铁磁形状记忆合金Ni-Mn-Ga薄膜的制备和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁磁形状记忆合金Ni-Mn-Ga是一种新型的智能材料,最突出的应用功能在于它的马氏体变体可以由外加磁场驱动重新排列而显示出类似于磁致伸缩效应的宏观应变。由于Ni-Mn-Ga合金块体材料的高脆性,很难切割成较小的块,这限制了其在微机电系统中的应用,而薄膜则很好的解决了这个问题。
     本文采用微波ECR射频磁控溅射技术在Si(100)基片、铜箔和Ni-Mn-Ga基片上分别制备Ni-Mn-Ga薄膜,研究了各种制备参数对薄膜成分和性能的影响,以期对这种新型的薄膜材料的制备及特性进行初步探索。结果如下:
     1.射频功率和工作气压对薄膜的成分有较大影响。当溅射功率处于175W与200W之间时,所沉积的薄膜的成分与靶的成分较为接近。随着工作气压的增加,Mn的含量基本上变化不大,Ni的含量先是有所增加,0.6Pa之后又有回复趋势,Ga的变化过程正好与Ni相反。
     2.随后,对薄膜进行了真空热处理,随着热处理时间的增加,薄膜中Ni的含量稍有下降,Mn的含量呈线性增加,而Ga的含量则是先有所下降,后又稍微上升。热处理时间为60分钟时,在400℃到600℃的温度范围内,Ni的含量受温度的影响较小,而Ga的含量减少,Mn的含量相对增加。随着温度的进一步升高,三种元素的变化趋于缓和。
     3.沉积于硅片上的薄膜表面比较光滑,同时膜上存在颗粒状物质,最大颗粒直径约为2μm。在400℃保温60分钟后,薄膜并没有明显的结晶现象,在450℃保温60分钟后,薄膜出现了结晶现象,并且随着热处理温度的升高,结晶现象愈来愈明显。由于硅片和Ni-Mn-Ga薄膜的热膨胀系数并不相同,导致部分薄膜出现裂纹。
     4.沉积后的薄膜并没有完全晶化,热处理后的薄膜呈多晶态,晶粒呈多种取向,分别为(022)(400)(214),同时还存在Manganosite相。晶粒尺寸随着热处理温度的增加几乎呈线性增加趋势。
     5.热处理对薄膜的铁磁特性有明显的影响,当热处理温度较低时,薄膜并未完全晶化,铁磁特性亦不明显。当温度达到500℃之上才显示明显的磁性。
     6.对薄膜应变进行测试结果表明,随着磁场强度的增加,各个样品的应变值都增大。在磁场强度为4.0KOe时,铜箔上的薄膜的应变值为-98ppm,热处理后的硅片上薄膜的应变值-85ppm,未热处理的硅片上的薄膜的应变值为-82ppm,Ni-Mn-Ga块体上的薄膜的应变值为-142ppm。
Ferromagnetic Shape Memory Alloys (FSMAs) is a new type of intelligent material. Their notable character is shape memory effect which can be induced by magnetic field, and their martensite has large reversible magnetic-field-induced strain. However, the bulk has very high brittleness and is difficult to be machined to small parts. In order to be applied in MEMS such as micro actuators and micro sensors, Ni-Mn-Ga alloys have to be in the form of thin films.
     In this text, Ni-Mn-Ga thin films were prepared by MW-ECR RF magnetron sputtering on Ni-Mn-Ga bulks, Cu foils and Si wafers. And then the effect of preparation parameters to the films' composition and appearance were discussed. The results are given as below:
     1. Two main factors that affect films composition are sputtering power and deposition pressure. When the target and substrate distance is 60mm and the air pressure was 0.4Pa, the composition of Ni and Mn increase with the power grows, and Ga decreases. The composition of Ni and Ga are affected clearly by air pressure.
     2. Subsequently films were annealed in vacuum heat treatment device. Following the increasing of the heating time at 600℃, the Ni content decreases slowly, Mn increases in line with the aging time, and the Ga decreases first then increases little. While the heating time is 60min and the heating temperature between 400℃and 600℃, the Ni content isn't affected as much as Ga and Mn. As the temperature further increases, three elements change slowly.
     3. The surfaces of the films deposited on silicon wafer are much smoother than others, and in some images can see large grains with the largest diameter about 2μm. After annealed in 400℃about 60min, the film crystallized. With the increasing of the heating temperature, crystal grains grow larger.
     4. By XRD analyze, the annealed films are polycrystal with main grain orientation (022) (400) (214). The Manganosite phase was found at one time.
     5. Heating treatment affects the film ferromagnetism greatly. Films have no ferromagnetism until the heating time above 500℃.
     6. The strain and magnetic field intensity curve shows that the strain grows with the increasing of magnetic field intensity. The largest strain of heated films on copper foil, Si wafer and Ni-Mn-Ga bulk are -98ppm,-85ppm and -142ppm respectively with the field about 4.0KOe.
引文
[1] 杨大智,智能材料与智能系统,天津:天津大学出版社,2000.12.
    [2] 郭保全,侯宏花,潘玉田,科技情报开发与经济,2005年第15卷第6期,智能材料和结构的应用及展望.
    [3] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, 1971.
    [4] A.E. Clark, M. Wun-Fogle, "Modern magnetostrictive materials- classical and non-classical alloys", In Proc. SPIE, volume 4699, pages 421-436, 2002.
    [5] 王博文,超磁致伸缩材料制备与器件设计,北京:冶金工业出版社,2003,132.
    [6] Bernhard Winzek, Sam Schmitz, Holger Rumpf, Tobias Sterzl etc., Recent developments in shape memory thin film technology, Materials Science and Engineering A 378 (2004) 40-46.
    [7] Y. Adachi, S.Unjoh, M.Kondoh, Development of a shape memory alloy damper for intelligent bridge syslems, Materials Science Forum, 327(2000): 31-34.
    [8] Y.Adachi, S.Unjoh, M.Kondoh, Application of TiNi thin film shape memory alloys of on micro-electro -mechanical systems. Sensors ans Acctuators, 77(1999):34-38.
    [9] A. Hakola, O. Heczko, A. Jaakkola, T. Kajava, K. Ullakko. Pulsed laser deposition of Ni-Mn-Ga thin films on silicon. Appl. Phys. A, 79 (2004) :1505-1508.
    [10] C.Y. Chung, V.A. Chemenko, V.V. Khovailo, J. Pons, E. Cesari, T. Takagi. Thin films of ferromagnetic shape memory alloys processed by laser beam ablation. Materials Science and Engineering A, 378 (2004) :443-447.
    [11] Chernenko, V.A. Lvov, E. Cesari, Martensitic transformation in ferromagnets: experiment and theory. Journal of Magnetism and Magnetic Materials, 196-197 (1999): 859-860.
    [12] S.E. Kulkova, S.V. Eremeev, S.S. Kulkov Electronic structure and magnetic properties of Co- and Mn-based Heusler alloys and thin films,Solid State Communications 130 (2004) 793-797.
    [13] F. J. Castan o, B. Nelson-Cheeseman, R. C. O'Handley, and C. A. Ross, Structure and thermomagnetic properties of polycrystalline Ni-Mn-Ga thin films .Journal of Applied Physics, 2003, 10(93):8492-8494.
    [14] A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, Giant magnetic-field- induced strain in NiMnGa seven-layered martensitic phase, Applied Physics Letters, 2002,Volumn 80, Iss 10:1746-1748.
    [15] V. V. Martynov, V. V. Kokorin, the crystal structure of thermally- and stress-induced martensites in Ni_2MnGa single crystals, J. Phys. Ⅲ France 2 (1992)739-749.
    [16] V. A. Chernenko, E. Cesari, V. V. Kokorin, I. N. Vitenko, the development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system, Scripta Metallurgica et Materialia, Vol. 33, No.8 (1995),1239-1244.
    [17] V. V. Khovailo, K. Oikawa, C. Wedel, T. Takagi, T. Abe, K. Sugiyama, Influence of intermartensitic transitions on transport properties of Ni_(2.16)Mn_(0.84)Ga alloy, J. Phys.: Condens. Matter 16 (2004) 1951-1961.
    [18] P.J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K-U Neumann, B. Ouladdiaf, K. R. A. Ziebeck, The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa, J. Phys.: Condens. Matter 14 (2002) 10159-10171.
    [19] 宫峰飞,铁磁NiMnGa形状记忆合金研究的新进展,材料导报,2003年8月第17卷第8期P1-4.
    [20] K. Ullako, Magnetically controlled shape memory alloys: a new class of actuator materials. Journal of Materials Engineering and performance, 1996, 5(3):405-409.
    [21] K.Ullakko, J.K.Huang, V.V.Kokorin, R.C.O'Handley, magnetically controlled shape memory effect in Ni_2MnGa intermetallics, Scripta Materialia, vol.36, No.10, pp.1133-1138,1997.
    [22] S. J Murray, R. C. O Handley and S. M. Allen, Model for discontinuous of ferromagnetic shape memory alloys under stress, Journal of Applied Physics, 2001, VOl.89, No.2:1295-1301
    [23] R. C. O' Handley, Model for strain and magnetization in magnetic shape-memory alloys, Journal of Applied Physics, 1998, Vol.83:3263-3270.
    [24] P. J. Webster, K. R. A. Ziebeck, S. 1. Town, M. S. Peak, Magnetic order and phase transformation in Ni_2MnGa, Philos. Mag. B49(1984)p295.
    [25] T. Kanomata, K. Shirakawa, T. Kaneko, Effect of hydrostatic pressure on the curie temperature of the Heusler alloys Ni2MnZ(Z equals Al, Ga, In, Sn and Sb), Journal of Magnetism and Magnetic Materials, v 65, n 1, Feb, 1987, p 76-82.
    [26] 冯根,NiMnGa铁磁形状记忆合金的制备及相变特性和磁性能的研究(硕士学位论文),北京航空航天大学,2002.
    [27] K. Ullakko, J. K. Huang, C. Kantner, and R. C. O' Handley, et al. Large Magnetic—field— induced strain in Ni-Mn-Ga single crystals, Appl. Phys. Lett, 1996, Vol.69, No.13, 1966-1968.
    [28] V.A. Chernenko, E. Cesari, VV. Kokrin, etal.The development of new ferromagnetic shape memory alloys in Ni—Mn—Ga system [J], Scripta Meltall. Mater.,1995, 33 (8):1239.
    [29] A.D. Bozhko, A. N. Vasilev, V. V. Khovailo, V. D. Buchelnikov, etc., Phase transitions in the ferromagnetic alloys Ni_(2+x)Mn_(1-x)Ga, JETP Letters, 1998, Vol 67, Iss3:227-232.
    [30] X. Jin, M. Marioni, D. Bono, S.M. Allen, and R.C. O'Handley, Empirical mapping of Ni-Mn-Ga properties with composition and valence electron concentration, J. Appl. Phy., 1(10):822.
    [31] V.G. Shavrov, V. D. Buchelnikov, A. T. Zayak, Phase transitions in an Ni-Mn-Ga ferromagnetic alloy with allowance for the modulation order Parameter, Physics of Metals and Metallography, 2000, VOl 89, Suppl. 1: 584-593.
    [32] 32.S.Y. Chu, A. Cramb, M. DeGraef, D. Laughlin, M. E. McHenry, The effect of field cooling and field orientation on the martensitic Phase transformation in a Ni-Mn-Ga single crystal, Journal of APPlied Physics, 2000, Vol 87, Iss 9, Par2:5777-5779.
    [33] 高淑侠,王文洪,柳祝红等,铁磁形状记忆合金Ni52.2Mn23.8Ga24的马氏体相变及其物理表征,物理学报Vol.51,No.2,2002.2.
    [34] V. A. Chernenko, V. A. L'vov, P. Mu"llner, G. Kostorz, T. Takagi, Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: Experiment and modeling, Physical Review,B69,1344 10 (2004).
    [35] 柳祝红,王文洪,陈京兰,高淑侠,吴光恒,单晶Ni52Mn24Ga24的磁感生应变和磁增强双向形状记忆效应,金属功能材料,Vol.8,No.2 2001.4.
    [36] G.D. Liu, Z.H. Liu, X.F. Dai, S.Y. Yu, J.L. Chen, G.H. Wu, Investigation on ferromagnetic shape memory alloys, Science and Technology of Advanced Materials 6 (2005) 772-777.
    [37] H.E. Karaca, I. Karaman, B. Basaran, Y.I. Chumlyakov, H.J. Maier, Magnetic field and stress induced martensite reorientation in Ni—Mn—Ga ferromagnetic shape memory alloy single crystals Acta Materialia 54 (2006) 233-245.
    [38] R. Tickle, R.D. James, Magnetic and magnetomechanical properties of Ni-Mn-Ga, Journal of Magnetism and Magnetic Materials, 1999, Vol195, Iss 3:627-638.
    [39] S. J. Murray, M. Marioni, S. M. Allen, and R. C. O'Handley, 6% magnetic-field- induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga, Applied Physics Letters, 2000, Vol 77, Iss 6:886-888.
    [40] A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, Giant magnetic-field- induced strain in NiMnGa seven-layered martensitic phase, Applied Physics Letters,2002, Volumn 80, Iss 10: 1746-1748.
    [41] M.Ohtsuka, M.Sanada, M.Matsumoto,K.Itagaki, Magnetic-field induced shape memory effect in Ni_2MnGa sputtered films, Materials Science and Engineering A, 378 2004: 377-383.
    [42] J. W. Dong, L. C. Chen, C. J. Palmstrφm , R. D. James , S. McKeman. Molecular beam, epitaxy growth of ferromagnetic single crystal (001) Ni_2MnGa on (001) GaAs, Appl. Phys Lett., 75 (1999) 1443.
    [43] Q. Pan, J. W.Dong, C. J. Palmstrφm, J. Cui, R. D. James. Magnetic domain observations of freestanding single crystal patterned Ni_2MnGa films, J of Applied Physics, Vol 91, number 10, 2002, p7812-7814.
    [44] J.W. Dong, L. C. Chen, J. Q. Xie, et al. Epitaxial growth of ferromagnetic Ni-Mn-Ga on GaAs (001) using NiGa interlayers, J of Applied Physics Vol 88, number 12, 2000, p7357-7359.
    [45] M. Wuttig, C. Craciunescu, J. Li. Phase transformations in ferromagnetic Ni-Mn-Ga shape memory thin films. Mater Trans, JIM 41 (8) (2000) 933-937.
    [46] H. Rumf, C. Craciunescu, et al. Fabrication and characterization of freestanding NiMnGa films, Materials and Devices for Smart Systems as held at the 2003 MRS Fall Meeting, Boston, MA, United States, Dec 1-5 2003, p 195-199.
    [47] S.I. Patil, D. Tan, S. E. Lofland, S. M. Bhagat, et al. Ferromagnetic resonance in Ni-Mn-Ga films, Applied Physics Letters, 2002, 81(7) :1279—1281.
    [48] F. J. Castano, B. Nelson-Cheeseman, R. C. O'Handley, C. A.Ross, Structure and thermo-magnetic properties of polycrystalline Ni-Mn-Ga thin films. Appl Phys, 2003, 10 (93): 8492—8494.
    [49] A. Hakola, O. Heczko, A. Jaakkola, T. Kajava, K. Ullakko. Pulsed laser deposition of Ni-Mn-Ga thin films on silicon, Appl Phys, A, 79 (2004): 1505-1508.
    [50] C.Y. Chung, V. A. Chernenko, V. V. Khovailo, J. Pons, E. Cesari, T. Takagi, Thin films of ferromagnetic shape memory alloys processed by laser beam ablation. Materials Science and Engineering A, 378 (2004): 442-447.
    [51] J. Dubowik, Y. V.Kudryavtsev, etal. Ni-Mn-Ga ferromagnetic shape memory films, Czechoslovak Journal of Physics, 54 (2004), Suppl D, p213.
    [52] K.W. Kim, Y.V. Kudryavtsev, J.Y. Rhee, Y.P. Lee, Physical properties of the ordered and disordered Ni_2MnGa Heusler alloy films, Journal of Magnetism and Magnetic Materials 272-276 (2004) 1176-1177.
    [53] 53. J.W. Dong, J.Q.Xie, J.Lu, C. Adelmann, C.J. Palmstrom, J. Cui, Q. Pan, T. W. Shield, R. D. James, McKernan, Shape memory and ferromagnetic shape memory effects in single-crystal Ni2MnGa thin films, Journal of Applied Physics, v 95, n 5, 1 March 2004, p 2593-600.
    [54] A. Hakola, O. Heczko, A. Jaakkola, T. Kajava, K. Ullakko, Ni-Mn-Ga films on Si, GaAs and Ni-Mn-Ga single crystals by pulsed laser deposition, Applied Surface Science 238 (2004) 155-158.
    [55] 曲敬信,汪泓宏 主编,表面工程手册,化学工业出版社,1998,p 368.
    [56] A. N. Vasil'ev, E. I. Estrin, V. V. Khovailo, A. D. Bozhko, R. A. Ischuk, M. Matsumoto, T.Takagi,J. Tani, Int. J. Appl. Electromagn. Mechan., 12 (2000) 35.
    [57] H. Rumpf, C.M. Craciunescu, Modrow, Kh. Olimov, E. Quandt, M. Wuttig, Successive occurrence of ferromagnetic and shape memory properties during crystallization of Ni—Mn— Ga freestanding films, Journal of Magnetism and Magnetic Materials 302 (2006) 421-428.
    [58] J. Tellinen, I. Suorsa, A. Jaaskelainen, I.Aaltio, K. Ullakko, "Basic Properties of Magnetic Shape Memory Actuators", Actuator 2002, Bremen Germany, June.2002.
    [59] M. Kohl, S. Hoffmann, Y. Liu., M. Ohtsuka., T. Takagi, Optical scanner based on a NiMnGa thin film microactuator, International Conference on Martensitic Transformations, Espoo, Finland ,Jun 10-14 2002, p 1185-1188.
    [60] M. Kohl, D. Brugger, M. Ohtsuka, T. Takagi, A novel actuation mechanism on the basis of ferromagnetic SMA thin films. Sensors and Actuators A, 114 (2004) 445-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700