A Y, Ward T H, West C M, et al. Hypoxia in head and neck cancer[J].2014
    75Semenza G L. HIF-1: mediator of physiological and pathophysiologicalresponses to hypoxia[J]. Journal of applied physiology,2000,88(4):1474-1480
    76Endo K, Naito Y, Ji X, et al. MicroRNA210as a biomarker for congestiveheart failure[J]. Biol Pharm Bull,2013,36(1):48-54
    77Hu S, Huang M, Li Z, et al. MicroRNA-210as a novel therapy for treatm-ent of ischemic heart disease[J]. Circulation,2010,122(11Suppl): S124-131
    78Zhao D S, Chen Y, Jiang H, et al. Serum miR-210and miR-30a expre-ssions tend to revert to fetal levels in Chinese adult patients with chronicheart failure[J]. Cardiovasc Pathol,2013,22(6):444-450
    79Lorenzen J M, Kielstein J T, Hafer C, et al. Circulating miR-210predictssurvival in critically ill patients with acute kidney injury[J]. Clin J Am SocNephrol,2011,6(7):1540-1546
    80Biswas S, Roy S, Banerjee J, et al. Hypoxia inducible microRNA210attenuates keratinocyte proliferation and impairs closure in a murine modelof ischemic wounds[J]. Proc Natl Acad Sci U S A,2010,107(15):6976-6981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700