帕金森氏病体外细胞模型的建立及胞二磷胆碱对多巴胺能神经元保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森氏病(PD)是一种常见的中枢神经系统进行性退行性病变,其特征性病理改变为中脑黑质多巴胺能神经元的退行性变性和丢失,临床上表现为肌肉强直、肢体震颤和运动减少。虽然,近年来对PD的研究的不断深入,然而,人们对其病因机制尚未明确,目前的治疗方法亦仅限于对症支持治疗,不能从根本上阻止病变的进展。因此,体外PD细胞实验模型的建立及多巴胺能神经元保护性药物的研究,对PD等神经退行性病变防治及病因机制的探讨具有重要的理论意义。本研究采用孕14 d小鼠胚胎中脑组织进行原代细胞培养,探讨了1-甲基4-苯基-四氢吡啶离子(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,Mpp~+)和谷氨酸对多巴胺能神经元的损伤作用及其机制;并且,对胞二磷胆碱(citicoline)的多巴胺能神经元神经保护作用进行了探讨。实验结果表明,建立的小鼠胚胎中脑组织进行原代细胞培养的方法为PD实验研究提供了一个可靠的、有效的方法。胞二磷胆碱可有效地防止MPP~+及谷氨酸引起的多巴胺能神经元的损伤和死亡,为PD的防治提供一崭新有效的治疗途径。
     1 PD体外实验细胞模型的建立
     1.1 MPP~+对小鼠胚胎中脑组织原代细胞培养中多巴胺能神经元的损伤作用
     1.1.1 MPP~+诱导多巴胺能神经元损伤的形态学改变
     我们采用孕14 d小鼠胚胎中脑组织进行体外原代细胞培养,在培养第10 d,于培养基中加入不同浓度的MPP~+持续作用48 h后,采用多聚甲醛固定,酪氨酸羟化酶(TH)免疫染色以鉴别多巴胺能神经元。结果显示,0.1~15 μmol/L MPP~+可引起多巴胺能神经元数量明显减少,神经突起数量及长度明显减少,有的甚至完全丢失。另外,神经
    
     吉林大学博士学位论文
    突起的表面变得粗糙,不光滑,扭曲,局部有串珠样肿胀。
     10腼ol/L柳P+引起两种不同的多巴胺能神经元的损伤和死亡方式.其中,绝大
    多数的神经元的损伤表现为相对慢性的损伤,即为神经突起变短、甚至丢失,也就是
    说,神经元的损伤从远端开始:而另一损伤表现为神经元胞体丢失,而突起尚存,这
    种神经元的损伤和死亡方式占极少数。
    1.1.2即P+诱导多巴胺能神经元死亡的时程效应
     本文探讨了10阳ol/L MPP+分别作用不同时间(2,4,8,24,48,72和96h),
    引起多巴胺能神经元丢失的损伤效应。结果显示,在对照组中,每培养孔TH免疫染色
    阳性的神经元数量为840土15.5,而在2、4和8 h MPP‘药物组中分别为791土21.9、
    849士31.7和790土31.7,与对照组无显著差异。MPP+作用24h后,神经元的数量明
    显减少,在24、48、72和96h淤P‘药物组中神经元的数量分别为677土6.12, 412
    土26.6,229土20,3 and 191士15.2,明显少于对照组水平(只0.05)。在24、48和
    72 h MPP‘作用组中,任意两组之间神经元数量存在显著差别。因此,MPP+诱导的多巴
    胺能神经元的损伤和丢失与药物作用时间密切相关。M即+持续作用24、48和72h可
    分别引起20%、50%和75%神经元的丢失。
    1.1.3 MPP+对多巴胺能神经元丢失的剂量效应
     本实验检测了0.1、1、10和巧枷o1/L4个不同MPP+药物浓度,持续作用48h
    对多巴胺能神经元丢失的影响.结果显示,在这4个浓度MPP+药物组中,神经元的数
    量分别为70.3土6.38%,67.4土4.92%,51.7土2.95%and 50.9土5.60%对照
    组水平。与对照组相比,均明显减少(只0.05)。并且,随着M即+药物浓度的增加,神
    经元数量减少,其中而l腼ol/L和10伽o1/L MPP+药物组之间存在统计学差异,故
    MPP+引起的多巴胺能神经元的丢失是呈剂量依赖关系的。
    1.2 MPP+对人神经纤维瘤细胞(S TAwe朋一3细胞株)的毒性作用
     本研究在体外应用M竹分析法,探讨了不同浓度MPP’(62.5、125、250、500 and
    1000阳。1/L)分别作用不同时间(24、48、72和96h)对人神经纤维瘤细胞细胞活性的
    影响。结果显示,500阳o1/L和1000腼ol/L沙P+作用24h,细胞活性分别降至82.6
    土5.38%和75.1土5.80%对照组水平,明显低于对照组(只0.05)。62.5阳01/L淤P‘
    持续作用48h可降低细胞活性28%,125、250、500和1000枷01/L MPP‘作用48h,
    )乡6
    
     吉林大学博士学位论文
    细胞活性分别减少为36%,53%67%和78%的对照组水平。500腼01/L柳P‘作用72h
    使细胞活性减低85%,在1000腼o1/L药物组中95%细胞活性丧失.500腼o1/L和
    I000P口01/L持续作用96h时,可分别降低细胞活性达9既and98%。因此,MPP+降低
    人神经纤维瘤细胞细胞活性呈时间和剂量依赖关系。
    1.3谷氨酸对小鼠胚胎中脑组织原代细胞培养中多巴胺能神经元的损伤作用
    1 . 3.1谷氨酸引起多巴胺能神经元损伤的时程变化
     于体外培养第10d,我们将500腼ol/L谷氨酸加入细胞培养液中,持续作用15 min
    后,更换新的培养液。为明确谷氨酸引起多巴胺能神经元损伤的时程变化,于谷氨酸
    分别作用后2、4、6、24和48h后,采用TH免疫染色方法,对多巴胺能神经元的数
    量及形态学改变进行了探讨。结果表明,在对照组中,平均每孔中多巴胺能神经元的
    数量为778土18.6个,谷氨酸作用后Zh,多?
In the thesis, we set up cell models of degeneration of dopaminergic neurons by using mice mesencephalic dissociated culture in vitro. The toxicity of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPP*) and excititory animo acid (glutamate) were investigated and evaluated. The neuroprotective effect and possible mechanism of citicoline on the dopaminergic neurons were studied. It will provide a theoric base for its further application in the treatment of Parkinson's disease (PD) and to a better understanding of the possible mechanism of PD. 1 Cell models for PD in vitro
    1.1 The toxicity of MPP+ on dopaminergic neurons in mouse mesencephalic dissociated culture
    1.1.1 The morphological change of dopaminergic neurons induced with MPP*
    Our results showed that after incubation with different concentrations of MPP+ (0.1-15 umol/L), the density of the dopaminergic neurons was significantly reduced, and the procesesses became shorter and even lost. The numbers of the processes reduced significantly. Most of the processes were distort and swollen. 10 umol/L MPP+ induced the death of dopaminergic neurons in two different ways. The loss and degeneration of dopaminergic neurons in MPP+-treated groups were mainly in a relative chronic way that the loss and shortening of the processes were found first and then subsequently the cell bodies were lost. Only few dopaminergic neurons underwent death through another pathway in which the dopaminergic neurons bodies were lost before the processe lossing.
    1.1.2 The time-dependent effect of MPP+ on the loss of dopaminergic neurons
    The time course of dopaminergic neurons death induced with MPP+ was investigated.
    
    
    
    The numbers of TH-ir neurons in the control group, 2-, 4-, and 8-hour MPP+-treated group were 840+15.5, 791 +21.9, 849 + 31.7 and 790 + 31.7 respectively. The numbers of TH-ir cells in the latter three groups didn't decrease as compared with those in the control. After 24 hours incubation of MPP+, the loss of TH-ir neurons became appearant. The TH-ir cell numbers per well were 677 + 6.12,412 + 26.60,229 +20.31 and 191 + 15.23 in 24-, 48-, 72-and 96-hour MPP+-treated groups respectively. So the loss of dopaminergic neurons was related to the incubation time of MPP+. And there was a significant difference between any two groups which have been treated with MPP+ for 24, 48 and 72 hours. The numbers of dopaminergic neurons reduced by about 20% after 24-hour incubation with 10umol/L MPP+, 50% after 48 hours, and 75% after 3 days or 4 days. 1.1.3 the dose-dependent effect of MPP+ on the loss of dopaminergic neurons
    In order to clarify the dose effect of MPP+ on the loss of dopaminergic neurons, MPP+ of different final concentrations (0.1, 1, 10and 15 umol/L) were added into the cultures on the 10th DIV, and incubated for 48 hours. Our datas showed that the dopaminergic neuron loss induced with MPP+ was in a dose-dependant pattern. The numbers of dopaminergic neurons were 100% in the control group, while 70.3 + 6.38 %, 67.4 + 4.92 %, 51.7 + 2.95 % and 50.9 + 5.60 % in the 0.1,1,10, and 15 umol/L MPP+-treated groups respectively. The numbers of TH-ir cells were significantly lower than that in the control (p<0.05). The toxicity of MPP+ on the degeneration of dopaminergic neurons was dose-dependent. But there was no statistical significance between the 0.1umol/L group and 1 umol/L group, as well as 10 umol/L and 15 umol/L. But there was statistical difference between 1 umol/L and 10 umol/L. 1.2 The toxicity of MPP+ on the human neuroblastoma cell line (STA-NB-3)
    The cultures of human neuroblastoma cell line (STA-NB-3) were treated with different concentrations of MPP+ (62.5, 125, 250, 500 and 1000umol/L) and incubated for different days (1, 2, 3 and 4 days). Then the cell viability was determined by MTT assay. Our data showed that after treatment with 500 umol/L and 1000 umol/L of MPP+ for 1 day reduced the cell viability to 82.6 + 5.38% and 75.1 + 5.80% of the control respecrively (P<0.05).The cell viability decreased by 28% after treatment with 62.5 umol/L of MPP+ for 2 days. T
引文
[1] Parkinson J. An Assay on the Shaking Palsy. London: Sherwood, Neely, and Jones,1817.
    [2] McDonald WM, Richard IH, DeLong MR. Prevalence, etiology, and treatment of depression in Parkinson's disease. Biol Psychiatry, 2003, 54(3):363-375.
    [3] Vieregge P. Genetic factors in the etiology of idiopathic Parkinson's disease. J Neural Transm Park Dis Dement Sect, 1994, 8(1-2):1-37.
    [4] Langston JW. Epidemiology versus genetics in Parkinson's disease: progress in resolving an age-old debate. Ann Neurol, 1998, 44:S45-52.
    [5] Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol, 2003, 157(11):1015-1022.
    [6] Casetta I, Granieri E, Govoni V, et al. Epidemiology of Parkinson's disease in Italy. A descriptive survey in the U.S.L. of Cento, province of Ferrara, Emilia-Romagna. Acta Neurol (Napoli), 1990, 12(4):284-291.
    [7] Mann DM, Yates PO. Possible role of neuromelanin in the pathogenesis of Parkinson's disease. Mech Ageing Dev, 1983, 21(2): 193-203.
    [8] Barbeau A, Roy M. Familial subsets in idiopathic Parkinson's disease. Can J Neurol Sci, 1984, 11(1 Suppl):144-150.
    [9] Papadimitriou A, Veletza V, Hadjigeorgiou GM, et al. Mutated alpha-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance? Neurology, 1999, 52(3): 651-654.
    [10] Polymeropoulos MH, Higgins JJ, Golbe LI, et al. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science, 1996, 274:1197-1199.
    [11] Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997, 276:2045-2047.
    [12] Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet, 1998, 18:106-108.
    [13] Chan P, Tanner CM, Jiang X, et al. Failure to find the alpha-synuclein gene missense mutation (G209A) in 100 patients with younger onset Parkinson's disease. Neurology, 1998, 50: 513-514.
    [14] EI-Agnaf OM, Curran MD, Wallace A, et al. Mutation screening in exons 3 and 4 of alpha-synuclein in sporadic Parkinson's and sporadic and familial dementia with Lewy bodies cases. Neuroreport, 1998, 9: 3925-3927.
    [15] Parsian A, Racette B, Zhang ZH, et al. Mutation, sequence analysis, and association studies of alpha-synuclein in Parkinson's disease. Neurology, 1998, 51: 1757-1759.
    [16] Vaughan JR, Farrer MJ, Wszolek ZK, et al. Sequencing of the alpha-synuclein gene in a large series of cases of familial Parkinson's disease fails to reveal any further mutations. The European Consortium on Genetic Susceptibility in Parkinson's Disease (GSPD). Hum Mol Genet, 1998, 7: 751-753.
    [17] Wang WW, Khajavi M, Patel BJ, et al. The G209A mutation in the alpha-synuclein gene is not detected in familial eases of Parkinson disease in non-Greek and/or Italian populations. Arch Neurol, 1998, 55: 1521-1523.
    
    
    [18] Bayer TA, Jakala P, Hartmann T, et al. Alpha-synuclein accumulates in Lewy bodies in Parkinson's disease and dementia with Lewy bodies but not in Alzheimer's disease beta-amyloid plaque cores. Neurosci Lett, 1999, 266: 213-216.
    [19] Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies [Letter]. Nature, 1997, 388: 839-840.
    [20] Wakabayashi K, Hayashi S, Kakita A, et al. Accumulation of alpha-synuclein/NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta Neuropathol. (Berlin), 1998, 96: 445-452.
    [21] Takeda A, Mallory M, Sundsmo M, et al. Abnormal accumulation of NACP alpha synuclein in neurodegenerative disorders. Am J Pathol, 1998, 152: 367-372.
    [22] Trojanowski JQ, Goedert M, Iwatsubo T, et al. Fatal attractions: Abnormal protein aggregation and neuron death in Parkinson's disease and Lewy body dementia [see Comments]. Cell Death Differ, 1998, 5: 832-837.
    [23] Spillantini MG, Crowther RA, Jakes R, et al. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. USA, 1998b, 95: 6469-6473.
    [24] Irizarry MC, Growdon W, Gomez-Isla T, et al. Nigral and cortical Lewy bodies and dystrophic nignd neurites in Parkinson's disease and conical Lewy body disease contain alpha-synuclein immunoreactivity. J. Neuropathol. Exp. Neurol, 1998, 57: 334-337
    [25] Wakabayashi K, Hayashi S, Kakita A, et al. Accumulation of alpha-synuclein/NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta Neuropathol, 1998, 96: 445-452.
    [26] Gomez-Tortosa E, Newell K, Irizarry MC, et al. alpha-Synuclein immunoreactivity in dementia with Lewy bodies: Morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol, 2000, 99: 352-357.
    [27] Trojanowski JQ, Goedert M, Iwatsubo T, et al. Fatal attractions: Abnormal protein aggregation and neuron death in Parkinson's disease and Lewy body dementia. Cell Death Differ, 1998, 5: 832-837.
    [28] Ueda K, Fukushima H, Masliah E, et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA, 1993, 90: 11282-11286.
    [29] Forloni G, Bertani I, Calella AM, et al. Alpha-synuclein and Parkinson's disease: Selective neurodegenerative effect of alpha-synuclein fragment on dopaminergic neurons in vitro and in vivo. Ann Neurol, 2000, 47: 632-640.
    [30] Conway KA, Harper JD, and Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to eariy-onset Parkinson disease. Nat. Med, 1998, 4: 1318-1320.
    [31] EI-Agnaf OM, Jakes R, Curran MD, et al. Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of alpha-synuclein protein implicated in Parkinson's disease. FEBS Lett, 1998, 440: 67-70.
    [32] Giasson BI, Uryu K, Trojanowski JQ, et al. Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J. Biol. Chem, 1999, 274: 7619-7622.
    
    
    [33] Conway KA, Harper JD, and Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med, 1998, 4: 1318--1320.
    [34] Conway KA, Harper JD, and Lansbury FT. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry, 2000, 39: 2552-2563.
    [35] Conway KA, Lee SJ, Rochet JC, et al. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: Implications for pathogenesis and therapy. Proc Natl Acad Sci USA, 2000, 97: 571-576.
    [36] Dawson TM. New animal models for Parkinson's disease. Cell, 2000, 101: 115-118.
    [37] Jin H, Clayton DF. Synelfin regulation during the critical period for song learning in normal and isolated juvenile zebra finches. Neurobiol Learn Mere, 1997, 68: 271-284.
    [38] Engelender S, Kaminsky Z, Guo X, et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet, 1999, 22: 110-114.
    [39] Wakabayashi K, Engelender S, Yoshimoto M, et al. Synphilin-1 is present in Lewy bodies in Parkinson's disease. Ann Neurol, 2000, 47: 521-523.
    [40] Jenco JM, Rawlingson A, Daniels B, et al. Regulation of phospholipase D2: Selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry,1998, 37:4901-4909.
    [41] Ostrerova N, Petrucelli L, Farrer M, et al. alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci, 1999,19: 5782-5791.
    [42] Jensen PH, Islam K, Kenney J, et al. Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. J Biol Chem, 2000, 275(28):21500-21507.
    [43] Clayton DF, and George JM. The synucleins: A family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci, 1998, 21: 249-254.
    [44] Galvin JE, Uryu K, Lee VM, et al. Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc Natl Acad Sci USA,1999, 96: 13450-13455.
    [45] Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 2000, 25: 239-252.
    [46] Jensen PH, Nielsen MS, Jakes R., et al. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J Biol Chem, 1998, 273: 26292-26294.
    [47] Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science, 2000,287: 1265-1269.
    [48] Feany MB,Bender WW. A Drosophila model of Parkinson's disease. Nature, 2000, 404: 394-398.
    [49] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392: 605-608.
    
    
    [50] Ishikawa A, Tsuji S. Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology, 1996, 47:160-166.
    [51] Mizuno Y, Hattori N, Mori H. Genetics of Parkinson's disease. Biomed Pharmacother, 1999, 53: 109-116.
    [52] Mori H, Kondo T, Yokochi M, et al. Pathologic and biochemical studies of juvenile patkinsonism linked to chromosome 6q. Neurology, 1998, 51: 890-892.
    [53] Shimura H, Hattori N, Kubo S, et al. Immunohistochemical and subcellular localization of Parkin protein: Absence of protein in autosomal recessive juvenile parkinsonism patients. Ann Neural, 1999, 45: 668-672.
    [54] Abbas N, Lucking CB, Ricard S, et al. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson's Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson's Disease. Hum Mol Genet, 1999, 8: 567-574.
    [55] Hattori N, Kitada T, Matsumine H, et al. Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: Evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol, 1998, 44: 935-941.
    [56] Hattori N, Matsumine H, Asakawa S, et al. Point mutations (Thr240Arg and Gin311Stop) in the Parkin gene. Biochem Biophys Res Commun, 1998, 251(2): 666.
    [57] Leroy E, Anastasopoulos D, Konitsiotis S, et al. Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson's disease. Hum Genet, 1998, 103: 424-427.
    [58] Lucking CB, Abbas N, Durr A, et al. Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. The European Consortium on Genetic Susceptibility in Parkinson's Disease and the French Parkinson's Disease Genetics Study Group. Lancet, 1998, 352: 1355-1356.
    [59] Lucking CB, Durr A, Bonifati V, et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med, 2000, 342:1560-1567.
    [60] Morett E, Bork P. A novel transactivation domain in parkin. Trends Biochem Sci, 1999, 24: 229-231.
    [61] Joazeiro CA, Wing SS, Huang H, et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 1999, 286: 309-312.
    [62] Lorick KL, Jensen JP, Fang S, et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA, 1999, 96:11364-11369.
    [63] Harhangi BS, Farter MJ, Lincoln S, et al. The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease. Neurosci Lett, 1999, 270: 1-4.
    [64] Lowe J, McDermott H, Landon M, et al. Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol, 1990, 161: 153-160.
    [65] Wilkinson KD, Lee KM, Deshpande S, et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science, 1989, 246: 670-673.
    
    
    [66] Maraganore DM, Farter MJ, Hardy JA, et al. Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson's disease. Neurology, 1999, 53: 1858-1850.
    [67] Saigoh K, Wang YL, Sub JG, et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet, 1999, 23: 47-51.
    [68] Mizuno Y, Hattor N, Mori H. Genetics of Parkinson's disease. Biomed Pharmacother, 1999, 53: 109-116.
    [69] Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: A new group of tauopathies. Brain Pathol, 1998, 8: 387-402.
    [70] Wooten GF, Currie LJ, Bennett JP, et al. Maternal inheritance in Parkinson's disease. Ann Neurol, 1997, 41: 265-268.
    [71] Farrer M, Gwinn-HardyK, Muenter M, et al. A chromosome 4p haplotype segregating with Paridnson's disease and postural tremor. Hum Mol Genet, 1999, 8: 81-85.
    [72] Gasser T, Muller-Myhsok B, Wszolek ZK, et al. A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nat Genet, 1998, 18: 262-265.
    [73] Gwinn-Hardy KA, Crook R, Lincoln S, et al. A kindred with Parkinson's disease not showing genetic linkage to established loci. Neurology, 2000, 54: 504-507.
    [74] Tanner CM, and Langston JW. Do environmental toxins cause Parkinson's disease? A critical review. Neurology Suppl, 1990, 3: 17-31.
    [75] Chiba KA, Trevor and Castagnoli N. Metabolism of the neurotoxic tertiary amine,MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun, 1984, 120: 574-578.
    [76] Scotcher KP, Irewin I, Delanney LE, et al. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion onATP levels of mouse and brain synaptosomes. J Neurochem, 1990, 54: 1295-1301.
    [77] Uhl G. Neurotransmitter transporter (plus):Apromising new gene family. Trends Neurosci, 1992, 32: S2-S9.
    [78] Koller WC, Vetere-overfield BC, Alexander GC, et al. Environmental risk factors in Parkinson's disease. Neurology, 1990, 40: 1218-1221.
    [79] Spencer PS, Nunn PB, Hugor J, et al. Motor neurone disease in Guam: Possible role of a food neurotoxin. Lancet, 1986, 1: 965.
    [80] Rajput AH, Uitti RJ, Stern W, Laverty W, et al. Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson's disease. Can J Neurol Sci, 1987, 14(3 Suppl): 414-418.
    [81] Tanner CM, Ben-Shlomo Y. Epidemiology of Parkinson's disease. Adv Neurol, 1999, 80:153-159.
    [82] Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA, 2000, 283(20): 2674-2679.
    [83] Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci, 2000, 3(12): 1301-1306.
    [84] Takahashi M, Yamada T. A possible role of influenza A virus infection for Parkinson's disease. Adv Neurol, 2001,86:91-104.
    [85] Dunnett SB, Bjorklund A. Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature, 1999, 399(6738 Suppl): A32-39.
    
    
    [86] Jenner P, Olanow CW. Understanding cell death in Parkinson's disease. Ann Neurol,1998;44(3 Suppl 1):S72-84.
    [87] Offen D, Ziv I, Gorodin S, Malik Z, et al. Dopamine-induced programmed cell death in mouse thymcytes. Biochim. Biophys. Acta, 1995, 1268: 171-177.
    [88] Takai N, Nakanishi H, Tanabe K, et al. Involvement of caspase-like pin apoptosis of neural PC12 cells and primary cultures microglia induced by 6-hydroxydopamine. J Neurosci Res, 1998, 54: 214-222.
    [89] Andersen JK. Does neuronal loss in Parkinson's disease involve programmed cell death? Bioessays, 2001, 23: 640-646.
    [90] Blum D, Wu Y, Nissou MF, et al. P53 and bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain Res, 1997, 751: 139-142.
    [91] Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog. Neurobiol, 2001, 65: 135-172.
    [92] Coelln RV, Kugler S, Bahr M, et al. Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine induced apoptosis but not against the loss of their terminals. J Neurochem, 2001, 77: 263-273.
    [93] Offen D, Ziv I, Panet H, et al. Dopamine-induced apoptosis is inhibited in PC12 cells expressing Bcl-2. Cell Mol Neurobiol, 1997, 17: 289-304.
    [94] Offen D, Beart PM, Cheung N et al. Transgenic mice expressing human bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine neurotoxicity. Proc Natl Acad Sci, 1998, 95:5789-5794.
    [95] Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord, 1998, 13 (Suppl. 1): 35-38.
    [96] Ricaurte GA, Langston JW, Delanney LE, et al. Fate of nigrostriatal neurons in young mature mice given 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine: a neurochemical and morphological reassessment. Brain Res, 1986, 376: 117-124.
    [97] Petroske E, Meredith GE, Callen S, et al. Mouse model of parkinsonism: a comparison between subaeute MPTP and chronic MPTP/probenecid treatment. Neuroscience, 2001,106: 589-601.
    [98] Fall CP, Bennett JP. Characterization and time course of MPP+ induced apoptosis in human SH-Sy5Y neuroblastoma cells. J Neurosci Res, 1999, 55: 620-628.
    [99] Hartmann A, Mouatt-Prigent A, Vila M, et al. Increased expression and redistribution of the antiapoptotie molecule Bel-xL in Parkinson's disease. Neurobiol Dis, 2002, 10: 28-32.
    [100] Kitamura Y, Kosaka T, Kakimura JI, et al. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl 4-phenylpyridinium-induced apoptotie death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol, 1998, 54: 1046-1054.
    [101] Cassarino DS, Halvorsen EM, Swerdlow RH, et al. Interaction among mitochondria, mitogen-aetivated protein kinases, and nuclear faetor-kappaB in cellular models of Parkinson's disease. J Neurochem, 2000, 74: 1384-1392.
    
    
    [102] Xia XG, Harding T, Weller M, Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc Natl Acad Sci USA, 2001, 98:10433-10438.
    [103] Zuch CL, Nordstroem VK, Briedrick LA, et al. Time course of degenerative alterations in nigral dopaminergic neurons following 6-hydroxydopamine lesion. J Comp Neurol, 2000, 427: 440-454.
    [104] Yamada M, Oligino T, Mata M, et al. Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc Natl Acad Sci, 1999, 96: 4078-4083.
    [105] Tatton NA, Kish SJ. In situ detection of apoptotie nuclei in the substantia nigra pars compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydrophenylpyridine-treated mice using terminal deoxynucleotidyl transferase labeling and acridine orange. Neuroscience, 1997, 77: 1037-1048.
    [106] Nishi K. Expression of c-jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated mice. Brain Res, 1997, 771: 134-141.
    [107] Saporito MS, Thomas BA, Scott RW. MPTP activated c-jun NH2-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem, 2000, 75: 1200-1208.
    [108] Saporito MS, Brown EM, Miller MS. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl-tetrahydropyridine mediated loss of nigrostriatal dopaminergic neurons in vivo. J Pharmacol Exp Ther, 1999, 288: 421-427.
    [109] Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson's disease. Ann NY Acad Sei, 2003, 991:120-131.
    [110] Betarbet R, Sherer TB, MacKenzie G. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci, 2000, 3: 1301-1306.
    [111] Sherer TB, Betarbe R, Stout AK, et al. An in vitro model of Parkinson's disease:linking mitochondrial impairment and oxidative damage. J Neurosci, 2002, 22: 7006-7015.
    [112] Hartley A, Stone JM, Heron C, et al. Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J Neurochem, 1994, 63: 1987-1990.
    [113] Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol, 2003, 53(3): S26-36.
    [114] Dexter D, Carter C, Agid F,et al. Lipid peroxidation as cause of nigral cell death in Parkinson's disease. Lancet, 1986, 2(8507): 639-640.
    [115] Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem, 1989, 52: 381-389.
    [116] Seaton TA, Cooper JM, Schapira AH. Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex Ⅰ inhibitors. Brain Res, 1997, 777(1-2):110-118.
    [117] Smith MT, Sandy MS, Di Monte D.Free radicals, lipid peroxidation, and Parkinson's disease. Lancet, 1987, 1(8523): 38.
    
    
    [118] Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol, 1994,36: 348-355.
    [119] Dexter DT, Carayon A, Vidailhet M, et al. Decreased ferritin levels in brain in Parkinson's disease. J. Neurochem, 1990, 55:16-20.
    [120] Dexter DT, Jenner P, Schapira AH, et al. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson's Disease Research Group. Ann Neurol, 1992, 32: S94-100.
    [121] Jellinger KA, Kienzl E, Rumpelmaier G, et al. Iron and ferritin in substantia nigra in Parkinson's disease. Adv Neural, 1993, 60: 267-272.
    [122] Jenner P. Oxidative stress in Parkinson's disease and other neurodegenerative disorders. Pathol Biol, 1996, 44: 57-64.
    [123] Heikkila RE, Manzino L, Cabbat FS, et al. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature, 1984, 311:467-469.
    [124] Trevor AJ, Singer TP, Ramsay RR, et al. Processing of MPTP by monoamine oxidases: Implications for molecular toxicology. J. Neural. Transm Suppl, 1987, 23: 73-89.
    [125] Javitch JA, D'Amato RJ, Strittmatter SM, et al. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine:Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA, 1985, 82: 2173-2177.
    [126] Hasegawa E, Takeshige K, Oishi T, et al. 1-Methyl-4-phenylpyridinium (MPP1) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun, 1990, 170: 1049-1055.
    [127] Przedborski S, Kostic V, Jackson-Lewis V, et al. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci, 1992, 12: 1658-1667.
    [128] Beckman JS. Peroxynitrite versus hydroxyl radical: The role of nitric oxide in superoxide-dependent cerebral injury. Ann NY Acad Sci, 1994, 738: 69-75.
    [129] Crow JP, Beckman JS. The role of peroxynitrite in nitric oxide-mediated toxicity. Curr Top Microbiol Immunol, 1995, 196: 57-73.
    [130] Grunewald T, Beal MF. NOS knockouts and neuroprotection. Nat Med, 1999, 5:1354-1355.
    [131] Matthews RT, Yang L, Beal MF. S-Methylthiocitrulline, a neuronal nitric oxide synthase inhibitor, protects against malonate and MPTP neurotoxicity. Exp Neurol, 1997, 143:282-286.
    [132] Przedborski S, Jackson-Lewis V, Yokoyama R, et al. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci USA, 1996, 93: 4565-4571.
    [133] Schulz JB, Matthews RT, Muqit MM, et al. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem, 1995, 64: 936-939.
    
    
    [134] Dehmer T, Lindenau J, Haid S, et al. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem, 2000, 74: 2213-2216.
    [135] Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med, 1999, 5:1403-1409.
    [136] Itzhak Y, Martin JL, and Ali SF. Methamphetamine-and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice. Synapse, 1999, 34: 305-312.
    [137] Przedborski S, Vila M, Jackson-Lewis V, et al. Reply: A new look at the pathogenesis of Parkinson's disease. Trends Pharmacol Sci, 2000, 21: 165.
    [138] Dunnett SB, and Bjorklund A. Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature, 1999, 399: A32-39.
    [139] Gomez C, Reiriz J, Pique M, et al. Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res. 2001, 63(5):421-428.
    [140] Przedborski S, Kostic V, Jackson-Lewis V, et al. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci, 1992, 12:1658-1667.
    [141] Klevenyi P, Andreassen O, Ferrante RJ, et al. Transgenic mice expressing a dominant negative mutant interieukin-lbeta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport, 1999, 10: 635-638.
    [142] Klivenyi P, Andreassen OA, Ferrante RJ, et al. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J Neurosci, 2000, 20: 1-7.
    [143] Klivenyi P, St Clair D, Warmer M, et al. Manganese superoxide dismutase overexpression attenuates MPTP toxicity. Neurobiol Dis, 1998, 5: 253-258.
    [144] Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res, 1985, 101: 4-15.
    [145] Szabo C, Dawson VL. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci, 1998, 19: 287-298.
    [146] de Murcia G, and Menissier de Murcia J. Poly(ADP-ribose) polymerase: A molecular nick-sensor. Trends Biochem Sci, 1994, 19:172-176.
    [147] Lautier D, Lagueux J, Thibodeau J, et al. Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem, 1993, 122:171-193.
    [148] Mandir AS, Przedborski S, Jackson-Lewis V, et al. Poly(ADPribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci USA, 1999, 96:5774-5779.
    [149] Carlsson M, Carlssen A. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm, 1989, 75:221-226.
    [150] Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol Scand Suppl, 1971, 367: 69-93.
    
    
    [151]. Ungerstedt U, Arbuthnott G. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res, 1970, 24: 485-493.
    [152] Poirier LJ, Sourkes TL. Monkeys with nigrostriatal lesions: tremor induced by harmaline and other drugs. Pharmacol Ther, 1976, 2(1):105-122.
    [153] Poirier LI, Sourkes TL. Experimentally induced parkinsonism. Res Publ Assoc Res Nerv Ment Dis, 1972, 50:.416-433.
    [154] Langston JW, Langston EB, Irwin I. MPTP-induced parkinsonism in human and nonhuman primates--clinical and experimental aspects. Acta Neurol Stand Suppl. 1984,100:49-54.
    [155] Langston JW, Forno LS, Rebert CS, et al. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res, 1984, 292(2):390-394.
    [156] Langston JW, Quik M, Petzinger G, et al. Investigating levodopa-induced dyskinesias in the parkinsonian primate. Ann Neurol, 2000, 47:S79-89.
    [157] Greene LA. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA, 1976, 73(7):2424-2428.
    [158] Tischler AS. Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Lab Invest, 1978, 39(2):77-89.
    [159] Greene LA. Rapid activation of tyrosine hydroxylase in response to nerve growth factor. J Neurochem, 1984, 42(6):1728-1734.
    [160] Margioris AN. PC12 rat pheochromocytoma cells synthesize dynorphin. Its secretion is modulated by nicotine and nerve growth factor. Endocrinology, 1992,131(2):703-709.
    [161] Michel PP. Synergistic differentiation by chronic exposure to cyclic AMP and nerve growth factor renders rat phaeochromocytoma PC12 cells totally dependent upon trophic support for survival. Eur J Neurosci, 1995, 7(2):251-260.
    [162] Yogev-Falach M, Amit T, Bar-Am O, et al. The importance of propargylamine moiety in the anti-Parkinson drug rasagiline and its derivatives in MAPK-dependent amyloid precursor protein processing. FASEB J, 2003, 17(15):2325-2327.
    [163] Chen XC, Zhu YG, Zhu LA, et al. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol, 2003, 18; 473(1):1-7.
    [164] Wang RG, Zhu XZ. Subtoxic concentration of manganese synergistically potentiates 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells. Brain Res, 2003,961(1):131-138.
    [165] Bharat S, Cochran BC, Hsu M, et al. Pre-treatment with R-lipoic acid alleviates the effects of GSH depletion in PC12 cells: implications for Parkinson's disease therapy. Neurotoxicology, 2002, 23(4-5):479-486.
    [166] Gelinas S, Martinoli MG.Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. J Neurosci Res, 2002, 70(1):90-96.
    [167] Sheng GQ, Zhang JR, Pu XP, et al. Protective effect of verbascoside on 1-methyl-4-
    
    phonylpyridinium ion-induced neurotoxicity in PC12 cells. Eur J Pharmacol, 2002,451(2):119-124.
    [168] Seth K, Agrawal AK, Aziz MH, et al. Induced expression of early response genes/oxidative injury in rat pheochromocytoma (PC12) cell line by 6-hydroxydopamine: implication for Parkinson's disease. Neurosci Lett, 2002,330(1):89-93.
    [169] Gomez-Santos C, Ferret I, Santidrian AF, et al. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SYSY cells. J Neurosci Res, 2003, 73(3):341-350.
    [170] Molina-Jimeneaz MF, Sanchez-Reus MI, Benedi J. Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SYSY cells: comparison with N-acetylcysteine. Eur J Pharmacol, 2003,472(1-2):81-87.
    [171] Shavali S, Ren J, Ebadi M. Insulin-like growth factor-1 protects human dopaminergic SH-SYSY cells from salsolinol-induced toxicity. Neurosci Lett, 2003, 340(2):79-82.
    [172] Wang X, Qin ZH, Long Y, et al. Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SYSY cells. J Neurochem, 2002, 83(5):1094-1102.
    [173] Jaeger C, Gonzalo Ruiz A, Llinas R. Organotypic slice cultures of dopaminergic neurons of substantia nigra. Brain Res Bull, 1989, 22(6):981-991.
    [174] G(?)hwiler BH. Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Exprientia, 1984, 40: 235-243.
    [175] G(?)hwiler BH. Orgnotypic cultures of neural tissue. Trends Neurosci, 1988, 11: 484-489
    [176] Stoppini L, Buchs PA, Muller D. A simple method for orgnotypic cultures of nervous tissue.J Neurosci Meth, 1991, 37: 173-182.
    [177] Cragg SJ, Holmes C, Hawkey CR, et al. Dopamine is released spontaneously from developing midbrain neurons in organotypic culture. Neuroscience, 1998, 84(2):325-330.
    [178] Shimazu S, Katsuki H, Akaike A. Deprenyl rescues dopaminergic neurons in organotypic slice cultures of neonatal rat mesencephalon from N-methyl-D-aspartate toxicity. Eur J Pharmacol, 1999, 377(1): 29-34.
    [179] Hendelman WJ, Marshall KC, Ferguson R, et al. Catecholamine neurons of the central nervous system in organotypic culture. Dev Neurosci, 1982, 5(1): 64-76.
    [180] Shimazu S, Katsuki H, Takenaka C, et al. sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures. Eur J Pharmacol, 2000, 388(2):139-146.
    [181] Steensen BH, Nedergaard S, Ostergaard K, et al. Electrophysiological characterization of dopaminergic and non-dopaminergic neurones in organotypic slice cultures of the rat ventral mesencephalon. Exp Brain Res, 1995,106 (2): 205-214.
    [182] Berger B, Diporzio U, Daguet MC, et al. Long term development of mesencephalic dopaminergic neurons of mouse embryos in dissociated primary cultures:morphological and histochemical characteristics. Neurosci Lett, 1982, 7: 193-205.
    [183] Rideout HJ, Dietrich P, Savalle M, et al. Regulation of alpha-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons. J Neurochem, 2003, 84(4): 803-813.
    
    
    [184] Emgard M, Blomgren K, Brundin P. Characterisation of cell damage and death in embryonic mesencephalic tissue: a study on ultrastructure, vital stains and protease activity. Neuroscience, 2002,115(4): 1177-1187.
    [185] Ostenfeld T, Horn P, Aardal C, et al. Mouse epidermal growth factor-responsive neural precursor cells increase the survival and functional capacity of embryonic rat dopamine neurons in vitro. Neuroreport, 1999, 10(9): 1985-1992.
    [186] Takeshima T, Johnston JM, Commissiong JW. Mesencephalic type 1 astroeytes rescue dopaminergic neurons from death induced by serum deprivation. J Neurosci, 1994,14(8): 4769-4779.
    [187] Krohert K, Lopez-Colberg I, Cunningham LA. Astrocytes promote or impair the survival and function of embryonic ventral mesencephalon co-grafts: effects of astrocyte age and expression of recombinant brain-derived neurotrophic factor. Exp Neurol, 1997, 145: 511-523.
    [188] Zietlow R, Dunnett SB, Fawcett JW. The effect of microglia on embryonic dopaminergic neuronal survival in vitro: diffusible signals from neurons and glia chnge microglia from neurotoxic to neuroprotective. Eur J Neurosci, 1999, 11 (5): 1657-1667
    [189] Cardozo DL. Midbrain dopaminergie neurons from postnatal rat in long term primary culture. Neuroscience, 56(2): 409-421
    [190] Wichmann T, DeLong MR. Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci, 2003, 991:199-213.
    [191] Przedborski S, Vila M.The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Ann N Y Acad Sci, 2003, 991:189-198.
    [192] Przedborski S, Jackson-Lewis V, Djaldetti R, et al. The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci, 2000, 16(2): 135-142.
    [193] Sanchez-Ramos JR, Michel P, Weiner WJ and Hefti F. Selected destruction of cultures dopaminergic neurons from fetal rat mesencephalon by 1-methyl-4-phenylpyridinium: Cytochemical and morphological evidence. J Neurochem, 1988, 50: 1934-1944.
    [194] Obata T. Calcium overload enhances hydroxyl radical generation by 1-methyl-4 phenylpyridinium ion (MPP+) in rat striatum. Brain Res, 2003, 965(1-2): 287-289.
    [195] Kalivendi SV, Kotamraju S, Cunningham S, et al. 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J, 2003, 371:151-164.
    [196] Fonck C, Baudry M. Rapid reduction of ATP synthesis and lack of free radical formation by MPP+ in rat brain synaptosomes and mitochondria. Brain Res, 2003, 975(1-2): 214-221.
    [197] Franceschi M, Smirne S, Canal N. Treatment of clinical signs and EEG patterns in patients with 'organic brain syndrome. Effect of citidine-diphosphocholine, citicholine. Clin Trials J, 1982, 19: 74-84.
    [198] Callier S, Le Saux M, Lhiaubet AM, et al. Evaluation of the protective effect of oestradiol against toxicity induced by 6-hydroxydopamine and 1-methyl-4-phenylpyridinium ion (Mpp+) towards dopaminergic mesencephalic neurones in primary culture. J Neurochem, 2002, 80(2): 307-316.
    
    
    [199] Sanchez-Ramos JR, Michel P, Weiner WJ, et al. Selective destruction of cultured dopaminergic neurons from fetal rat mesencephalon by 1-methyl-4-phenylpyridinium:cytochemical and morphological evidence. J Neurochem, 1988, 50(6): 1934-1944.
    [200] Maruyama W, Akao Y, Carillo MC, et al. Neuroprotection by propargylamines in Parkinson's disease suppression of apoptosis and induction of prosurvival genes. Neurotox Teratol, 2002, 24; 675-682.
    [201] Riederer P, Foley P, Bringmann G, et al. Biochemical and pharmacological characterization of 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline: a biologically relevant neurotoxin. Eur J Pharm, 2002, 442: 1-16.
    [202] Nguyen A, Gille G, Moldzio M, et al. Synthetic neuromelanin is toxic to dopaminergic cell cultures. J Neural Transm, 2002, 109:651-661.
    [203] Gao HM, Hong JS, Zhang W, et al. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J Neurosci, 2003, 23: 1228-1236.
    [204] Han SK, Mytilineou C, Cohen G. L-DOPA upregulates glutathione and protects mesencephalic cultures against oxidative stress. J Neurochem, 1996, 66:501-510
    [205] Murer MG, Raisman-Vozari R, Gershanik O. Levodopa in Parkinson's disease-neurotoxicity issue laid to rest? Drug Safety, 1999, 21: 339-352.
    [206] Clement MV, Long LH, Ramalingam J, et al. The cytotoxicity of dopamine may be an artefact of cell culture. J Neurochem, 2002, 81: 414-421.
    [207] Gille G, Rausch WD, Hung ST, et al. Pergolide protects dopaminergic neurons in primary culture under stress conditions. J Neural Transm, 2002, 109(5-6):633-643.
    [208] Folkers K, Yamagami T, Littarru GP. Biomedical and Clinical Aspects of Coenzyme Q. Elsevier Amsterdam, 1991, 6:1-555
    [209] Radad K, Gille G, Moldzio R, et al. Neuroprotektive Effekte von Ginsenosiden Mechanismen in dopaminergen Zellkulturen. MedReport, 2003, 4: 6.
    [210] Bilsland J, Roy S, Xanthoudakis S, et al. Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons. J Neurosci, 2002, 22: 2637-2649.
    [211] Richard L, Branton, Clarke DJ. Apoptosis in primary cultures of E14 rat ventral mesencephala: time course of dopaminergic cell death and implications for neural transplantation. Experimental Neurology, 1999, 160:88-98.
    [212] Sanchez-Ramos JR, Song S, Facca A, et al. Transgenic murine dopaminergic neurons expressing human Cu/Zn superoxide dismutase exhibit increased density in culture but no resistance to methylphenylpyridinium-induced degeneration. J Neurochem, 1997, 68(1): 58-67.
    [213] Secades JJ, Frontera G. CDP-choline: pharmacological and clinical review. Meth Find Exp Clin Pharmacol, 1995, 17: 2-54.
    [214] Weiss GB. Metabolism and actions of CDP-choline as an endogenous compound and administered exogenously as citicoline. Life Sci, 1995; 56:637-660.
    [215] Agut J, Font E, Sacristan A, et al. Bioavailability of methyl-14C CDP-choline by oral route. Arzneim Forsch, 1983, 33:1045-1047.
    
    
    [216] Kent C and Carman GM. Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends Biochem Sci, 1999, 24:146-150.
    [217] Adibhatla RM, Hatcher JF, Dempsey RJ. Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke, 2001; 32: 2376-2381.
    [218] Yashima K, Takamatsu M, Okuda K. Intestinal absorption of cytidine diphosphate choline and its changes in the digestive tract. J Nutr Sci Vitaminol (Tokyo), 1975,21(1): 49-60.
    [219] Galletti P, De Rosa M, Cotticelli MG, et al. Biochemical rationale for the use of CDPcholine in traumatic brain injury: pharmacokinetics of the orally administered drug. J Neurol Sci, 1991, 103: S19-25.
    [220] Lopez-Coviella I, Agut J, Savci V, et al. Evidence that 5'-cytidinediphosphocholine can affect brain phospholipid composition by increasing choline and cytidine plasma levels. J Neurochem, 1995, 65(2): 889-894.
    [221] Galletti P, De Rosa M, Nappi MA, et al. Transport and metabolism of double-labelled CDPcholine in mammalian tissues. Biochem Pharmacol, 1985, 34(23): 4121-4130.
    [222] Romeo G, Cocchiara G, De Rosa M, et al. Transport of cytidinediphosphocholine in different biological models-Synthesis and characterization of cytidinediphosphocholine. Boll Soc Ital Biol Sper, 1981, 57(11): 1175-1181.
    [223] Romeo G, Cocchiara G, De Rosa M, et al. Transport of cytidinediphosphocholine in different biological models. Ⅱ-Transport of cytidinediphosphocholine in isolated and perfused rat liver. Boll Soc Ital Biol Sper, 1981, 57(11):1182-1187.
    [224] Krawiec L, Pasquini JM, Najle R, et al. Incorporation of CDP-choline (methyl-14C) into lecithin or adult rat liver mitochondria and microsomes. Acta Physiol Lat Am, 1975, 25(1): 67-76.
    [225] Paroni R, Cighetti G, Del Puppo M, et al. Evidence for a different metabolic behaviour of cytidine diphosphate choline after oral and intravenous administration to rats. Pharmacol Res Commun, 1985, 17(9): 805-829.
    [226] Galletti P, De Rosa M, Cotticelli Mget, et al. Biochemical rationale for the use of CDPcholine in traumatic brain injury: pharmacokinetics of the orally administered drug. J Neurol Sci, 1991,103:S19-25.
    [227] Agut J, Font E, Sacristan A, et al. Radioactivity incorporation into different cerebral phospholipids after oral administration of 14C methyl CDP-choline. Arzneimittelforschung, 1983, 33(7A):1048-1050.
    [228] Fresta M, Wehrli E, Puglisi G. Enhanced therapeutic effect of cytidine-5φ-diphosphate choline when associated with G (M1) containing small liposomes as demonstrated in a rat ischemia model. Pharm. Res, 1995, 12:1769-1774.
    [229] Kakihana M, Fukuda N, Suno M, et al. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia. Stroke, 1988,19(2):217-222.
    [230] Dorman RV, Dabrowiecki Z, Horrocks LA. Effects of CDPcholine and CDPethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia. J Neurochem, 1983, 40(1): 276-279.
    
    
    [231] Goldberg WJ, Dorman RV, Dabrowiecki Z, et al. The effects of ischemia and CDPamines on Na~+, K~+-ATPase and acetylcholinesterase activities in rat brain. Neurochem Pathol, 1985, 3(4): 237-248.
    [232] Horrocks LA, Dorman RV, Dabrowiecki Z, et al. CDPcholine and CDPethanolamine prevent the release of free fatty acids during brain ischemia. Prog Lipid Res, 1981, 20: 531-534.
    [233] Dorman RV, Dabrowiecki Z, Horrocks LA. Effects of CDPcholine and CDPethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia.J Neurochem, 1983, 40(1): 276-279.
    [234] Yamamoto M, Shimizu M, Okamiya H. Pharmacological actions of a new TRH analogue, YM-14673, in rats subjected to cerebral ischemia and anoxia. Eur J Pharmacol, 1990, 181(3): 207-214.
    [235] Kirino T and Sano K. Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol, 1984, 62, 201-208.
    [236] Rao VLR, Ran AM, Dogan A, et al. Glial glutamate transporter GLT-1 down-regulation precedes delayed neuronal death in gerbil hippocampus following transient global cerebral ischemia. Neurochem Int, 2000, 36: 531-537.
    [237] Rao AM, Hatcher JF, Dempsey RJ. Lipid metabolism in ischemic neuronal death. Rec Res Dev Neurochem, 1999, 2: 533-549.
    [238] Rao AM, Hatcher JF and Dempsey RJ. Does CDP-choline modulate phospholipase activities after transient forebrain ischemia? Brain Res, 2001, 893: 268-272.
    [239] Hatcher JF, Dempsey PJ and Rao AM. Ischemic severity and neuroprotection by CDP-choline. Soc Neurosci, 1999, 25: 583.
    [240] Rao AM, Hatcher JF, Dempsey RJ. CDP-choline: neuroprotection in transient forebrain ischemia of gerbils. J Neurosci Res, 1999, 58:697-705.
    [241] Hamdorf G, Cervos-Navarro J. Study of the effects of oral administration of CDP-choline on open-field behaviour under conditions of chronic hypoxia. Arzneimittelforschung, 1990, 40(5): 519-522.
    [242] Hamdorf G, Cervos-Navarro J. Therapeutic effect of orally applied cytidine diphosphate choline in mild and severe degrees of normobaric and normocapnic degrees of hypoxia of rats. Arzneimittelforschung, 1991, 41(12): 1206-1210.
    [243] Hamdorf G, Cervos-Navarro J, Muller R. Increase of survival time in experimental hypoxia by cytidine diphosphate choline. Arzneimittelforschung, 1992, 42(4): 421-424.
    [244] Boudouresques AB, Michel B. Therapeutic conduct in light of a cerebral vascular accident and the use of CDP-choline. International Symposium Brain Suffering and Precursors of Phospholipids, 1980, 18: 109-121.
    [245] Goyas JY, Bastard J, Missoum A. Results after 90 days of stroke treatment with CDP-choline, concerning a double blind test. International Symposium Brain Suffering and Precursors of Phospholipids, 1980, 18: 123-128.
    [246] Hazama T, Hasegawa T, Ueda S, Sakuma A. Evaluation of the effect of CDP-choline on poststroke hemiplegia employing a double-blind controlled trial: Assessed by a new rating scale for recovery in hemiplegia. Int J Neurosci, 1980, 11: 211-215.
    
    
    [247] Corse A, Arena M, Ventimiglia A, et al. CDP-choline for cerebrovascular disorders:clinical evaluation and evaluation of electrophysiological symptomology. Clini Ter, 1982, 102: 379-386.
    [248] Franceschi M, Smirne S, Canal N. Treatment of clinical signs and EEG patterns in patients with 'organic brain syndrome. Effect of citidine-diphosphocholine, citicholine. Clin Trials J, 1982, 19: 74-84.
    [249] Tazaki Y, Sakai F, Otomo E, et al. Treatment of acute cerebral infarction with a choline precursor in a multicenter double-blind placebo-controlled study. Stroke, 1988, 19: 211-216.
    [250] Bruhwyler J, Vandorpe J and Geczy J. Multicentric open-label study of the ef/Ecacy and tolerability of citicoline in the treatment of acute cerebral infarction. Curr Therap Res Clini Exptl, 1997, 58: 309-316.
    [251] Clark WM, Warach SJ, Pettigrew LC, et al. A randomized dose-response trial of citicoline in acute ischemic stroke patients. Neurology, 1997, 49: 671-678.
    [252] Clark WM, Williams BJ, Selzer KA, et al. A randomized efficacy trial of citicoline in patients with acute ischemic stroke. Stroke, 1999, 30: 2592-2597.
    [253] Warach S, Pettigrew LC, Dashe JF, et al. Effect of citicoline on ischemic lesions as measured by diffusion-weighted magnetic resonance imaging. Ann Neurol, 2000, 48:713-722.
    [254] White BC, Sullivan JM, DeGracia DJ, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci, 2000, 179:1-33.
    [255] Siesjo BK, Katsura K. Ischemic brain damage: focus on lipids and lipid mediators. Adv Exp Med Biol, 1992, 318: 41-56.
    [256] Siesjo BK, Katsura K, Zhao Q, et al. Mechanisms of secondary brain damage in global and focal ischemia: a speculative synthesis. J Neurotrauma, 1995, 12: 943-956.
    [257] Farooqui AA, Yang HC, Horrocks L.Involvement of phospholipaseA2 in neurodegeneration. Neurochem Int, 1997; 30: 517-522.
    [258] Farooqui AA, Yang HC, Rosenberger TA, et al. Phospholipase A2 and its role in brain tissue. J Neurochem, 1997, 69: 889-901.
    [259] Siesjo BK, Agardh CD, Bengtsson F. Free radicals and brain damage. Cerebrovasc Brain Metab Rev, 1989, 1(3): 165-211.
    [260] Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab, 2001, 21: 2-14.
    [261] Clandinin MT, Sub M, Hargreaves K. Impact of dietary fatty acid balance on membrane structure and function of neuronal tissues. Adv Exp Med Biol, 1992, 318:197-210.
    [262] Hargreaves K, Clandinin MT. Dietary lipids in relation to postnatal development of the brain. Ups J Med Sci Suppl, 1990, 48:79-95.
    [263] Condorelli DF, Avola R, Ragnsa N, et al. Age-dependent changes of nucleic acid labeling in different rat brain regions. Neurochem Res, 1989, 14(7):701-706.
    [264] Villa RF, Ingrao F, Magri G, et al. Effect of CDP-choline treatment on mitochondrial and synaptosomal protein composition in different brain regions during aging. Int J Dev Ncurosci, 1993, 11(1):83-93.
    
    
    [265] Chida N, Shimizu Y. Biosynthesis of myelin lipids of cultured nervous tissues--incorporation of choline and CDP-choline into myelin phospholipids. Tohoku J Exp Med, 1973, 111(1):41-49.
    [266] Benzi G, Arrigoni E, Dagani F, et al. Age-dependent modification of drug interference on the enzymatic activities of the rat brain. Exp Gerontol, 1980, 15(6): 593-603.
    [267] Gimenez R, Raich J, Aguilar J. Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice. Br J Pharmacol, 1991, 104(3): 575-578.
    [268] De Medio GE, Trovarelli G, Piccinin GL, et al. The effect of cytidine-diphosphate choline (CDP-choline) on brain lipid changes during aging. J Neurosci Res, 1984, 11(1):49-58.
    [269] Lopez G-Coviella I, Agut J, Ortiz JA, et al. Effects of orally administered cytidine 5'-diphosphate choline on brain phospholipid content. J Nutr Biochem, 1992, 3(6):313-315.
    [270] Agut J, Lopez G-Coviella I, Ortiz JA. Oral cytidine 5'-diphosphate choline administration to rats increases brain phospholipid levels. Ann N Y Acad Sci, 1993, 695:318-320.
    [271] Canonico PL, Nicoletti F, Sortino MA, et al. Effects of CDP-choline administration on receptor-stimulated inositol phuspholipid hydrolysis in brain slices and neuronal cultures. Funct Neurol, 1992, 7(4):275-281.
    [272] Schabitz WR, Weber J, Takano K, et al. The effects of prolonged treatment with citicoline in temporary experimental focal ischemia. J Neurol Sci, 1996, 138: 21-25.
    [273] Rao AM, Hatcher JF, Dempsey RJ. CDP-choline: neuroprotection in transient forebrain ischemia of gerbils. J Neurosci Res, 1999, 58: 697-705.
    [274] Baskaya MK, Dogan A, Rao AM, et al. Neuroproteetive effects of citicoline on brain edema and blood±brain barrier breakdown after traumatic brain injury. J Neurosurg, 2000, 92: 448-452.
    [275] Chan PH, Fishman RA. Brain edema: Induction in cortical slices by polyunsaturated fatty acids. Science, 1978, 201: 358-360.
    [276] Plataras C, Tsakiris S, Angelogianni P. Effect of CDPcholine on brain acetylcholinesterase and Na~+, K~+-ATPase in adult rats. Clin Biochem, 2000, 33: 351-357.
    [277] Kishimoto K, Matsumura K, Kataoka Y, et al. Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience, 1999, 92:1061-1077.
    [278] Lauritzen I, Heurteaux C, Lazdunski M. Expression of group Ⅱ phospholipase A2 in rat brain after severe forebrain ischemia and in endotoxic shock. Brain Res, 1994, 651: 353-356.
    [279] Siesjo BK.Pathophysiology and treatment of fecal cerebral ischemia. Part Ⅱ: Mechanisms of damage and treatment. J Neurosurg, 1992, 77: 337-354.
    [280] Agut J, Ortiz JA. Age-related changes in memory and their pharmacologic modulation. Ann N Y Acad Sci, 1991, 640:295-297.
    [281] Petkov VD, Mosharrof AH, Kehayov R, et al. Effect of CDP-choline on learning and memory processes in rodents. Methods Find Exp Clin Pharrnacol, 1992, 14(8):593-605.
    
    
    [282] Mosharrof,AH, Petkov VD. Effects of citicholine and of the combination citicholine+piracetam on the memory (experiments on mice). Acta Physiol Pharmacol Bulg, 1990,16(1):25-31.
    [283] Mosharrof AH, Petkov VD, Petkov VV. Effects of meclofenoxate and citicholine on learning and memory in aged rats. Acta Physiol Pharmacol Bulg, 1987, 13(4):17-24.
    [284] Petkov VD, Mosharrof AH. Memory effects of the new derivative of the pchlorophenoxyacetic acid adafenoxate compared to the effects of some cognition-enhancing drugs in rats. Arzneimittelforschung, 1989, 39(9):1133-1136.
    [285] Petkov VD, Mosharrof AH, Petkov VV. Comparative studies on the effects of the nootropic drugs adafenoxate, meclofenoxate and piracetam, and of citicholine on scopolamine-impaired memory, exploratory behavior and physical capabilities (experiments on rats and mice). Acta Physiol Pharmacol Bulg, 1988,14(1):3-13.
    [286] Petkov VD, Mosharrof AH, Petkov W, et al. Age-related differences in memory and in the memory effects of nootropic drugs. Acta Physiol Pharmacol Bulg, 1990, 16(2):28-36.
    [287] Petkov VD, Kehayov R. Individually-determined differences in the effects of psychotropic drugs on memory (experiments on rats). Acta Physiol Pharmacol Bulg, 1987, 13(3):30-36.
    [288] Yamamoto M, Shimizu M. Effects of a new TRH analogue, YM-14673 on a passive avoidance test as a possible criterion of improvement in cognitive disturbance in rodents. Naunyn Schmiedebergs Arch Pharmacol, 1988, 338(3):262-267.
    [289] Petkov VD, Konstantinova ER, Petkov W, et al. Learning and memory in rats exposed pre-and postnatally to alcohol. An attempt at pharmacological control. Methods Find Exp Clin Pharmacol, 1991, 13(1):43-50.
    [290] Petkov VD, Konstantinova E, Petkov VV, et al. Modulation of the effects on learning and memory of nootropic drugs and central stimulants when applied together. Acta Physiol Pharmacol Bulg, 1991, 17(4):17-26.
    [291]. Fischer HD, Schmidt J, Wustmann C. On some mechanisms of antihypoxic actions of nootropic drugs. Biomed Biochim Acta, 1984, 43(4):541-543.
    [292] Petkov VD, Stancheva SL, Tocuschieva L, et al. Changes in brain biogenic monoamines induced by the nootropic drugs adafenoxate and meclofenoxate and by citicholine (experiments on rats). Gen Pharmacol, 1990, 21(1):71-75.
    [293] Petkov VD, Popova JS. Effects of the nootropic agents adafenoxate, meclofenoxate and the acetylcholine precursor citicholine on the brain muscarinic receptors (experiments on rats). Acta Physiol Pharmacol Bulg, 1987, 13(2):3-10.
    [294] Tsuchida T, Nagai M, Hoshino T, et al. Treatment of head injuries with intermediate substances in the metabolic cycle of the brain. 2. Basic study on the metabolism of cytidine diphosphate choline. No To Shinkei, 1967, 19(10):1041-1045.
    [295] Boismare F, Le Poncin M, Lefrancois J, et al. Effect of cytidine diphosphocholine on hemodynamic, functional as and biochemical consequences of cranio-cervical trauma in rats. Therapie, 1977, 32(3):345-354.
    [296] Agut J, Font E, Sacristan A, et al. Effect of oral CDP-choline on acrylamide-induced lesion. Arzneimittelforschung, 1983, 33(7A):1029-1033.
    
    
    [297] Patt S, Cervos-Navarro J, Stoltenburg-Didinger G, et al. The effects of CDP-choline on newborn rat pups with experimental alcohol fetopathy. A Golgi study. Histol Histopathol, 1989, 4(4):429-434.
    [298] Blusztajn JK, Wurtman RJ. Choline and cholinergic neurons. Science, 1983, 221: 614-620.
    [299] Klein J. Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neur Tran, 2000, 107: 1027-1063.
    [300] Wurtman RJ. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci, 1992, 15: 117-122.
    [301] Ulus IH, Wurtman RJ, Mauron C, et al. Choline increases acetylcholine release and protects against the stimulationinduced decrease in phosphatide levels within membranes of rat corpus striatum. Brain Res, 1989, 484: 217-227.
    [302] Yen CLE, Mar MH, Zeisel SH.Choline de/Eciencyinduced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J, 1999, 13:135-142.
    [303] Cui Z, Houweling M, Chen MH, et al. A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in chinese hamster ovary cells. J Biol Chem, 1996, 271:14668-14671.
    [304] Buyukuysal RL, Holmes TC, Wurtman RJ. Interactions of 3,4-diaminopyridine and choline in stimulating acetylcholine release and protecting membrane phospholipids. Brain Res, 1991, 541(1):1-6.
    [305] Porceddu ML, Concas A. Partial protection by CDP-choline against kainic acid-induced lesion in the rat caudate nucleus. Farmaco, 1985, 40(8): 617-622.
    [306] Manaka S, Sano K, Fuchinone T, et al. Mechanism of action CDP-choline in parkinsonism. Experientia, 1974, 15;30(2):179-180.
    [307] Martinet M, Fonlupt P, Pacheco H. Activation of soluble striatal tyrosine hydroxylase in the rat brain after CDPcholine administration. Biochem Pharmacol, 1981, 30(5):539-541.
    [308] Martinet M, Fonlupt P, Pacheco H. Effects of cytidine-5' diphosphocholine on norepinephrine, dopamine and serotonin synthesis in various regions of the rat brain. Arch Int Pharmacodyn Ther, 1979, 239(1):52-61.
    [309] Shibuya M, Kageyama N, Taniguchi T, et al. Effects of CDP-choline on striatal dopamine level and behavior in rats. Jpn J Pharmacol, 1981, 31(1):47-52
    [310] Martinet M, Fonlupt P, Pacheco H. Interaction of CDP-choline with synaptosomal transport of biogenic amines and their precursors in vitro and in vivo in the rat corpus striatum. Experientia, 1978, 15;34(9):1197-1199.
    [311] Agut J, Coviella IL, Wurtman RJ. Cytidine(5')diphosphocholine enhances the ability of haloperidol to increase dopamine metabolites in the striatum of the rat and to diminish stereotyped behavior induced by apomorphine. Neuropharmacology, 1984, 23(12A):1403-1406.
    [312] Lopez I, Coviella G, Agut J, et al. Effect of cytidine(5')diphosphocholine (CDP-choline) on the total urinary excretion of 3-methoxy-4-hydroxyphenylglycol (MHPG) by rats and humans. J Neural Transm, 1986, 66(2):129-134.
    
    
    [313] Saligaut C, Daoust M, Moore N, et al. Circling behaviour in rats with unilateral lesions of the nigrostriatum induced by 6-hydroxydopamine: changes induced by oral administration of cytidine-5'-diphosphocholine. Neuropharmacology,1987, 26(9):1315-1319.
    [314] Hoch FL. Cardiolipins and biomembrane function. Biochim Biophys Acta, 1992, 1113: 71-133.
    [315] Nakahara I, Kikuchi H, Taki W, et al. Degradation of mitochondrial phospholipids during experimental cerebral ischemia in rats. J Neurochem, 1991, 57: 839-844.
    [316] Nakahara I, Kikuchi H, Taki W, et al. Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J Neurosurg, 1992, 76:244-250.
    [317] Devaux PF, Zachowski A. Maintenance and consequences of membrane phospholipid asymmetry. Chem Phys Lipids, 1994, 73: 107-120.
    [318] Wattiaux-De Coninck S, Wattiaux R. Ischemic effects on the structure and function of the plasma membrane in Subcellular Biochemistry, Membrane Biogenesis. 1994, 22: 361-402.
    [319] Wood WG, Schroeder F, Igbavboa U, et al. Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiol Aging, 2002, 23(5): 685-694.
    [320] Martin SJ, Reutelingsperger CPM, McGahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus-inhibition by overexpression of bcl-2 and abl. J Exp Med, 1995, 182: 1545-1556.
    [321] Rimon G, Bazenet CE, Philpott KL, et al. Increased surface phosphatidylserine is an early marker of neuronal apoptosis. J Neurosci Res, 1997, 48: 563-570.
    [322] Suzuki S, Furushiro M, Takahashi M, et al. Oral administration of soybean lecithin transphosphatidylated phosphatidylserine (SB-tPS) reduces ischemic damage in the gerbil hippocampus. Jpn J Pharmacol, 1999, 81: 237-239.
    [323] Kagan VE, Fabisiak JP, Shvedova AA, et al. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett, 2000, 477: 1-7.
    [324] Tepper AD, Ruurs P, Wiedmer T, et al. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J Cell Biol, 2000, 150: 155-164.
    [325] Stoffel W, Melzner I. Studies in vitro on the biosynthesis of ceramide and sphingomyelin. A reevaluation of proposed pathways. Z Physiol Chem, 1980, 361: 755-771.
    [326] Vos JP, Dehaas CGM, Vangolde LMG, et al. Relationships between phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin metabolism in cultured oligodendrocytes. J Neurochem, 1997, 68: 1252-1260.
    [327] Goswami R, Dawson G. Does ceramide play a role in neural cell apoptosis? J Neurosci Res, 2000, 60: 141-149.
    [328] Rao AM, Hatcher JF, Dempsey RJ. Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDPcholine neuroprotection. J Neurochem, 2000, 75: 2528-2535.
    
    
    [329] Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993, 262: 689-695.
    [330] Adibhatla RM, Hatcher ,IF, Dempsey RJ. Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke, 2001, 32: 2376-2381.
    [331] Rao AM, Baskaya MK, Maley ME, et al. Benefacial effects of S-adenosyl-1-methionine on blood- brain barrier breakdown and neuronal survival after transient cerebral ischemia in gerbils. Mol Brain Res, 1997, 44: 134-138.
    [332] De la Cruz JP, Pavia J, Gonzalez-Correa JA, et al. Effects of chronic administration of S-adenosyl-1-methionine on brain oxidative stress in rats. Arch Pharmacol, 2000, 361, 47-52.
    [333] Lu SC. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J, 1999, 13: 1169-1183.
    [334] Fresta M, Puglisi G, Giacom CD, et al. Liposomes asin vivo carriers for citicoline:effects on rat cerebral post-ischemic reperfusion. J Pharm Pharmacol, 1994, 46: 974-981.
    [335] Villa RF, Ingrao F, Magri G, et al. Effect of CDP-choline treatment on mitochondrial and synaptosomal protein composition in different brain regions during aging. Int J Dev Neurosci, 1993, 11(1):83-93.
    [336] Rigoulet M, Guerin B, Cohadon F, et al. Changes in membrane ATPases by a phospholipid precursor. J Neurochem, 1979, 2:535-541.
    [337] Plataras C, Angelogianni P, Tsakiris S. Effect of CDP-choline on hippocampal acetylcholinesterase and Na+, K(+)-ATPase in adult and aged rats. Z Naturforsch, 2003, 58(3-4):277-281.
    [338] Krupinski J, Ferret I, Barrachina M, et al. CDP-choline reduces pro-caspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat. Neuropharmacology, 2002, 42(6):846-854.
    [339] Ben-Menachem G, Mousa A, Brenner T, et al. Choline deficiency induced by Mycoplasma fermentans enhances apoptosis of rat astrocytes. FEMS Microbiol Lett, 2001, 201(2):157-62.
    [340] Barrachina M, Secades J, Lozano R, et al. Citicoline increases glutathione redox ratio and reduces caspase-3 activation and cell death in staurosporine-treated SH-SY5Y human neuroblastoma cells. Brain Res, 2002, 957(1): 84-90.
    [341] Alvarez XA, Sampedro C, Lozano R, et al. Citicoline protects hippocampal neurons against apoptosis induced by brain beta-amyloid deposits plus cerebral hypoperfusion in rats. Methods Find Exp Clin Pharmacol, 1999, 21(8):535-540.
    [342] Sobrado M, Lopez MG, Carceller F, et al. Combined nimodipine and citicoline reduce infarct size, attenuate apoptosis and increase bcl-2 expression after focal cerebral ischemia. Neuroscience, 2003, 118(1):107-113.
    [343] Brana C, Benham C, Sundstrom L. A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res Brain Res Protoc, 2002, 10(2):109-114.
    [344] Noraberg J, Kristensen BW, Zimmer J. Markers for neuronal degeneration in organotypic slice cultures. Brain Res Brain Res Protoc, 1999, 3(3):278-290.
    
    
    [345] Juan G, Cavazzoni M, Saez GT, et al. A fast kinetic method for assessing mitochondrial membrane potential in isolated hepatocytes with rhodamine 123 and flow cytometry. Cytometry, 1994, 15(4):335-342.
    [346] Budd SL, Nicholls DC. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem,. 1996, 66(1):403-411.
    [347] Khodorov B,Pinelis V, Vergun O, et al. Mitochondrial deenergization underlies neuronal calcium overload folowing a prolonged glutamate challenge. FEBS Lett, 1996,397(2-3):230-234.
    [348] Michel PP, Dandapani BK, Knusel B, et al. Toxicity of 1-methyl-4-phenylpyridinium for rat dopaminergic neurons in culture: selectivity and irreversibility. J Neurochem, 1990, 54(4):1102-1109.
    [349] Denton T, Howard BD. A dopaminergic cell line variant resistant to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem, 1987, 49(2): 622-30.
    [350] Marongiu ME, Piccardi MP, Bernardi F, et al. Evaluation of the toxicity of the dopaminergic neurotoxins MPTP and MPP+ in PC12 pheochromocytoma cells: binding and biological studies. Neurosci Lett, 1988, 94(3):349-354.
    [351] Gomez-Santos C, Fetter I, Reiriz J, et al. MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res, 2002, 935(1-2):32-39.
    [352] Song X, Perkins S, Jortner BS, et al. Cytotoxic effects of MPTP on SH-SY5Y human neuroblastoma cells. Neurotoxicology, 1997, 18(2):341-353.
    [353] Bleich S, Romer K, Wiltfang J, et al. Glutamate and the glutamate receptor system: a target for drug action, Int J Geriatr Psychiatry, 2003,18(Suppl 1):S33-40.
    [354] Sawada H, Kawamura T, Shimohama S, et al. Different mechanisms of glutamate-induced neuronal death between dopaminergic and non-dopaminergic neurons in rat mesencephalic culture. J Neurosci Res, 1996, 43(4):503-510.
    [355] Mir C, Clotet J,Aledo R, et al. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci, 2003, 20(1):53-60.
    [356] lentile R, Campisi A, Raciti G, et al. Cystamine inhibits transglutaminase and caspase-3 cleavage in glutamate-exposed astroglial cells. J Neurosci Res, 2003, 74(1):52-59.
    [357] Adibhatla RM, Hatcher JF, Dempsey RJ. Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke, 2001, 32(10):2376-2381.
    [358] Mykita S, Golly F, Dreyfus H, et al. Effect of CDP-choline on hypocapnic neurons in culture. J Neurochem, 1986, 47(1):223-231.
    [359] Cacabelos R, Caamano J, Gomez MJ, et al. Therapeutic effects of CDP-choline in Alzheimer's disease. Cognition, brain mapping, cerebrovascular hemodynamics, and immune factors. Ann N Y Acad Sci, 1996, 777:399-403.
    [360] Sawada H, Ibi M, Kihara T, et al. Estradiol protects dopaminergic neurons in a MPP+Parkinson's disease model. Neuropharmacology, 2002, 42(8):1056-1064.
    [361] Viswanath V, Wu Y, Boonplueang R, et al. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease. J Neurosci, 2001, 21(24):9519-28.
    [362] Choi WS, Yoon SY, Oh TH, et al. Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res, 1999, 57(1):86-94.
    
    
    [363] Yen CL, Mar MH, Meeker RB, et al.Choline deficiency induces apoptosis in primary cultures of fetal neurons. FASEB J, 2001,15(10):1704-1710.
    [364] Yen CL, Mar MH, Zeisel SH. Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J, 1999, 13(1):135-142.
    [365] Schulz JB,Henshaw DR, Matthews RT, et al.Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity. Exp Neurol, 1995, 132(2):279-283.
    [366] Chun HS, Lee H, Son JH. Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741. Neurosci Lett, 2001, 316(1):5-8.
    [367] Miller S, Kesslak JP,Romano C, et al. Roles of metabotropic glutamate receptors in brain plasticity and pathology. Ann N Y Acad Sci, 1995, 757:460-474.
    [368] Lipton SA, Stamler JS. Actions of redox-related congeners of nitric oxide at the NMDA receptor. Neuropharmacology, 1994, 33(11):1229-1233.
    [369] Choi DW. Excitotoxic cell death. J Neurobiol, 1992, 23(9):1261-76.
    [370] Turski L, Bressler K, Rettig KJ, et al. Protection of substantia nigra from MPP+neurotoxicity by N-methyl-D-aspartate antagonists. Nature, 1991, 349(6308):414-418.
    [371] Jacobsson SO, Fowler CJ. Dopamine and glutamate neurotoxicity in cultured chick telencephali cells: effects of NMDA antagonists, antioxidants and MAO inhibitors. Neurochem Int, 1999, 34(1):49-62.
    [372] Gasull T, DeGregorio-Rocasolano N, Enguita M, et al. Inhibition of phosphatidylcholine synthesis is associated with excitotoxic cell death in cerebellar granule cell cultures. Amino Acids, 2002, 23(1-3):19-25.
    [373] Boss V, Conn PJ. Metabotropic excitatory amino acid receptor activation stimulates phospholipase D in hippocampal slices. J Neurochem, 1992, 59(6):2340-2343.
    [374] Rao AM, Hatcher JF, Dempsey RJ. CDP-choline: neuroprotection in transient forebrain ischemia of gerbils. J Neurosci Res, 1999, 58(5):697-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700