ZnO基透明导电膜的制备与掺杂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO作为直接宽禁带化合物半导体,由于原料丰富、价格低,有望取代GaN应用于短波长光电器件。如果能同时实现掺杂和能带工程,制备p型ZnMgO薄膜,不仅可以提高发光二极管的发光效率,而且可以拓宽其工作波长。所以本文通过In-N共掺制备了p型ZnMgO薄膜。
     ZnO可见光透过率超过90%,天然为n型,通过掺Ga、Al等ⅢA族元素能够提高薄膜导电性能。ZnO具有无毒、价格低、在H中稳定等优点,有望取代ITO。本文开展了Al、Ga掺杂ZnO透明导电膜的研究。现在电子器件逐渐朝柔性化方向发展,使得对柔性透明导电膜的需求日益迫切。因此,开发光电性能优良的柔性透明导电膜具有非常现实的意义。本文继而在聚合物PC衬底上制备Ga掺杂ZnO基透明导电膜。主要工作包括以下内容:
     1.采用直流反应磁控溅射法In-N共掺技术实现ZnMgO薄膜的p型转变,研究了N20分压和Mg含量对薄膜性能的影响。研究发现,在合适的N20分压下,可以获得良好的p型导电性能。通过XPS测试,发现了对应N-Zn键的峰位和对应In-N键的峰位,证实施主-受主共掺是可行的。通过XRD和XPS测试结果,发现Mg在薄膜中以Mgzn形式存在。利用In-N共掺p-ZnMgO薄膜和In掺杂1n-ZnMgO薄膜制备了同质p-n结,I-V性能测试显示出典型的整流特性。
     2.采用脉冲激光沉积法在玻璃衬底上生长了Al掺杂ZnO薄膜,研究了衬底温度对薄膜性能的影响。当衬底温度为350℃时,获得了透明的高导电近红外反射薄膜,这种薄膜在近红外反射镜和热反射器等领域具有广阔的应用前景。
     3.采用射频磁控溅射法在PC衬底上生长了Ga掺杂ZnO(GZO)薄膜,研究了氧分压和溅射压强对薄膜性能的影响。薄膜获得的最低电阻率为7.8×104Ωcm,在可见光的平均透过率超过80%。
     4.为了克服聚合物的各种缺点,在沉积GZO之前引入ZnO缓冲层。为了在实验次数较少的情况下,获得较好的实验结果,我们采用正交分析法综合研究了溅射功率、溅射压强、溅射时间、氧分压比等生长参数对GZO/ZnO膜可见光透过率和电阻率的影响。通过极差分析得到最优生长参数。与未引入缓冲层的GZO膜相比,最优参数下制备的GZO/ZnO膜的电阻率由7.85×104Ωcm减小为5.21×104Ωcm。由于厚度效应,薄膜的透过率有所下降,但不是很明显,还是能够满足器件的应用要求。
     5.多层结构透明导电膜的研究。与单层ZnO膜相比,多层膜更薄,导电性更优。与单层金属膜相比,多层膜透过率更优。主要研究了Cu层厚度和GZO层厚度对GZO/Cu和GZO/Cu/GZO多层膜性能的影响。GZO(30nm)/Cu(12nm)表现最佳性能指(?)ΥC为4.66×10-3Ω-1。GZO(10 nm)/Cu(10 nm)/GZO(10 nm)表现最佳性能指(?)ΥC为4.66×10-3Ω-1,其在1000~2500 nm波长范围内的平均反射率为70%,这种具有较好近红外反射特性的薄膜在近红外反射镜和热反射器等领域具有广阔的应用前景。
ZnO is a direct wide band-gap compound semiconductor. Due to abundant material and low cost, ZnO is considered as a promising material instead of GaN for short-wavelength optoelectronic devices. If the doping engineering and the bandgap engineering are meanwhile realized, namely p-type ZnMgO is prepared, luminous efficiency of light-emitting diodes (LEDs) can be improved and the working waveband can be modulated. In this paper, p-type ZnMgO thin films were realized by In-N codoping method.
     The transmittance in the visible range for ZnO thin films is over 90 %. Undoped ZnO is n-type conductive. And the conductivity of ZnO films can be improved by doping IIIA group elements such as Ga, Al and so on. Compared with Sn doped In2O3 (ITO), ZnO has several merits, such as innoxious, cheap, stable in H. So ZnO is considered as a promising candidate for substituting ITO. In this paper, we investigated the properties of Al-and Ga-doped ZnO transparent conductive films. Nowadays, many electronic devices become flexible, which claims that transparent conductive oxide (TCO) films must be flexible. Therefore, it is practical to prepare flexible TCO films with good optical and electrical properties. So we also investigated the properties of Ga-doped ZnO (GZO) transparent conductive films on polycarbonate (PC) substrates. The work included:
     1. In-N codoped ZnMgO films have been prepared on glass substrates by direct current reactive magnetron sputtering. We investigated the effect of N2O partial pressures and Mg contents in the targets on the properties of ZnMgO thin films. The p-type conductivity could be obtained in ZnMgO films by adjusting the N2O partial pressures. The presence of In-N and Zn-N bonds was identified by x-ray photoelectron spectroscopy (XPS), which may enhance the nitrogen incorporation and respond for the realization of good p-type behavior in In-N codoped ZnMgO films. According to the analysis results of XPS and x-ray diffraction (XRD), we found that Mg substituted Zn in the crystal lattice. The ZnMgO-based p-n homojunction was fabricated by deposition of an In-doped n-type ZnMgO layer on an In-N codoped p-type ZnMgO. The p-n homostructural diode exhibits electrical rectification behavior of a typical p-n junction.
     2. Al-doped ZnO (AZO) thin films have been prepared on glass substrates by pulsed laser deposition. The properties of films were strongly dependent on the growth temperatures. When the temperature was 350℃, we obtained tansparent. conductive and near infrared (IR) reflective thin films. The good IR-reflective properties of AZO films show that they are promising for near-IR reflecting mirrors and heat reflectors.
     3. GZO thin films have been prepared on PC substrates by radio frequency magnetron sputtering. The dependence of the properties of films on the sputtering pressures and the oxygen partial pressures was investigated. The lowest resistivity of 7.8x10-4 Qcm was obtained. The average transmittance in the visible light range of all the films was over 80%.
     4. In order to conquer the disadvantages of polymer substrates, a ZnO buffer layer is necessary to be used before that GZO films are deposited on polymer substrates, which will make the polymer surface smoother and reduce diffusion of vapor and oxygen. In order to optimize the design of ZnO buffer layer deposition process, the Taguchi experimental design was used. We investigated the effect of sputtering power, sputtering pressure, sputtering time and the O2 partial pressure ratio on the optical properties in the visible light range and the resistivity for the GZO thin films deposited on PC substrates with undoped ZnO layers. The optimal parameters of the ZnO buffer layer could be obtained according to the range analysis method. Compared with the single layer GZO films, the electrical resistivity of GZO/ZnO films decreased from 7.85×10-4Ωcm to 5.21xlO-4 Qcm. Due to the thickness effect, the transmittance of the GZO film with the ZnO buffer layer is lower than that of the GZO film without the ZnO buffer layer, which is high and acceptable for applications.
     5. We also investigated the properties of multilayer structure TCO films. According to the single layer ZnO TCO films, multilayers are thinner and more conductive. According to the single layer metal films, multilayers are more transparent. We mainly investigated the effect of Cu layer thickness and GZO layer thickness on the properties of GZO/Cu and GZO/Cu/GZO multilayers. The highest figure of meritφTC is 4.66x10-3Ω-1 for the GZO(30 nm)/Cu(12 nm) multilayer. The highest value of figure of merit (φTC is 2.68x10-3Ω-1 for the GZO(10 nm)/Cu(10 nm)/GZO(10 nm) multilayer. The highest average near infrared reflectivity in the wavelength range 1000-2500 nm is as high as 70 % for the GZO(10 nm)/Cu(10 nm)/GZO(10 nm) multilayer. The good IR-reflective properties of GZO/Cu/GZO multilayers show that they are promising for near-IR reflecting mirrors and heat reflectors.
引文
[1]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner. Recent progress in processing and properties of ZnO. Superlattice Microst.,2004,34(1-2):3-32.
    [2]D.C. Look. Recent advances in ZnO materials and devices. Mat. Sci. Eng. B-Solid,2001, 80(1-3):383-387.
    [3]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner. Recent advances in processing of ZnO. J. Vac. Sci. Technol. B,2004,22(3):932-948.
    [4]C. Klingshirn. Luminescence of Zno under High One-Quantum and 2-Quantum Excitation. Phys. Status. Solidi B,1975,71(2):547-556.
    [5]L.L. Chen, Z.Z. Ye, J.G. Lu, and P.K. Chu. Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films. Appl. Phys. Lett.,2006,89(25):252113-1-3.
    [6]U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc. A comprehensive review of ZnO materials and devices. J. Appl. Phys.,2005,98(4): 041301-1-103.
    [7]A.B.M.A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y.W. Ok, and T.Y. Seong. Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Appl. Phys. Lett.,2000,76(5):550-552.
    [8]C.H. Bates, R. Roy, and W.B. White. New High-Pressure Polymorph of Zinc Oxide. Science, 1962,137(3534):993-993.
    [9]J.E. Jaffe and A.C. Hess. Hartree-Fock Study of Phase-Changes in Zno at High-Pressure. Phys. Rev. B,1993,48(11):7903-7909.
    [10]别勋.ZnO透明导电薄膜的制备及性能优化.硕士学位论文,2010.
    [11]潘新花.Sb掺杂制备p-ZnO及Si衬底ZnMgO外延薄膜和ZnMgO/ZnO量子阱的研究.[博士学位论文],2010:8.
    [12]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner. Recent progress in processing and properties of ZnO. Prog. Mater. Sci.,2005,50(3):293-340.
    [13]Y. Li, G.S. Tompa, S. Liang, C. Gorla, Y. Lu, and J. Doyle. Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition. J. Vac. Sci. Technol. A,1997,15(3):1063-1068.
    [14]M. Liu, A.H. Kitai, and P. Mascher. Point-Defects and Luminescence-Centers in Zinc-Oxide and Zinc-Oxide Doped with Manganese. J. Lumin.,1992,54(1):35-42.
    [15]袁国栋.A1-N共掺实现p型ZnO的机理及其相关器件基础研究.[博士学位论文],2006:6.
    [16]C. Klingshirn. ZnO:Material, physics and applications. Chemphyschem,2007,8(6): 782-803.
    [17]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社,2006:35-36.
    [18]C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, and H. Kalt. ZnO rediscovered- once again!? Superlattice Microst.,2005,38(4-6):209-222.
    [19]C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt.65 years of ZnO research-old and very recent results. Phys. Status Solidi B,2010, 247(6):1424-1447.
    [20]D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, G. Cantwell, and W.C. Harsch. Valence-band ordering in ZnO. Phys. Rev. B,1999,60(4):2340-2344.
    [21]D.G. Thomas. The Exciton Spectrum of Zinc Oxide. J. Phys. Chem. Solids,1960,15(1-2): 86-96.
    [22]J.J. Hopfield. Fine Structure in the Optical Absorption Edge of Anisotropic Crystals. J. Phys. Chem. Solids,1960,15(1-2):97-107.
    [23]M. Cardona. Band Parameters of Semiconductors with Zincblende, Wurtzite, and Germanium Structure. J. Phys. Chem. Solids,1963,24(12):1543-1555.
    [24]K. Shindo, A. Morita, and H. Kamimura. Spin-Orbit Coupling in Ionic Crystals with Zincblende and Wurtzite Structures. J. Phys. Soc. Jpn.,1965,20(11):2054-2059.
    [25]M. Cardona. Optical Properties of Silver and Cuprous Halides. Phys. Rev.,1963,1(1):69-78.
    [26]A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H.O. Everitt. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B, 2004,70(19):195207-1-10.
    [27]D.C. Reynolds, D.C. Look, B. Jogai, and T.C. Collins. Polariton and free-exciton-like photoluminescence in ZnO. Appl. Phys. Lett.,2001,79(23):3794-3796.
    [28]D.W. Hamby, D.A. Lucca, M.J. Klopfstein, and G. Cantwell. Temperature dependent exciton photoluminescence of bulk ZnO. J. Appl. Phys.,2003,93(6):3214-3217.
    [29]J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, and J. Narayan. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. J. Appl. Phys.,1999,85(11):7884-7887.
    [30]S.F. Chichibu, T. Sota, G. Cantwell, D.B. Eason, and C.W. Litton. Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal. J. Appl. Phys.,2003,93(1):756-758.
    [31]Y.S. Park, C.W. Litton, T.C. Collins, and D.C. Reynolds. Exciton Spectrum of Zno. Phys. Rev.,1966,143(2):512-519.
    [32]W.Y. Liang and A.D. Yoffe. Transmission Spectra of Zno Single Crystals. Phys. Rev. Lett., 1968,20(2):59-62.
    [33]D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, T.C. Collins, W. Harsch, and G. Cantwell. Neutral-donor-bound-exciton complexes in ZnO crystals. Phys. Rev. B,1998,57(19): 12151-12155.
    [34]H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D.M. Hofmann, and B.K. Meyer. Optical investigations on excitons bound to impurities and dislocations in ZnO. Opt. Mater., 2003,23(1-2):33-37.
    [35]K. Thonke, T. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer. Donor-acceptor pair transitions in ZnO substrate material. Physica B,2001,308-310:945-948.
    [36]C. Boemare, T. Monteiro, M.J. Soares, J.G. Guilherme, and E. Alves. Photoluminescence studies in ZnO samples. Physica B,2001,308-310:985-988.
    [37]D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto. Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett.,1997,70(17):2230-2232.
    [38]D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, and T. Yao. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE. J. Cryst. Growth,1998,184-185(1):605-609.
    [39]D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, and T. Goto. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett.,1998,73(8):1038-1040.
    [40]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社,2006:109-110.
    [41]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社,2006:111-118.
    [42]S.B. Zhang, S.H. Wei, and A. Zunger. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B,2001,63(7):075205-1-7.
    [43]M.D. McCluskey and S.J. Jokela. Defects in ZnO. J. Appl. Phys.,2009,106(7):071101-1-13.
    [44]A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle. First-principles study of native point defects in ZnO. Phys. Rev. B,2000,61(22):15019-15027.
    [45]A. Janotti and C.G. Van de Walle. Absolute deformation potentials and band alignment of wurtzite ZnO, MgO, and CdO. Phys. Rev. B,2007,75(12):121201-1-4.
    [46]L.S. Vlasenko and G.D. Watkins. Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K. Phys. Rev. B,2005,72(3):035203-1-12.
    [47]C.G. Van de Walle. Defect analysis and engineering in ZnO. Physica B,2001,308-310: 899-903.
    [48]G.A. Shi, M. Stavola, S.J. Pearton, M. Thieme, E.V. Lavrov, and J. Weber. Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B,2005,72(19):195211-1-8.
    [49]E.V. Monakhov, J.S. Christensen, K. Maknys, B.G. Svensson, and A.Y. Kuznetsov. Hydrogen implantation into ZnO for n+-layer formation. Appl. Phys. Lett.,2005,87(19):191910-1-3.
    [50]N.H. Nickel and K. Fleischer. Hydrogen local vibrational modes in zinc oxide. Phys. Rev. Lett.,2003,90(19):197402-1-4.
    [51]Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, N.Y. Garces. N.C. Giles, L.E. Halliburton, S. Niki, and L.J. Brillson. Remote hydrogen plasma doping of single crystal ZnO. Appl. Phys. Lett.,2004,84(14):2545-2547.
    [52]D.M. Hofmann, A. Hofstaetter, F. Leiter, H.J. Zhou, F. Henecker, B.K. Meyer, S.B. Orlinskii, J. Schmidt, and P.G. Baranov. Hydrogen:A relevant shallow donor in zinc oxide. Phys. Rev. Lett.,2002,88(4):045504-1-4.
    [53]Y.J. Zeng, Z.Z. Ye, W.Z. Xu, L.L. Chen, D.Y. Li, L.P. Zhu, B.H. Zhao, and Y.L. Hu. Realization of p-type ZnO films via monodoping of Li acceptor. J. Cryst. Growth,2005, 283(1-2):180-184.
    [54]Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, and B.H. Zhao. Dopant source choice for formation of p-type ZnO:Li acceptor. Appl. Phys. Lett.,2006,88(6):062107-1-3.
    [55]X.H. Wang, B. Yao, Z.Z. Zhang, B.H. Li, Z.P. Wei, D.Z. Shen, Y.M. Lu, and X.W. Fan. The mechanism of formation and properties of Li-doped p-type ZnO grown by a two-step heat treatment. Semicond. Sci. Tech.,2006,21(4):494-497.
    [56]S.S. Lin, J.G. Lu, Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, and B.H. Zhao, p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Commun.,2008,148(1-2):25-28.
    [57]S.S. Lin, Z.Z. Ye, J.G. Lu, H.P. He, L.X. Chen, X.Q. Gu, J.Y. Huang, L.P. Zhu, and B.H. Zhao. Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate. J. Phys. D:Appl. Phys., 2008,41(15):155114-1-6.
    [58]L.L. Yang, Z.Z. Ye, L.P. Zhu, Y.J. Zeng, Y.F. Lu, and B.H. Zhao. Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source. J. Electron Mater.,2007,36(4):498-501.
    [59]W. Jun and Y.T. Yang. Deposition of K-doped p type ZnO thin films on (0001) A12O3 substrates. Mater. Lett.,2008,62(12-13):1899-1901.
    [60]K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu. Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys.,1997,36(11 A): L1453-L1455.
    [61]D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett.,2002,81(10):1830-1832.
    [62]Y.J. Zeng, Z.Z. Ye, W.Z. Xu, B. Liu, Y. Che, L.P. Zhu, and B.H. Zhao. Study on the Hall-effect and photoluminescence of N-doped p-type ZnO thin films. Mater. Lett.,2007, 61(1):41-44.
    [63]X.L. Guo, H. Tabata, and T. Kawai. p-type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma. Opt. Mater.,2002,19(1):229-233.
    [64]T. Aoki, Y. Hatanaka, and D.C. Look. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett.,2000,76(22):3257-3258.
    [65]K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim, and S.J. Park. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett.,2003, 83(1):63-65.
    [66]F.X. Xiu, Z. Yang, L.J. Mandalapu, J.L. Liu, and W.P. Beyermann. p-Type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy. Appl. Phys. Lett.,2006,88(5): 052106-1-3.
    [67]Y.R. Ryu, T.S. Lee, and H.W. White. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett.,2003,83(1):87-89.
    [68]S. Limpijumnong, M.F. Smith, and S.B. Zhang. Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy:Theory. Appl. Phys. Lett.,2006,89(22): 222113-1-3.
    [69]F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, and J.L. Liu. Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy. Appl. Phys. Lett.,2005,87(25): 252102-1-3.
    [70]X.H. Pan, Z.Z. Ye, J.S. Li, X.Q. Gu, Y.J. Zeng, H.P. He, L.P. Zhu, and Y. Che. Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition. Appl. Surf. Sci.,2007,253(11): 5067-5069.
    [71]F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, and W.P. Beyermann. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl. Phys. Lett.,2005,87(15): 152101-1-3.
    [72]T. Yamamoto and H. Katayama-Yoshida. Solution using a codoping method to unipolariry for the fabrication of p-type ZnO. Jpn. J. Appl. Phys.,1999,38(2B):L166-L169.
    [73]J.G. Lu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, and L.P. Zhu. p-type conduction in N-Al co-doped ZnO thin films. Appl. Phys. Lett.,2004,85(15):3134-3135.
    [74]G.D. Yuan, Z.Z. Ye, L.P. Zhu, Q. Qian, B.H. Zhao, R.X. Fan, C.L. Perkins, and S.B. Zhang. Control of conduction type in Al-and N-codoped ZnO thin films. Appl. Phys. Lett.,2005, 86(20):202106-1-3.
    [75]Y.J. Zeng, Z.Z. Ye, J.G. Lu, L.P. Zhu, D.Y. Li, B.H. Zhao, and J.Y. Huang. Effects of Al content on properties of Al-N codoped ZnO films. Appl. Surf. Sci.,2005,249(1-4):203-207.
    [76]M. Joseph, H. Tabata, and T. Kawai. p-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys. Part 2,1999,38(11 A):L1205-L1207.
    [77]M. Kumar, T.H. Kim, S.S. Kim, and B.T. Lee. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N. Appl. Phys. Lett.,2006,89(11):112103-1-3.
    [78]L.L. Chen, J.G. Lu, Z.Z. Ye, Y.M. Lin, B.H. Zhao, Y.M. Ye, J.S. Li, and L.P. Zhu. p-type behavior in In-N codoped ZnO thin films. Appl. Phys. Lett.,2005,87(25):252106-1-3.
    [79]L.L. Chen, Z.Z. Ye, J.G. Lu, H.P. He, B.H. Zhao, L.P. Zhu, P.K. Chu, and L. Shao. Co-doping effects and electrical transport in In-N doped zinc oxide. Chem. Phys. Lett.,2006,432(1-3): 352-355.
    [80]H. Kim, A. Cepler, M.S. Osofsky, R.C.Y. Auyeung, and A. Pique. Fabrication of Zr-N codoped p-type ZnO thin films by pulsed laser deposition. Appl. Phys. Lett.,2007,90(20): 203508-1-3.
    [81]J.G. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, L. Wang, B.H. Zhao, and Q.L. Liang. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Appl. Phys. Lett.,2006,88(22):222114-1-3.
    [82]Y.Z. Zhang, J.G. Lu, Z.Z. Ye, H.P. He, L.P. Zhu, B.H. Zhao, and L. Wang. Effects of growth temperature on Li-N dual-doped p-type ZnO thin films prepared by pulsed laser deposition. Appl. Surf. Sci.,2008,254(7):1993-1996.
    [83]X.H. Wang, B. Yao, Z.P. Wei, D.Z. Sheng, Z.Z. Zhang, B.H. Li, Y.M. Lu, D.X. Zhao, J.Y. Zhang, X.W. Fan, L.X. Guan, and C.X. Cong. Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen. J. Phys. D:Appl. Phys.,2006,39(21):4568-4571.
    [84]T.H. Vlasenflin and M. Tanaka. p-type conduction in ZnO dual-acceptor-doped with nitrogen and phosphorus. Solid State Commun.,2007,142(5):292-294.
    [85]A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa. MgxZn1-xO as a 11-VI widegap semiconductor alloy. Appl. Phys. Lett., 1998,72(19):2466-2468.
    [86]W.I. Park, G.C. Yi, and H.M. Jang. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO(0< x<0.49) thin films. Appl. Phys. Lett.,2001, 79(13):2022-2024.
    [87]W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D. Vispute, and H. Shen. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors. Appl. Phys. Lett.,2003,82(20):3424-3426.
    [88]T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda. and H. Koinuma. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films. Appl. Phys. Lett.,2001,78(9):1237-1239.
    [89]Y.R. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, and C.J. Youn. Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett.,2006,88(24):241108-1-3.
    [90]Y.R. Ryu, T.S. Lee, J.A. Lubguban, A.B. Corman, H.W. White, J.H. Leem, M.S. Han, Y.S. Park, C.J. Youn, and W.J. Kim. Wide-band gap oxide alloy:BeZnO. Appl. Phys. Lett.,2006, 88(5):052103-1-3.
    [91]Y.W. Heo, Y.W. Kwon, Y. Li, S.J. Pearton, and D.P. Norton, p-type behavior in phosphorus-doped (Zn,Mg)O device structures. Appl. Phys. Lett.,2004,84(18):3474-3476.
    [92]Y.W. Heo, Y.W. Kwon, Y. Li, S.J. Pearton, and D.P. Norton. Properties of phosphorus-doped (Zn,Mg)O thin films and device structures. J. Electron Mater.,2005,34(4):409-415.
    [93]Y.J. Li, Y.W. Heo, Y. Kwon, K. Ip, S.J. Pearton, and D.P. Norton. Transport properties of p-type phosphorus-doped (Zn,Mg)O grown by pulsed-laser deposition. Appl. Phys. Lett.,2005, 87(7):072101-1-3.
    [94]H. Yang, Y. Li, D.P. Norton, S.J. Pearton, S. Jung, F. Ren, and L.A. Boatner. Characteristics of unannealed ZnMgO/ZnO p-n junctions on bulk (100) ZnO substrates. Appl. Phys. Lett.,2005, 86(17):172103-1-3.
    [95]X. Zhang, X.M. Li, T.L. Chen, C.Y. Zhang, and W.D. Yu. p-type conduction in wide-gap Zn1-xMgxO films grown by ultrasonic spray pyrolysis. Appl. Phys. Lett.,2005,87(9): 092101-1-3.
    [96]Z.P. Wei, B. Yao, Z.Z. Zhang, Y.M. Lu, D.Z. Shen, B.H. Li, X.H. Wang, J.Y. Zhang, D.X. Zhao, and X.W. Fan. Formation of p-type MgZnO by nitrogen doping. Appl. Phys. Lett.,2006, 89(10):102104-1-3.
    [97]P. Wang, N.F. Chen, Z.G. Yin, R.X. Dai, and Y.M. Bai. p-type Zn1-xMgxO films with Sb doping by radio-frequency magnetron sputtering. Appl. Phys. Lett.,2006,89(20):202102-1-3.
    [98]J.M. Bian, W.F. Liu, H.W. Liang, L.Z. Hu, J.C. Sun, Y.M. Luo, and G.T. Du. Room temperature electroluminescence from the n-ZnMgO/ZnO/p-ZnMgO heterojunction device grown by ultrasonic spray pyrolysis. Chem. Phys. Lett.,2006,430(1-3):183-187.
    [99]L.X. Chen, Z.Z. Ye, S.S. Lin, H.P. He, Y.J. Zeng, B.H. Zhao, and L.P. Zhu. Fabrication and post-anneal activation of p-type ZnMgO:Li film using dc reactive magnetron sputtering. Mater. Lett.,2008,62(17-18):2554-2556.
    [100]X.H. Pan, Z.Z. Ye, H.S. Li, Y.J. Zeng, X.Q. Gu, L.P. Zhu, B.H. Zhao, and Y. Che. Fabrication of p-type ZnMgO films via pulsed laser deposition method by using Li as dopant source. Appl. Surf. Sci.,2007,253(14):6060-6062.
    [101]X.H. Pan, Z.Z. Ye, J.Y. Huang, Y.J. Zeng, H.P. He, X.Q. Gu, L.P. Zhu, and B.H. Zhao. p-Type behavior in Li-doped Zn0.9Mg0.1O thin films. J. Cryst. Growth,2008,310(6): 1029-1033.
    [102]M.X. Qiu, X.Q. Gu, Z.Z. Ye, J.G. Lu, H.P. He, Y.Z. Zhang, and B.H. Zhao, p-type behavior of nitrogen doped, lithium doped, and nitrogen-lithium codoped Zn0.11Mg0.89O thin films. J. Vac. Sci. Technol. B,2009,27(4):1897-1900.
    [103]M.X. Qiu, Z.Z. Ye, H.P. He, Y.Z. Zhang, X.Q. Gu, L.P. Zhu, and B.H. Zhao. Effect of Mg content on structural, electrical, and optical properties of Li-doped Zn1-xMgxO thin films. Appl. Phys. Lett.,2007,90(18):182116-1-3.
    [104]M.X. Qiu, Y.Z. Zhang, Z.Z. Ye, H.P. He, H.P. Tang, X.Q. Gu, L.P. Zhu, and B.H. Zhao. Effect of oxygen pressure on structural and electrical properties of pulsed laser deposition-derived Zn0.95Mg0.05O:Li thin films. J. Phys. D:Appl. Phys.,2007,40(10): 3229-3232.
    [105]Y.Z. Zhang, H.P. He, Z.Z. Ye, H.H. Huang, J.G. Lu, M. Qiu, B.H. Zhao, L.P. Zhu, and J.Y. Huang. Preparation and photoluminescent properties of p-type Li-doped ZnMgO thin films. Mater. Lett.,2008,62(8-9):1418-1420.
    [106]X.H. Pan, Z.Z. Ye, Y.J. Zeng, X.Q. Gu, J.S. Li, L.P. Zhu, B.H. Zhao, Y. Che, and X.Q. Pan. Preparation of p-type ZnMgO thin films by Sb doping method. J. Phys. D:Appl. Phys., 2007,40(14):4241-4244.
    [107]L.Q.Zhang. Z. Z. Ye, J. Y. Huang, Y. Z. Zhang, L. P. Zhu, L. B, J. G. Lu, L. Wang, Y. Z. Zhang, and J.J. Jin, Y. Xue, J. Zhang, S. S. Lin, D. Yan. Room-temperature electroluminescence of p-ZnxMg1-xO:Na/n-ZnO p-n junction light emitting diode. J. Semicond.,2009,30(8):081001-1-3.
    [108]叶康,胡少华,赵炳辉,何海平,朱丽萍.衬底类型对于Ga-N共掺杂ZnMgO薄膜性能的影响.发光学报,2008,29(3):499-502.
    [109]Y.J. Zeng, Z. Jian, Z.Z. Ye, G.H. Gao, Y. Lu, B.H. Zhao, L.P. Zhu, and S.H. Hu. Growth of Al-N codoped p-type ZnMgO thin films on different substrates. Superlattice Microst,2008, 43(4):278-284.
    [110]Y.M. Ye, Z.Z. Ye, L.L. Chen, B.H. Zhao, and L.P. Zhu. Fabrication of p-type ZnMgO codoped with Al and N using dc reactive magnetron sputtering. Appl. Surf. Sci.,2006, 253(4):2345-2347.
    [111]L. Gong, Z.Z. Ye, and J.G. Lu. In-N codoped p-type ZnMgO thin films with bandgap engineering. Vacuum,2010,85(3):365-367.
    [112]L. Gong, Z.Z. Ye, J.G. Lu, L.P. Zhu, J.Y. Huang, and B.H. Zhao. Formation of p-type ZnMgO thin films by In-N codoping method. Appl. Surf. Sci.,2009,256(3):627-630.
    [113]仇明侠.Li掺杂p型Zn1-xMgxO薄膜及ZnO和ZnMgO纳米材料的研究.[博士学位论文],2008:45-72.
    [114]仇明侠.Li掺杂p型Zn1-xMgxO薄膜及ZnO和ZnMgO纳米材料的研究.[博士学位论文],2008:73-84.
    [115]L. Gong, Z.Z. Ye, J.G. Lu, L.P. Zhu, J.Y. Huang, X.Q. Gu, and B.H. Zhao. Highly transparent conductive and near-infrared reflective ZnO:Al thin films. Vacuum,2010,84(7): 947-952.
    [116]B.N. Pawar, S.R. Jadkar, and M.G. Takwale. Deposition and characterization of transparent and conductive sprayed ZnO:B thin films. J. Phys. Chem. Solids,2005,66(10): 1779-1782.
    [117]M.L. Addonizio and A. Antonaia. Surface morphology and light scattering properties of plasma etched ZnO:B films grown by LP-MOCVD for silicon thin film solar cells. Thin Solid Films,2009,518(4):1026-1031.
    [118]M.L. Addonizio and C. Diletto. Doping influence on intrinsic stress and carrier mobility of LP-MOCVD-deposited ZnO:B thin films. Sol. Energy Mat. Sol. Cells,2008,92(11): 1488-1494.
    [119]R.J. Hong and S.H. Xu. ZnO Al Films Prepared by Reactive Mid-frequency Magnetron Sputtering with Rotating Cathode. J. Mater. Sci. Technol.,2010,26(10):872-877.
    [120]R.T. Wen, L.S. Wang, X.A. Wang, G.H. Yue, Y.Z. Chen, and D.L. Peng. Influence of substrate temperature on mechanical, optical and electrical properties of ZnO:Al films. J. Alloy Compd.,2010,508(2):370-374.
    [121]M.D. Olvera, A. Maldonado, J. Vega-Perez, and O. Solorza-Feria. Aluminum-doped zinc oxide (ZnO:Al) thin films deposited on glass substrates by chemical spray starting from zinc pentanedionate and aluminum chloride. Mater. Sci. Eng. B-Adv.,2010,174(1-3):42-45.
    [122]Z.H. Deng, C.G. Huang, J.Q. Huang, M.L. Wang, H. He, H. Wang, and Y.G. Cao. Effects of Al content on the properties of ZnO:Al films prepared by Al2O3 and ZnO co-sputtering. J. Mater. Sci.-Mater. Eletron.,2010,21(10):1030-1035.
    [123]W.T. Yen, Y.C. Lin, and J.H. Ke. Surface textured ZnO:Al thin films by pulsed DC magnetron sputtering for thin film solar cells applications. Appl. Surf. Sci.,2010,257(3): 960-968.
    [124]B. Bayraktaroglu, K. Leedy, and R. Bedford. High temperature stability of postgrowth annealed transparent and conductive ZnO:Al films. Appl. Phys. Lett.,2008,93(2): 022104-1-3.
    [125]O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, and A.K. Pradhan. Metal-like conductivity in transparent Al:ZnO films. Appl. Phys. Lett.,2007,90(25):252108-1-3.
    [126]Q.B. Ma, Z.Z. Ye, H.P. He, S.H. Hu, J.R. Wang, L.P. Zhu, Y.Z. Zhang, and B.H. Zhao. Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. J. Cryst. Growth,2007,304(1):64-68.
    [127]O. Nakagawara, Y. Kishimoto. H. Seto, Y. Koshido, Y. Yoshino, and T. Makino. Moisture-resistant ZnO transparent conductive films with Ga heavy doping. Appl. Phys. Lett.,2006,89(9):091904-1-3.
    [128]V. Bhosle, A. Tiwari, and J. Narayan. Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett.,2006,88(3):032106-1-3.
    [129]M.A. Lucio-Lopez, A. Maldonado, R. Castanedo-Perez, G. Torres-Delgado, and M.D. Olvera. Thickness dependence of ZnO:In thin films doped with different indium compounds and deposited by chemical spray. Sol. Energy Mater. Sol. Cells,2006,90(15): 2362-2376.
    [130]X.Q. Liu, W.H. Bi, and Z.L. Liu. Influence of post-annealing on the properties of Sc-doped ZnO transparent conductive films deposited by radio-frequency sputtering. Appl. Surf. Sci., 2009,255(18):7942-7945.
    [131]Q.J. Yu, H.B. Yang, W.Y. Fu, L.X. Chang, J. Xu, C.L. Yu, R.H. Wei, K. Du, H.Y. Zhu, M.H. Li, and G.T. Zou. Transparent conducting yttrium-doped ZnO thin films deposited by sol-gel method. Thin Solid Films,2007,515(7-8):3840-3843.
    [132]R. Kaur, A.V. Singh, and R.M. Mehra. Sol-gel derived highly transparent and conducting yttrium doped ZnO films. J. Non-Cryst. Solids,2006,352(23-25):2335-2338.
    [133]F. Cao, Y.D. Wang, L. Li, B.J. Guo, and Y.P. An. Influence of O2/Ar ratio on the structural, electrical, and optical properties of transparent conductive zirconium-doped ZnO films prepared by radiofrequency sputtering. Scripta Mater.,2009,61(3):231-233.
    [134]Y.Z. Tsai, N.F. Wang, and C.L. Tsai. Formation of F-doped ZnO transparent conductive films by sputtering of ZnF2. Mater. Lett.,2009,63(18-19):1621-1623.
    [135]S. Tirado-Guerra, M.D. Olvera, A. Maldonado, and L. Castaneda. Chemically sprayed ZnO: F thin films deposited from diluted solutions:Effect of the time of aging on physical characteristics. Sol. Energy Mater. Sol. Cells,2006,90(15):2346-2355.
    [136]A. Sanchez-Juarez, A. Tiburcio-Silver, and A. Ortiz. Properties of fluorine-doped ZnO deposited onto glass by spray pyrolysis. Sol. Energy Mater. Sol. Cells,1998,52(3-4): 301-311.
    [137]Z.Z. Ye and J.F. Tang. Transparent Conducting Indium Doped ZnO Films by Dc Reactive S-Gun Magnetron Sputtering. Appl. Optics,1989,28(14):2817-2819.
    [138]N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, and Y. Shigesato. Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films,2006,496(1):99-103.
    [139]E.J. Luna-Arredondo, A. Maldonado, R. Asomoza, D.R. Acosta, M.A. Melendez-Lira, and M.D.L. Olvera. Indium-doped ZnO thin films deposited by the sol-gel technique. Thin Solid Films,2005,490(2):132-136.
    [140]S. llican, Y. Caglar, M. Caglar, and B. Demirci. Polycrystalline indium-doped ZnO thin films:preparation and characterization. J. Optoelectron. Adv. Mater.,2008,10(10): 2592-2598.
    [141]T. Minami, H. Nanto, and S. Takata. Highly Conductive and Transparent Aluminum Doped Zinc-Oxide Thin-Films Prepared by Rf Magnetron Sputtering. Jpn. J. Appl. Phys. Part 2, 1984,23(5):L280-L282.
    [142]T. Minami, H. Nanto, and S. Takata. Highly Conductive and Transparent ZnO Thin-Films Prepared by Rf Magnetron Sputtering in an Applied External Dc Magnetic-Field. Thin Solid Films,1985,124(1):43-47.
    [143]Z.A. Wang, J.B. Chu, H.B. Zhu, Z. Sun, Y.W. Chen, and S.M. Huang. Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications. Solid State Electron., 2009,53(11):1149-1153.
    [144]J. Behrends, A. Schnegg, M. Fehr, A. Lambertz, S. Haas, F. Finger, B. Rech, and K. Lips. Electrical detection of electron spin resonance in microcrystalline silicon pin solar cells. Philos. Mag.,2009,89(28-30):2655-2676.
    [145]O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, and S. Railean. Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications. Sol. Energy Mater. Sol. Cells,2009,93(8):1417-1422.
    [146]H. Zhu, E. Bunte, J. Hupkes, H. Siekmann, and S.M. Huang. Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells. Thin Solid Films, 2009,517(10):3161-3166.
    [147]R.L. Hoffman. ZnO-channel thin-film transistors:Channel mobility. J. Appl. Phys.,2004, 95(10):5813-5819.
    [148]A. Tiburcio-Silver, A. Sanchez-Juarez, and A. Avila-Garcia. Properties of gallium-doped ZnO deposited onto glass by spray pyrolysis. Sol. Energy Mater. Sol. Cells,1998,55(1-2): 3-10.
    [149]M. Hiramatsu, K. lmaeda, N. Horio, and M. Nawata. Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation. J. Vac. Sci. Technol. A,1998,16(2): 669-673.
    [150]V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson, and R. Yakimova. Structural and morphological properties of ZnO:Ga thin films. Thin Solid Films,2006,515(2):472-476.
    [151]H. Hirasawa, M. Yoshida, S. Nakamura, Y. Suzuki, S. Okada, and K. Kondo. ZnO:Ga conducting-films grown by DC arc-discharge ionplating. Sol. Energy Mater. Sol. Cells, 2001,67(1-4):231-236.
    [152]V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, and R. Martins. New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering. Thin Solid Films,2003,442(1-2):102-106.
    [153]V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa, and R. Martins. Influence of the deposition pressure on the properties of transparent and conductive ZnO Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films,2003, 427(1-2):401-405.
    [154]K. Iwata, T. Sakemi, A. Yamada, P. Fons, K. Awai, T. Yamamoto, M. Matsubara, H. Tampo, and S. Niki. Growth and electrical properties of ZnO thin films deposited by novel ion plating method. Thin Solid Films,2003,445(2):274-277.
    [155]X.H. Yu, J. Ma, F. Ji, Y.H. Wang. C.F. Cheng, and H.L. Ma. Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering. Appl. Surf. Sci.,2005. 245(1-4):310-315.
    [156]S.M. Park, T. Ikegami, K. Ebihara, and P.K. Shin. Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition. Appl. Surf. Sci.,2006,253(3): 1522-1527.
    [157]E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater.,2005,17(5):590-594.
    [158]J.H. Kim, B. Du Ahn, C.H. Lee, K.A. Jeon, H.S. Kang, and S.Y. Lee. Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes. Thin Solid Films,2008,516(7):1529-1532.
    [159]S. Chang, Y.W. Song, S. Lee, S.Y. Lee, and B.K. Ju. Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure. Appl. Phys. Lett.,2008,92(19):192104-1-3.
    [160]J.H. Lee. Effects of hydrogen incorporation and heat treatment on the properties of ZnO:Al films deposited on polymer substrate for flexible solar cell applications. Curr. Appl. Phys., 2010,10(3):S515-S519.
    [161]D.J. Kwak, J.H. Kim, B.W. Park, Y.M. Sung, M.W. Park, and Y.B. Choo. Growth of ZnO:Al transparent conducting layer on polymer substrate for flexible film typed dye-sensitized solar cell. Curr. Appl. Phys.,2010,10:S282-S285.
    [162]S. Fernandez and F.B. Naranjo. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications. Sol. Energy Mater. Sol. Cells,2010,94(2):157-163.
    [163]C. Oliveira, L. Rebouta, T. de Lacerda-Aroso, S. Lanceros-Mendez, T. Viseu, C.J. Tavares, J. Tovar, S. Ferdov, and E. Alves. Structural and electrical properties of Al doped ZnO thin films deposited at room temperature on poly(vinilidene fluoride) substrates. Thin Solid Films,2009,517(23):6290-6293.
    [164]Y.M. Chung, C.S. Moon, M.J. Jung, and J.G. Han. The low temperature synthesis of Al doped ZnO films on glass and polymer using magnetron co-sputtering:Working pressure effect. Surf. Coat. Tech.,2005,200(1-4):936-939.
    [165]E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Aguas, I. Ferreira, M.E.V. Costa, M.H. Godinho, PL. Almeida, J.P. Borges, and R. Martins. Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering. Surf. Coat. Tech.,2002, 151:247-251.
    [166]K.I. Lee, E.K. Kim, H.D. Kim, H.I. Kang, and J.T. Song. Low temperature Al doped ZnO films on a flexible substrate by DC sputtering. Physica Status Solidi C-Current Topics in Solid State Physics,2008,5(10):3344-3347.
    [167]T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma, and Y. Chen. Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron-sputtering. Thin Solid Films,1998,326(1-2):60-62.
    [168]M. Chen, Z.L. Pei, X. Wang, C. Sun, and L.S. Wen. Properties of ZnO:Al films on polyester produced by de magnetron reactive sputtering. Mater. Lett.,2001,48(3-4): 137-143.
    [169]H.L. Ma, X.T. Hao, J. Ma, Y.G. Yang, S.L. Huang, F. Chen, Q.P. Wang, and D.H. Zhang. Bias voltage dependence of properties for ZnO:Al films deposited on flexible substrate. Surf. Coat. Tech.,2002,161(1):58-61.
    [170]E. Fortunato, P. Nunes, D. Costa. D. Brida,I. Ferreira, and R. Martins. Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates. Vacuum,2002, 64(3-4):233-236.
    [171]C.S. Moon, Y.M. Chung, W.S. Jung, and J.G. Han. The low temperature process design for Al doped ZnO film synthesis on polymer. Surf. Coat Tech.,2007,201(9-11):5035-5038.
    [172]Y.M. Chung, C.S. Moon, W.S. Jung, and J.G. Han. The low temperature synthesis of Al doped ZnO films on glass and polymer using pulsed co-magnetron sputtering: H2 effect. Thin Solid Films,2006,515(2):567-570.
    [173]J.H. Lee and J.T. Song. Dependence of the electrical and optical properties on the bias voltage for ZnO:Al films deposited by r.f. magnetron sputtering. Thin Solid Films,2008, 516(7):1377-1381.
    [174]B. Houng, C.S. Hsi, B.Y. Hou, and S.L. Fu. Effect of process parameters on the growth and properties of impurity-doped zinc oxide transparent conducting thin films by RF magnetron sputtering. Vacuum,2008,83(3):534-539.
    [175]C.S. Hsi, B. Houng, B.Y. Hou, G.J. Chen, and S.L. Fu. Effect of Ru addition on the properties of Al-doped ZnO thin films prepared by radio frequency magnetron sputtering on polyethylene terephthalate substrate. J. Alloy Compd.,2008,464(1-2):89-94.
    [176]B. Houng, C.S. Hsi, B.Y. Hou, and S.L. Fu. Fabrication and properties evaluation of aluminum and ruthenium co-doped zinc oxide thin films. J. Alloy Compd.,2008,456(1-2): 64-71.
    [177]E. Fortunato, A. Goncalves, V. Assuncao, A. Marques, H. Aguas, L. Pereira, I. Ferreira, and R. Martins. Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence. Thin Solid Films,2003,442(1-2):121-126.
    [178]E. Fortunato, A. Goncalves, A. Marques, V. Assuncao,I. Ferreira, H. Aguas, L. Pereira, and R. Martins. Gallium zinc oxide coated polymeric substrates for optoelectronic applications. Flexible Electronics-Materials and Device Technology,2003,769:291-296.
    [179]A. Miyake, T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto. Structural, electrical and optical properties of Ga-doped ZnO films on cyclo-olefin polymer substrates. Thin Solid Films,2009,517(10):3130-3133.
    [180]A. Miyake, T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto. Effect of substrate temperature on structural, electrical and optical properties of Ga-doped ZnO films on cycro olefin polymer substrate by ion plating deposition. Thin Solid Films,2008,517(3): 1037-1041.
    [181]E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Aguas, I. Ferreira, M.E.V. da Costa, M.H. Godinho, P.L. Almeida, J.P. Borges, and R. Martins. Influence of the strain on the electrical resistance of zinc oxide doped thin film deposited on polymer substrates. Adv. Eng. Mater., 2002,4(8):610-612.
    [182]G.H. Lee, J. Yun, S. Lee, Y. Jeong, J.H. Jung, and S.H. Cho. Investigation of brittle failure in transparent conductive oxide and permeation barrier oxide multilayers on flexible polymers. Thin Solid Films,2010,518(11):3075-3080.
    [183]H. Han. N.D. Theodore, and T.L. Alford. Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer. J. Appl. Phys.,2008,103(1): 013708-1-8.
    [184]D.R. Sahu, S.Y. Lin, and J.L. Huang. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl. Surf. Sci.,2006,252(20):7509-7514.
    [185]K. Sivaramakrishnan, N.D. Theodore, J.F. Moulder, and T.L. Alford. The role of copper in ZnO/Cu/ZnO thin films for flexible electronics. J. Appl. Phys.,2009,106(6):063510-1-8.
    [186]K. Sivaramakrishnan and T.L. Alford. Metallic conductivity and the role of copper in ZnO/Cu/ZnO thin films for flexible electronics. Appl. Phys. Lett.,2009,94(5):052104-1-3.
    [187]Y.M. Hu, C.W. Lin, and J.C.A. Huang. Dependences of the Al thickness and annealing temperature on the structural, optical and electrical properties in ZnO/Al multilayers. Thin Solid Films,2006,497(1-2):130-134.
    [188]M.F. Al-Kuhaili, M.A. Al-Maghrabi, S.M.A. Durrani, and LA. Bakhtiari. Investigation of ZnO/Al/ZnO multilayers as transparent conducting coatings. J. Phys. D:Appl. Phys.,2008, 41(21):215302-1-8.
    [189]http://haike.baidu.com/view/73395.htm#8.
    [190]U. Rau and H.W. Schock. Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges. Appl. Phys. a-Mater.,1999,69(2):131-147.
    [191]马全宝.透明的高导电近红外反射ZnO:Ga薄膜的制备及特性研究.[博士学位论文],2008:19.
    [192]http://haike.baidu.com/view/10658.htm.
    [193]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社,2008:34-63.
    [194]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社,2008:132-134.
    [195]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社,2008:66-128.
    [196]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社,2008:150-152.
    [197]陈兰兰.In-N共掺杂制备p-ZnO薄膜及ZnO其它相关掺杂研究.[博士学位论文],2007:50-58.
    [198]仇明侠.Li掺杂p型Zn1-xMgxO薄膜及ZnO和ZnMgO纳米材料的研究.[博士学位论文],2008:35.
    [199]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社,2008:134.
    [200]H. Gomez, A. Maldonado, M.D.L.L. Olvera, and D.R. Acosta. Gallium-doped ZnO thin films deposited by chemical spray. Sol. Energy Mater. Sol. Cells,2005,87(1-4):107-116.
    [201]C.L. Perkins, S.H. Lee, X.N. Li, S.E. Asher, and T.J. Coutts. Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. J. Appl. Phys.,2005, 97(3):034907-1-7.
    [202]E.K. Baldwin and C.M. Friend. X-Ray Photoelectron-Spectroscopy Studies of No and N2o on Clean and Oxygen Covered W(100) Surfaces. J. Vac. Sci. Technol. A,1986,4(3): 1407-1407.
    [203]J.M. Bian, X.M. Li, X.D. Gao, W.D. Yu, and L.D. Chen. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl. Phys. Lett., 2004,84(4):541-543.
    [204]E. Burstein. Anomalous Optical Absorption Limit in Insb. Phys Rev,1954,93(3):632-633.
    [205]T.S. Moss. The Interpretation of the Properties of Indium Antimonide. P. Phys. Soc. Lond B, 1954,67(418):775-782.
    [206]J. Tauc. Amorphous and Liquid Semiconductors-Proceedings of the 11th International-Conference on Amorphous and Liquid Semiconductors. J. Non-Cryst. Solids,1985, 77-78(2):1493-1496.
    [207]W.W. Wang, X.G. Diao, Z. Wang, M. Yang, T.M. Wang, and Z. Wu. Preparation and characterization of high-performance direct current magnetron sputtered ZnO:Al films. Thin Solid Films,2005,491(1-2):54-60.
    [208]J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, and Q.L. Liang. Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J. Appl. Phys.,2006,100(7):073714-1-11.
    [209]S.H. Bae, S.Y. Lee, B.J. Jin, and S.Im. Pulsed laser deposition of ZnO thin films for applications of light emission. Appl. Surf. Sci.,2000,154:458-461.
    [210]K. Ellmer and R. Wendt. Dc and rf (reactive) magnetron sputtering of ZnO:Al films from metallic and ceramic targets:a comparative study. Surf. Coat. Tech.,1997,93(1):21-26.
    [211]K. Ellmer, F. Kudella, R. Mientus, R. Schieck, and S. Fiechter. Influence of Discharge Parameters on the Layer Properties of Reactive Magnetron-Sputtered ZnO-Al Films. Thin Solid Films,1994,247(1):15-23.
    [212]X.Q. Gu, L.P. Zhu, Z.Z. Ye, Q.B. Ma, H.P. He, Y.Z. Zhang, and B.H. Zhao. Highly transparent and conductive Zn0.85Mg0.15O:Al thin films prepared by pulsed laser deposition. Sol. Energy Mater. Sol. Cells,2008,92(3):343-347.
    [213]J.H. Kim, B. Du Ahn, C.H. Lee, K.A. Jeon, H.S. Kang, and S.Y. Lee. Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. J. Appl. Phys.,2006,100(11):113515-1-3.
    [214]J.F. Chang and M.H. Hon. The effect of deposition temperature on the properties of Al-doped zinc oxide thin films. Thin Solid Films,2001,386(1):79-86.
    [215]Z.C. Jin, I. Hamberg, and C.G. Granqvist. Optical-Properties of Sputter-Deposited Zno-Al Thin-Films. J. Appl. Phys.,1988,64(10):5117-5131.
    [216]S. Mridha and D. Basak. Aluminium doped ZnO films:electrical, optical and photoresponse studies. J. Phys. D:Appl. Phys.,2007,40(22):6902-6907.
    [217]T. Tsuji and M. Hirohashi. Influence of oxygen partial pressure on transparency and conductivity of RF sputtered Al-doped ZnO thin films. Appl. Surf. Sci.,2000,157(1-2): 47-51.
    [218]T. Schuler and M.A. Aegerter. Optical, electrical and structural properties of sol gel ZnO: Al coatings. Thin Solid Films,1999,351(1-2):125-131.
    [219]G. Fowles. Introduction to modern optics. New York:Dover Publications,1989.
    [220]W.B. Pearson. Crystal Chemistry and Physics of Metals and Alloys. New York:Wiley,1972: 76.
    [221]H. Kato, M. Sano, K. Miyamoto, and T. Yao. Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy. J. Cryst. Growth,2002,237(1):538-543.
    [222]H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, and D.C. Look. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett., 2000,77(23):3761-3763.
    [223]Y.S. Rim, S.M. Kim, H.W. Choi, S.J. Park, and K.H. Kim. Preparation of Al-doped ZnO thin film deposited at room temperature. Colloids Surf. A,2008,313:461-464.
    [224]S. Kim, W.I. Lee, E.H. Lee, S.K. Hwang, and C. Lee. Dependence of the resistivity and the transmittance of sputter-deposited Ga-doped ZnO films on oxygen partial pressure and sputtering temperature. J. Mater. Sci.,2007,42(13):4845-4849.
    [225]C.Y. Hsu, C.K. Huang, and C.Y. Wu. Milling of MAR-M247 nickel-based superalloy with high temperature and ultrasonic aiding. Int. J. Adv. Manuf. Tech.,2007,34(9-10):857-866.
    [226]M. Nalbant, H. Gokkaya, and G. Sur. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater. Design,2007,28(4):1379-1385.
    [227]D.Y. Chen and C.Y. Hsu. Growth of Ga-doped ZnO films with ZnO buffer layer by sputtering at room temperature. Superlattice Microst.,2008,44(6):742-753.
    [228]S.K. Park, J.I. Han, W.K. Kim, and M.G. Kwak. Deposition of indium-tin-oxide films on polymer substrates for application in plastic-based flat panel displays. Thin Solid Films. 2001,397(1-2):49-55.
    [229]X.T. Hao, J. Ma, D.H. Zhang, T.L. Yang, H.L. Ma, Y.G. Yang, C.F. Cheng, and H. Huang. Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates. Appl. Surf. Sci.,2002,189(1-2):18-23.
    [230]M.D.L.L. Olvera, H. Gomez, and A. Maldonado. Doping, vacuum annealing, and thickness effect on the physical properties of zinc oxide films deposited by spray pyrolysis. Sol. Energy Mater. Sol. Cells,2007,91(15-16):1449-1453.
    [231]H.K. Park, J.W. Kang, S.I. Na, D.Y. Kim, and H.K. Kim. Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics. Sol. Energy Mater. Sol. Cells,2009, 93(11):1994-2002.
    [232]A. Kloppel, B. Meyer, and J. Trube. Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems. Thin Solid Films,2001,392(2):311-314.
    [233]A. Kloppel, W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk. and J. Trube. Dependence of the electrical and optical behaviour of ITO-silver-ITO multilayers on the silver properties. Thin Solid Films,2000,365(1):139-146.
    [234]M. Sawada, M. Higuchi, S. Kondo, and H. Saka. Characteristics of indium-tin-oxide/silver/indium-tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays. Jpn. J. Appl. Phys. part 1,2001,40(5A):3332-3336.
    [235]Y.S. Jung, Y.W. Choi, H.C. Lee, and D.W. Lee. Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide structures. Thin Solid Films,2003,440(1-2):278-284.
    [236]D.R. Sahu and J.L. Huang. Dependence of film thickness on the electrical and optical properties of ZnO-Cu-ZnO multilayers. Appl. Surf. Sci.,2006,253(2):915-918.
    [237]D.R. Sahu and J.L. Huang. Characteristics of ZnO-Cu-ZnO multilayer films on copper layer properties. Appl. Surf. Sci.,2006,253(2):827-832.
    [238]H.K. Park, J.A. Jeong, Y.S. Park, S.I. Na, D.Y. Kim, and H.K. Kim. Room-Temperature Indium-Free Ga:ZnO/Ag/Ga:ZnO Multilayer Electrode for Organic Solar Cell Applications. Electrochem. Solid-State Lett.,2009,12(8):H309-H311.
    [239]G. Leftheriotis, S. Papaefthimiou, and P. Yianoulis. Development of multilayer transparent conductive coatings. Solid State Ionics.,2000,136:655-661.
    [240]G. Haacke. New Figure of Merit for Transparent Conductors. J. Appl. Phys.,1976,47(9): 4086-4089.
    [241]A. lndluru and T.L. Alford. Effect of Ag thickness on electrical transport and optical properties of indium tin oxide-Ag-indium tin oxide multilayers. J. Appl. Phys.,2009, 105(12):123528-1-9.
    [242]H. Ehrenreich, P.L. Sagalyn, and H.R. Philipp. Trace Relations for Tensors Relating Electric Fields and Elastic Strains to Nuclear Quadrupole Effects. Phys. Rev.,1962,128(4): 1622-1629.
    [243]V. Dose, W. Altmann, A. Goldmann, U. Kolac, and J. Rogozik. Image-Potential States Observed by Inverse Photoemission. Phys. Rev. Lett.,1984,52(21):1919-1921.
    [244]Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D.P. Yu. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett.,2003,83(1): 144-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700