女性骨密度、骨转换生化指标及护骨素基因多态性的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章 长沙女性血清骨源性碱性磷酸酶、骨钙素、Ⅰ型胶原N-末端肽、尿脱氧吡啶啉和骨密度随年龄及绝经的变化
     目的 观察895例20~80岁长沙女性的骨转换水平和骨密度随年龄及绝经的变化规律,探讨骨转换水平和骨密度(BMD)之间的关系。
     对象和方法 应用测定的四个生化指标(血清B-ALP、OC、NTX和尿DPD/Cr)评价骨转换水平,其中血清B-ALP和OC用于反映骨形成水平,血清NTX和尿DPD/Cr用于反映骨吸收水平。采用双能X线骨密度吸收仪(DXA)测定腰椎(L1~L4)、左侧髋部和远端前臂骨密度(g/cm~2)。
     结果 在10种拟合数学模型中,以三次回归模型拟合血清B-ALP、OC、NTX、尿DPD/Cr和BMD随年龄变化的决定系数最大(R~2=0.060~0.340,P=0.000)。女性骨转换水平在20~29岁缓慢降低,30~39岁达最低水平,同时达到腰椎峰值骨量;40~59岁的骨转换水平显著增加,伴多个骨骼部位BMD的降低,随后骨转换维持于较高水平。与绝经前女性相比,围绝经期女性的血清B-ALP、OC、NTX和尿DPD/Cr升高,腰椎和髋部BMD降低。绝经后,血清B-ALP、OC和NTX继续升高,BMD降低。经年龄、身高、体重和体质指数校正后的偏相关分析显示:血BAP、OC、NTX及尿DPD/Cr和腰椎、髋部及前臂BMD呈负相关(r=-0.096~-0.357,P=0.005~0.000)。三次回归模型、复合模型和幂回归模型拟合的血BAP、OC、NTX及尿DPD随各骨骼部位BMD变化的模型较优(R~2=0.008~0.275,P=0.007~0.000)。多元线性逐步回归显示:年龄、血清OC和BAP是BMD的负性决定因素,BMI是BMD的正性决定因素。
     结论 以上研究表明,中国长沙女性骨转换水平和BMD随年龄和绝经变化而变化,BMD的年龄相关性变化与骨转换水平密切相关。血清BAP、OC和年龄及体质指数是骨密度的决定因素。
Chapter one Age- and menopause-dependent changes of serum bone alkaline phosphatase, osteocalcin, cross-linked N-telopeptides of type I collagen, urinary deoxypyridinoline and bone mineral density
    in Changsha females
    Objective To determine how the biochemical markers as serum bone alkaline phosphatase(B-ALP), osteocalcin(OC), cross-linked N-telopeptides of type I collagen(NTX), urinary deoxypyridinoline(DPD), and BMD are varied with age and menopause, and to evaluate the correlationship between them in 895 Changsha women aged 20~80 years.
    Subjects and Methods Bone turnover level was assessed by measuring B-ALP, OC, NTX, and DPD. Serum B-ALP and OC were used to evaluate the bone formation status; while serum NTX and urinary DPD were used to detect the status of bone resorption. Dual-energy x-ray absorptiometry (DXA) was used to measure BMD at the lumbar spine from L1-L4, hip and distal end of radius and ulna. Results It was found that a cubic regression model provided the best fit for serum B-ALP, OC, NTX and urinary DPD (R~2=0.060~0.340, p=0.000) to various ages in women as compared with other 9 regression models. Bone turnover status reached a minimal level in the age range of 30~39 years, when a peak bone mass was acquired at posteroanterior spine. During the age range of 40~59 years, the level of bone turnover increased significantly, accompanied by a decrease in BMD at multiple skeletal regions. Compared with premenopausal women, perimenopausal women were associated with increased levels of serum B-ALP, OC, NTX, and urinary DPD and decreased values of BMD at several skeletal regions including lumber spine and hip (P=0.004~0.000). After menopause, the serum B-ALP, OC, and NTX were increased while BMD at most skeletal regions including lumber spine, hip, and distal end of radius and ulna were further dereased (P=0.027~0.000). With the correction for age, height, body weight and body mass index (BMI), the values of serum B-ALP, OC, NTX and urinary DPD were correlated
引文
1. Crofton PM, Evans N, Taylor MR, et al. Serum CrossLPAs: pediatric reference intervals from birth to 19 years of age. Clin Chem, 2002, 48:671-673.
    2. Hannon R, Eastell R. Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int, 2000, 11:S30-44.
    3. Khosla S, Melton LJ 3rd, Atkinson EJ, et al. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: A key role for bioavaliable estrogen. J Clin Endovrinol Metab, 1998, 83:2266-2274.
    4. Jehle PM, Schulten K, Schulz W, et al. Serum levels of insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 to -6 and their relationship to bone metabolism in osteoporosis patients. Eur J Intern Med, 2003, 14:32-38.
    5. The Practice Committee of the American Society for Reproductive Medicine. Estrogen and progestogen therPAy in postmenopausal women. Fertil Steril, 2004, 81:231-241.
    6. Miller PD, Siris ES, Barrett-Connor E, et al. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res, 2002, 17:2222-2230.
    7. Gomes B Jr, Ardakani S, Ju J, et al. Monoclonal antibody assay for measuring bone alkaline phosphatase activity in serum. Clin Chem, 1995, 41:1560-1566.
    8. Mora S, Zamproni I, Beccio S, et al. Longitudinal changes of bone mineral density and metabolism in antiretroviral-treated human immunodeficiency virus-infected children. J Clin Endocrinol Metab, 2004, 89:24-28.
    9. Paul Gerdhem, Kaisa K Ivaska, Sari L Alatalo, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Min Res, 2004, 19:386-393.
    10. Kitatani K, Nakatsuka K, Naka H, et al. Clinical usefulness of measurements of urinary deoxypyridinoline (DPD) in patients with postmenopausal osteoporosis receiving intermittent cyclical etidronate: advantage of free form of DPD over total DPD in predicting treatment efficacy. J Bone Miner Metab, 2003, 21:217-24.
    11. Fairfield WP, Sesmilo G, Katznelson L, et al. Effects of a growth hormone receptor antagonist on bone markers in acromegaly. Clin Endocrinol, 2002, 57:385-90.
    12. VanderJagt DJ, Bonnett C, Okolo SN, et al. Assessment of the bone status of Nigerian children and adolescents with sickle cell disease using calcaneal ultrasound and serum markers of bone metabolism. Calcif Tissue Int, 2002,71:133-40.
    
    13. D. Xiaoge, L. Eeyuan, W. XianPing, et al. Hongzhuan, W.Hanwen. Bone mineral density differences at the femoral neck and ward's triangle: a comparison study on the reference data between Chinese and Caucasian women. Calcif Tissue Int, 2000,67:195-198.
    
    14. Wu XP, Liao EY, Huang G, et al. A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian Women. Calcif Tissue Int, 2003, 73:122-132.
    
    15. Finkelstein JS, Sowers M, Greendale GA, et al. Ethnic variation in bone turnover in pre- and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab, 2002, 87:3051-3056.
    
    16. Meier DE, Luckey MM, Wallenstein S, et al. Racial differences in pre- and postmenopausal bone homeostasis: association with bone density.J Bone Miner Res, 1992,7:1181-1189.
    
    17. Tokita A, Matsumoto H, Morrison NA, et al. Vitamin D receptor alleles, bone mineral density and bone turnover in premenopausal JPAanese women. J Bone Miner Res, 1996, 6:1003-1009.
    
    18. Bell NH, Greene A, Epstein S, et al. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest, 1985, 76:470-473.
    
    19. Keen RW, Woodford-Richens KL, Grant SF, et al. Association of polymorphism at the type I collagen (COLIA1) locus with reduced bone mineral density,increased fracture risk, and increased collagen turnover. Arthritis and Rheumatism,1999,42:285-290.
    
    20. Wu XP, Liao EY, Luo XH, et al. Age-related variation in quantitative ultrasound at the tibia and prevalence of osteoporosis in native Chinese women. Br J Radiol,2003, 76:1-6.
    
    21. Liao EY, Wu XP, Deng XG, et al. Age-related bone mineral density, accumulated bone loss rate and prevalence of osteoporosis at multiple skeletal sites in Chinese women. Osteoporos Int, 2002,13:669-676.
    
    22. Castelo-Branco-C. Management of osteoporosis. An overview. Drugs-Aging, 1998,12 Suppl 1:25-32.
    23.廖二元.骨质疏松症研究的现状与展望冲华内分泌代谢杂志,2002,18:87-89.
    24. Yasumizu T, Okuno T, Fukada Y, et al. Age-related changes in bone mineral density and serum bone-related proteins in premenopausal and postmenopausal Japanese women. Endocr J, 20004, 7:103-109
    25. Liu G, Peacock M. Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif Tissue Int, 1998, 62:286-289
    26. Yah L, Prentice A, Zhou B, at al. Age- and Gender-related Differences in Bone Mineral Status and Biochemical Markers of Bone Metabolism in Northern Chinese Men and Women. Bone, 2002, 30:412-415
    27. Tsai KS, Pan WH, Hsu SH, et al. Sex differences in bone markers and bone mineral density of normal Chinese. CalcifTissue Int, 1996, 59:454-460
    28. Kazuhiro Kushida, Masaaki Takahashi, Kouichi Kawana, et al. Comparison of markers for bone formation and resorption in premenopausal and postmenopausal subjects, and osteoporosis patients. J Clin Endocrinol Metab, 1995, 80:2447-2450.
    29. Clemens JD, Herrick MV, Singer FR, et al. Evidence that serum NTx (collagen-type Ⅰ N-telopeptedes) can act as an immunochemical markers of bone resorption. Clin Chem, 1977, 43:2058-2063.
    30. Seifert-Klauss V, Mueller JE, Luppa P, et al. Bone metabolism during the perimenopausal transition: a prospective study. Maturitas, 2002, 41:23-33.
    31. Lukacs JL, Reame NE. Concentrations of follicle-stimulating hormone correlate with alkaline phosphatase and a marker for vitamin K status in the perimenopause. J Womens Health Gend Based Med. 2000, 9:731-739.
    32. Vestergaard P, Hermann AP, Gram J, et al. Evaluation of methods for prediction of bone mineral density by clinical and biochemical variables in perimenopausal women. Maturitas, 2001, 40:211-220
    33. Reginster JY, Henrotin Y, Christiansen C, et al. Bone resorption in post-menopausal women with normal and low BMD assessed with biochemical markers specific for telopeptide derived degradation products of collagen type Ⅰ. Calcif Tissue Int, 2001, 69:130-137.
    34. Rogers A, Hannon RA, Eastell R. Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res, 2000, 15:1398-1404.
    35. Stepan JJ. Prediction of bone loss in postmenopausal women. Osteoporos Int, 2000, 11 (Suppl 6):S45-S54.
    1. Pocock NA, Eisman JA, Hopper JL, et al. Genentic determinants of bone mass in adults, a Twin study. J Clin Inves, 1987, 80:706-710.
    2. Seeman E, Hopper JL, Bach LA, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med, 1989, 20:554-8.
    3. Seeman E, Tsalamandris C, Formica C, et al. Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis. J Bone Miner Res, 1994, 9:739-43.
    4. Liu YZ, Liu Y J, Reeker R.R, et al. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol, 2003, 177:147-96.
    5. Arko B, Prezelj J, Kocijancic A, et al. Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas, 2005, 51:270-279.
    6. Zhao HY, Liu JM, Ning G, et al. The influence of Lys3Asn polymorphism in the osteoprotegerin gene on bone mineral density in Chinese postmenopausal women. Osteoporos Int, 2005, 16:1519-1524.
    7.赵红燕,刘建民,宁光,等.绝经后妇女护骨素基因G1181C多态性与骨密度变化相关.中华内分泌代谢杂志,2005,21:55-58.
    8. Zhao HY, Liu JM, Ning G, et al. Study of the impact of candidate genes on bone mineral density in postmenopausal women. Zhonghua Fu Chart Ke Za Zhi, 2005, 40:803-7.
    9. Wynne F, Drummond F, O'Sullivan K, et al. Investigation of the genetic influence of the OPG, VDR (Fokl), and COLIA1 Sp1 polymorphisms on BMD in the Irish population. Calcif Tissue Int, 2002, 71:26-35.
    10. Arko B, Prezelj J, Komel R, et al. Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab, 2002, 87:4080-4084.
    11. Langdahl BL, Carstens M, Stenkjaer L, et al. Polymorphism in the osteoprotegerin gene are associated with osteoporotic fractures. J Bone Miner Res, 2002, 17:1245-1255.
    12. Liao EY, Wu XP, Liao HJ, et al. Effects of skeletal size of the lumbar spine on areal bone density, volumetric bone density, and the diagnosis of osteoporosis in postmenopausal women in China. J Bone Miner Metab, 2004, 22:270-277.
    13.彭依群,伍贤平.护骨素/核因子-κB活化因子受体/核因子-κB活化因子受体配体系统.见廖二元,谭利华主编.代谢性骨病学.人民卫生出版社,2003:210.
    14. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998, 12: 1260-1268
    15. Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor /osteoprotegerin. Biochem Biophys Res Commun, 1998, 247: 610-615.
    16. Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegedn (OPG) produced by osteoblasts is an important regulator in osteoclast development and function. Endocinology, 2000, 141: 3478-3484.
    17. Woo KM, Choi Y, Ko SH, et al. Osteoprotegerin is present on the membrane of osteoclasts isolated from mouse long bones. Exp Mol Med, 2002, 34: 347-352.
    18. Bekker PJ, Holloway D, Nakanishi A, et al. The effect of a single dose of OPG in postmenopausal women. J Bone Miner Res, 2001, 16:348-360.
    19. Karll EA, Parry P, Lichter JB, et al. Vitamin D receptor alleles and rates of bone loss: influences of years since the menopause and calcium intake. J Bone Miner Res, 1995, 10:978-784.
    1. King H, Rewers M. Diabetes in adults is now a third world problem. World Health organization Ad Hoc Diabetes Reporting Group. Ethn Dis, 1993, 3 Suppl: S67-74.
    2. Amos A, McCarty D, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med, 1997, 14(suppl 5): s1-85.
    3. Kelsey JL, Browner WS, Seeley DG, et al. Risk factors for fractures of the distal forearm and proximal humerus. The Study of Osteoporotic Fractures Research Group. Am J Epidemiol, 1992, 135:477-489.
    4. Tuominen JT, Impivaara O, Puukka P, et al. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 1999, 22:1196-1200.
    5. Strotmeyer ES, Cauley JA, Orchard TJ, et al. Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care. 2006, 29:306-311.
    6. Miao J, Brismar K, Nyren O, et al. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care. 2005, 28:2850-2855.
    7. Barrett-Connor E, Holbrook TL. Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA, 1992, 16:3333-3337.
    8. Wakasugi M, Wakao R, Tawata M, et al. Bone mineral density by dual energy X-ray absorptiometry in patients with non-insulin-dependent diabetes mellitus. Bone, 1993, 14:29-33.
    9. el Miedany YM, el Gaafary S, el Baddini MA. Osteoporosis in older adults with non-insulin-dependent diabetes mellitus: is it sex related? Clin Exp Rheumatol, 1999, 17:561-567.
    10. Isaia GC, Ardissone P, Di Stefano M, et al. Bone metabolism in type 2 diabetes mellitus. Acta Diabetol, 1999, 36:35-38.
    11. Bartos V, Jirkovska A, Kasalicky P, et al. Osteopenia and osteoporosis in diabetic women over 40 years of age. Cas Lek Cesk, 2001, 140:299-301.
    12. Sert M, Tetiker T, Kirirn S, et al. Type 2 diabetes mellitus and osteopenia: is there an association? Acta Diabetol, 2003, 40:105-108.
    13. van Daele PL, Stolk RP, Burger H, et al. Bone density in non-insulin-dependent diabetes mellitus: the Rotterdam Study. Ann Intern Med, 1995, 122:409-414.
    14. Sahin G; Bagis S, Cimen OB, et al. Lumbar and femoral bone mineral density in type 2 Turkish diabetic patients. Acta Medica (Hradec Kralove), 2001, 44:141-143.
    15. Akin O, Gol K, Akturk M, et al. Evaluation of bone turnover in postmenopausal type 2 diabetic patients using biochemical markers and bone mineral density measurements. Gynecol Endocrinol, 2003,17:19-29.
    16.李万根,宫雅南,林伟,等.2型糖尿病患者与正常人骨密度的比较中华糖尿病杂志,2005,13:52-54.
    17.梁敏,伍贤平,廖二元.女性2型糖尿病患者骨密度的变化广西医科大学学报,2003,20:329-332.
    18. Kao WH, Kammerer CM, Schneider JL, et al. Type 2 diabetes is associated with increased bone mineral density in Mexican-American women. Arch Med Res. 2003, 34:399-406.
    19. de Liefde Ⅱ, van der Klift M, de Laet CE, et al. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int. 2005, 16:1713-1720.
    20. Dennison EM, Syddall HE, Aihie Sayer A, et al. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance? Diabetologia. 2004, 47:1963-1968.
    21. Gerdhem P, Isaksson A, Akesson K, et al. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int. 2005, 16:1506-1512.
    22.李莉,刘英敏.2型糖尿病患者骨密度改变的初探.中华内分泌代谢杂志,1999,15:23-26
    23. Gregorio F, Cristallini S, Santeusanio F, et al. Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pratt, 1994, 23:43-54.
    24.冯正平,杨德兰,孟萍,等.绝经后女性2型糖尿病患者骨密度改变及影响因素的初探.第三军医大学学报,2004,26:626-626.
    25.高志红,樊继援,尹潍,等.112例糖尿病患者骨密度的变化.中华内分泌代谢杂志,2000,16:254-255
    26.王永健,谷卫.2型糖尿病与骨质疏松症相关性研究.中华内科杂志,2004,43:54-55.
    27. K. rakauer JC, McKenna MJ, Buderer NF, et al. Bone loss and bone turnover in diabetes. Diabetes, 1995, 44:775-782.
    28. Lexvin ME, Boisseau VC, Avioli LV. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med, 1976, 294:241-245.
    29. Majima T, Komatsu Y, Yamada T, et al. Decreased bone mineral density at the distal radius, but not at the lumbar spine or the femoral neck, in Japanese type 2 diabetic patients. Osteoporos Int, 2005, 16:907-913.
    30. Barrett-Connor E, Kritz-Silverstein D. Does hyperinsulinemia preserve bone? Diabetes Care, 1996,19:1388-1392.
    31. Akanuma Y. Non-insulin-dependent diabetes mellitus (NIDDM) in Japan. Diabet Med, 1996,13:s11-12.
    32. Yoshinaga H, Kosaka K. Heterogeneous relationship of early insulin response and fasting insulin level with development of non-insulin-dependent diabetes mellitus in non-diabetic Japanese subjects with or without obesity. Diabetes Res Clin Pract, 1999, 44:129-136.
    33.黄干,廖二元,伍贤平,等.体质指数对女性骨密度及骨质疏松症患病率的影响湖南医科大学学报,2002,27:319-322.
    34. Borghouts LB, Keizer HA. Exercise and insulin sensitivity: a review. Int J Sports Med, 2000, 21: 1-12.
    35. Langlois JA, Mussolino ME, Visser M, et al. Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: the NHANES I epidemiologic follow-up study. 2001, 12:763-768.
    36. Van Loan MD, Johnson HL, Barbieri TF. Effect of weight loss on bone mineral content and bone mineral density in obese women. Am J Clin Nutr, 1998, 67:734-738.
    37. Melton LJ 3rd, Atkinson EJ, Khosla S, et al. Evaluation of a prediction model for long-term fracture risk. J Bone Miner Res. 2005, 20:551-6.
    38. Wu XP, Liao EY, Zhong H, et at. Establishment of BMD reference plots and determination of peak BMD at multiple skeletal regions in mainland Chinese women and the diagnosis ofosteoporosis. Osteoporos Int, 2004, 15:71-79.
    39. Wu XP, Dai RC, Shan PF, et at. Establishment of BMD reference curves at different skeletal sites in women, using a Cartesian coordinate numeration system. Osteoporos Int, 2005, 16:1655-1662.
    40. Strotmeyer ES, Cauley JA, Schwartz AV, et at. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med, 2005, 165:1612-1617.
    41. Inaba M, Okuno S, Kumeda Y, et al. Increased incidence of vertebral fracture in older female hemodialyzed patients with type 2 diabetes mellitus. Calcif Tissue Int, 2005,76:256-60.
    42.夏维波,李梅,孟迅吾.中华医学会第三次全国骨质疏松症和骨矿盐疾病学术会议纪要.中华内科杂志,2005,44:227-228.
    43. Castelo-Branco-C. Management of osteoporosis. An overview. Drugs-Aging, 1998, 12 Suppl 1: 25-32.
    44. Hernandez C J, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int, 2003; 14:843-837.
    45. Liao EY, Wu XP, Deng XG, et al. Age-related bone mineral density, accumulated bone loss rate and prevalence of osteoporosis at multiple skeletal sites in chinese women. Osteoporos Int, 2002, 13:669-676.
    46. Castro JP, Joseph LA, Shin JJ, et al. Differential effect of obesity on bone mineral density in White, Hispanic and African American women: a cross sectional study. Nutr Metab (Lond), 2005, 2:9.
    47. Barrera G. Bunout D, Gattas V, et al. A high body mass index protects against femoral neck osteoporosis in healthy elderly subjects. Nutrition, 2004, 20:769-71.
    48. Ruhl CE, Everhart JE. Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res. 2002, 17:1896-903.
    49. Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL. Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord, 1996, 20: 1027-1032.
    50. Daly RM, Dunstan DW, Owen N, et al. Does high-intensity resistance training maintain bone mass during moderate weight loss in older overweight adults with type 2 diabetes? Osteoporos Int, 2005, 16:1703-1712.
    51. Kwon DJ, KirnJ H, Chung KW, et al. Bone mineral density of the spine using dual energy X-ray absorptiometry in patients with non-insulin-dependent diabetes mellitus. J Obstet Gynaecol Res, 1996, 22: 157-162.
    52.陈若平,叶山东,陈燕,等.男性2型糖尿病患者病程与骨密度和骨代谢指标关系的研究.临床中老年保健,2003,6:29-31.
    53.王艳萍,杨学韫,黎云燕.老年糖尿病患者骨代谢相关因素与骨密度的关系.天津医科大学学报,2003,9:234-236.
    54.汪海东,李耀,张亨菊.影响绝经后女性糖尿病患者骨密度的相关因素研究.中国骨质疏松症杂志,2003,9:227-229.
    55. Lenchik L, Hsu FC, Register TC, et al. Heritability of spinal trabecular volumetric bone mineral density measured by QCT in the Diabetes Heart Study. Calcif Tissue Int, 2004, 75:305-312.
    56. Hadjidakis DJ, Mylonakis AM, Sfakianakis ME, et al. Diabetes and premature menopause: is their co-existence detrimental to the skeleton? Eur J Endocrinol, 2005,152:437-442.
    57.张秀珍,韩峻峰,赵家胜.2型糖尿病患者绝经期的骨密度变化及其相关因素分析.中华糖尿病杂志 2004,12:109-113.
    58.伍贤平,廖二元,邓小戈.女性随年龄增长不同部位的骨丢失.中华内分泌代谢杂志,1998,14(6):352-355.
    1. Pocock NA, Eisman JA, Hopper JL, et al. Genentic determinants of bone mass in adults, a Twin study. J Clin Inves, 1987, 80: 706-710.
    2. Seeman E, Hopper JL, Bach LA, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med, 1989, 20: 554-8.
    3. Seeman E, Tsalamandris C, Formica C, et al. Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis. J Bone Miner Res, 1994, 9: 739-43.
    4. Liu YZ, Liu YJ, Reeker RR, et al. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol, 2003, 177: 147-96.
    5. Riggs BL, Nguyen TV, Melton LJ 3rd, et al. The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res, 1995, 10: 991-996.
    6. Ferrari SL, Rizzoli R, Slosman DO, et al. Do dietary calcium and age explain the controversy surrounding t he relationship between bone mineral density and vitamin D receptor gene polymophisms? J Bone Miner Res, 1998,13:363-370.
    
    7. Morrison NA, Yeoman R, Kelly PJ, et al. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. PNAS, 1992, 89:6665-6659.
    
    8. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature, 1994, 367:284-287.
    
    9. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature, 1997, 387:106.]o
    
    10. Morrison NA, Yeoman R, Kelly PJ, et al. Contribution of t ransacting factor alleles to mormal physiological variability Vitamin D receptor gene polymorphisms and circulating osteocalcin. Pro Natl Acad Sci USA,1992, 89:6665-6669.
    
    11. Thakkinstian A, D' Este C, Eisman J, et al. Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res, 2004, 19:419-428.
    
    12. Thakkinstian A, D'Este C, Attia J. Haplotype analysis of VDR gene polymorphisms: a meta-analysis. Osteoporos Int, 2004, 15:729-934.
    
    13. Kobayashi S, Inoue T , Hosoi T , et al . Association of bone mineral density wit h polymorphism of t he est rogen receptor gene. J Bone Miner Res, 1996, 11:306-311.
    
    14. Ioannidis JP, Stavrou I, Trikalinos TA, et . al. Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res,2002, 17:2048-60.
    
    15. Ioannidis JP, Ralston SH, Bennett ST, et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA,2004, 292:2105-14.
    
    16. Mann V, Hobson EE, Li B, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest, 2001, 107:899-907.
    
    17. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures.Br Med J, 1996, 312:1254-1259.
    18. Lunt M, Felsenberg D, Reeve J, et al. Bone density variation and its effects on risk of vertebral deformity in men and women studied in thirteen European centers: the EVOS Study. J Bone Miner Res, 1997,12:1883-1894.
    
    19. Efstathiadou Z, Tsatsoulis A, Ioannidis JP. Association of collagen Ialpha 1 Spl polymorphism with the risk of prevalent fractures: a meta-analysis. J Bone Miner Res, 2001, 16:1586-1592.
    
    20. Mann V, Ralston SH. Meta-analysis of COL1A1 Spl polymorphism in relation to bone mineral density and osteoporotic fracture. Bone, 2003,32:711-717.
    
    21. Beavan S, Prentice A, Dibba B, et al. Polymorphism of the collagen type Ialphal gene and ethnic differences in hip-fracture rates. N Engl J Med, 1998, 339:351-352.
    
    22. Han KO, Moon IG, Hwang CS, et al. Lack of an intronic Spl binding-site polymorphism at the collagen type I alpha 1 gene in healthy Korean women. Bone, 1999, 24:135-137.]
    
    23. Lei SF, Deng FY, Liu XH, et al. Polymorphisms of four bone mineral density candidate genes in Chinese populations and comparison with other populations of different ethnicity. J Bone Miner Metab, 2003,21:34-42.
    
    24. Grimand E, Heymann D, Redini F. Recent advances in TGF-beta effects on chondrocyte metabolism, potential therapeutic roles of TGF beta in cartilage disorders. Cytokine Growth Factor Rev, 2002, 13:241-257]
    
    25. [Shigeno K, Nakammra T, Inoue M, et al. Regenerative repair of the mandible using a collagen sponge containing TGF-betal. Int J Artif Organs, 2002, 25:1095-1102.
    
    26. Yamada Y. Association of polymorphisms of the transforming growth factor-betal gene with genetic susceptibility to osteoporosis.Pharmacogenetics, 2001, 11:765-771.
    
    27. Lau HH, Ho AY, Luk KD, et al. Transforming growth factor-betal gene polymorphisms and bone turnover, bone mineral density and fracture risk in southern Chinese women. Calcif Tissue Int. 2004, 74:516-21.
    
    28. Dick IM, Devine A, Li S, et al. The T869C TGF beta polymorphism is associated with fracture, bone mineral density, and calcaneal quantitative ultrasound in elderly women. Bone, 2003, 33: 335-341.
    29.彭依群,伍贤平.护骨素/核因子-κB活化因子受体/核因子-κB活化因子受体配体系统.见廖二元,谭利华主编.代谢性骨病学.人民卫生出版社,2003:210.
    30. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998, 12: 1260-1268.
    31. Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun, 1998, 247: 610-615.
    32. Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin (OPG) produced by osteoblasts is an important regulator in osteoclast development and function. Endocinology, 2000, 141: 3478-3484.
    33. Woo KM, Choi Y, Ko SH, et al. Osteoprotegerin is present on the membrane of osteoclasts isolated from mouse long bones. Exp Mol Med, 2002, 34: 347-352.
    34. Bekker PJ, Holloway D, Nakanishi A, et al. The effect of a single dose of OPG in postmenopausal women. J Bone Miner Res, 2001, 16: 348-360.
    35. Arko B, Prezelj J, Kocijancic A, et al. Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas, 2005, 51: 270-279.
    36. Zhao HY, Liu JM, Ning G, et al. The influence of Lys3Asn polymorphism in the osteoprotegerin gene on bone mineral density in Chinese postmenopausal women. Osteoporos Int, 2005, 16: 1519-1524.
    37. Wynne F, Drummond F, O'Sullivan K, et al. Investigation of the genetic influence of the OPG, VDR (Fokl), and COLIAI Spl polymorphisms on BMD in the Irish population. Calcif Tissue Int, 2002, 71: 26-35.
    38. Arko B, Prezelj J, Komel R, et al. Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab, 2002, 87: 4080-4084.
    39. Langdahl BL, Carstens M, Stenkjaer L, et al. Polymorphism in the osteoprotegerin gene are associated with osteoporotic fractures. J Bone Miner Res, 2002, 17: 1245-1255.
    40. Brandstrom H, Gerdhem P, Stiger F, et al. Single nucleotide polymorphisms in the human gene for osteoprotegerin are not related to bone mineral density or fracture in elderly women. Calcif Tissue Int, 2004, 74:18-24.
    
    41. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med, 2002, 346:1513-1521.
    
    42. Little RD, Carulli JP, Del Mastro RG, et al. A mutation in the LDL receptorrelated protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet, 2002, 70:11-19.
    
    43. Koay MA, Woon PY, Zhang Y, et al. Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res, 2004, 19:1619-27.
    
    44. Mizuguchi T, Furuta I, Watanabe Y, et al. LRP5,low-density-lipoprotein receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet 2004; 49:80-86.
    
    45. Urano T, Shiraki M, Ezura Y, et al. Association of a single-nucleotide polymorphism in low-density lipoprotein receptor-related protein 5 gene with bone mineral density. J Bone Miner Metab, 2004;22(4):341-5.
    
    46. Zhang ZL, Qin YJ, He JW, et al. Association of polymorphisms in low-density lipoprotein receptor-related protein 5 gene with bone mineral density in postmenopausal Chinese women. Acta Pharmacol Sin,2005,26:1111-1116.
    
    47. Koller DL, Ichikawa S, Johnson ML, et al. Contribution of the LRP5 gene to normal variation in peak BMD in women. J Bone Miner Res. 2005,20:75-80.
    
    48. Bollerslev J, Wilson SG, Dick IM, et al. LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women.Bone, 2005, 36:599-606.
    
    49. Rutter JL, Mitchell TI, Buttice G, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res, 1998,58:5321-5325.
    
    50.Yamada Y, Ando F, Niino N, et al. Association of a polymorphism of the matrix metalloproteinase-1 gene with bone mineral density. Matrix Biol, 2002, 21:389-92.
    51. Yamada Y, Ando F, Niino N, et al. Association of a polymorphism of the matrix metalloproteinase-9 gene with bone mineral density in Japanese men. Metabolism, 2004, 53: 135-7.
    52. Hosoi T, Miyao M, Inoue S, et al. Association study of parathyroid hormone gene polymorphism and bone mineral density in Japanese postmenopausal women. Calcif Tissue Int, 1999, 64: 205-208.
    53. Katsumata K, Nishizawa K, Unno A, et al. Association of gene polymorphisms and bone density in Japanese girls. J Bone Miner Metab, 2002, 20: 164-169.
    54. Deng HW, Shen H, Xu FH, et al. Tests of linkage and/or association of genes for vitamin Dreceptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res, 2002, 17: 678-686.
    55. Zhou XG, Liu YZ, Li MY, et al. Parathyroid hormone gene with bone phenotype in Chinese. Biochem Biophys Res Comun, 2003, 307: 666-671.
    56. Weerakulwattana L, Tiramnchai N, Bunyaratavej N. Analysis of polymorphism of the interleukin-6 gene in Thai subjects with osteoporosis (Abstract). J Med Assoc Thai, 2001, 84 Suppl 2: S547-552.
    57. Tsukamoto K, Yoshida H, Watanabe S, et al. Association of radial bone mineral density wit h CA repeat polymorphism at the interleukin 6 locus in postmenopausal Japanese women. J Hum Genet, 1999, 44: 148-151.
    58.许明慧,刘和娣.原发性骨质疏松的基因多态性研究进展.中国康复理论与实践,2005,11:361-363.
    59. Marcus R, Wong M, Health H 3rd, et al. Antiresorptive treatment of postmenopausal osteoporosis: comparison of study designs and outcomes in large clinical trials with fracture as an endpoint. Endocr Rev, 2002, 23: 16-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700