特异启动子控制的GhGA20ox1基因对棉花纤维发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上最重要的天然纤维作物,也是最重要的经济作物。我国是世界上最大的纺织品生产国和消费国,棉花产业在我国的国民经济中具有举足轻重的地位。近年来,随着人民生活水平的提高和纺织技术的革新,对棉花产量和品质提出了更高的要求。一个优良的棉花品种,不仅要产量高,而且纤维品质要好,方能实现其最终产品价值。基因工程育种技术可以打破物种间的遗传障碍,实现优良目的基因的定向转移,同时具有后代易于稳定,育种周期短等优点,这为棉花纤维产量和品质的改良提供了新的途径。
     赤霉素(Gibberellins,GAs)是一类重要的植物激素,影响着高等植物生活史的各个阶段,如种子萌发,茎的伸长,叶的伸展,花器官的诱导和发育及种子和果实的形成。研究表明,棉花纤维细胞的起始与伸长与IAA、GAs和BR等植物激素相关。在培养基中添加GA和IAA,培养的胚珠着生纤维的数量显著增加;在田间自然生长状态下,对开花前或开花后的花蕾和棉铃外施GA和IAA,可以明显增加纤维细胞的数量。本实验室前期克隆了棉花GA20-氧化酶基因(GhGA20ox1),并发现超量表达该基因能促进棉花GA合成,进而促进纤维起始和早期伸长。本论文在前期研究的基础上,深入分析了GhGA20ox1基因的超量表达和RNA干扰对棉花(特别是纤维)发育的影响,进一步研究了Fbp7、E6和Sub启动子驱动的GhGA20ox1正义与反义基因对棉花生长发育的影响。主要结果如下:
     观察发现,GhGA20ox1超量表达的棉花表现出GA过量表达的性状,如:植株变高、节间伸长、叶片变小、现蕾开花晚、结实率低,并且纤维较野生型略长,种子略小。
     通过遗传转化,共获得特异启动子Fbp7、E6和Sub调控下正义和反义的GhGA20ox1转基因棉花植株83株,GUS检验均为阳性。经RT-PCR分析,找出了基因表达量相对提高和降低的株系。对基因表达量相对提高和降低的株系进行Southern blotting分析,证实了GhGA20ox1基因均以单拷贝的形式整合到棉花基因组中。对转基因植株表型的观察,未发现特异启动子Fbp7、E6和Sub调控下的GhGA20ox1正义和反义表达的植株与野生型植株有显著差异。
     对Fbp7:GA20和Fbp7:AntiGA20植株0DPA的胚珠进行扫描电镜观察,发现Fbp7:AntiGA20的转基因棉花胚珠表面纤维细胞突起数目减少,35S:GA20的纤维突起明显。对35S:GA20、35S:GA20RNAi、Fbp7:GA20和Fbp7:AntiGA20植株1DPA的胚珠进行石蜡切片观察,发现35S:GA20RNAi的纤维突起数目较少,其余转基因棉花株系未观察到明显差异。对35S:GA20、35S:GA20RNAi、Fbp7:GA20、Fbp7:AntiGA20、E6:AntiGA20、Sub:GA20和Sub:AntiGA20转基因棉花成熟纤维数目进行统计,发现Fbp7:AntiGA20和35S:GA20RNAi转基因棉花植株单粒种子着生的长纤维数量都比对照少。
     对转基因棉花纤维进行品质检测,结果表明,Fbp7:GA20转基因棉花纤维的细度和强度均比对照有所改良,但改良程度不及超量表达植株。
     上述结果说明,GhGA20ox1基因在棉花纤维发育和品质形成中具有重要的作用。
Cotton fiber is an important raw material for textile industry, and cotton has an important strategic status in our national economy. In recent years, textile industry focus their economic considerations on fiber quality, and consistently demand better lint quality. Because of the negative relationship between fiber productivity and quality; cotton breeding nowadays faces a big challenge to simultaneously improve cotton yield and fiber quality. Genetic engineering provided a new strategy and excellent perspectives to cotton breeders. These limitations in traditional breeding can be overcome through genetic engineering, which enables the transfer of genes from any source into cotton and changes the negative associability of yield and quality.
     Gibberellins are endogenous hormones controlling numerous aspects of plant growth and development such as seeds germination, stem elongation, leaf shape and the development of flower and fruit. Pre- and post-anthesis application of exogenous GA can improve fiber production in upland cotton. A cotton GA 20-oxidase gene (GhGA20ox1) was cloned previously in our lab, and overexpression of this gene promote GA biosynthesis in cotton, and further fiber initiation and elongation at the early stage. On the basis of previous researches, the phenotypic variations in the GhGA20ox1 overexpressing was analyzed in depth, and by cotton transformation, the influence of Fbp7-, E6-, and Sub-driven GhGA20ox1 on fiber development was further studied in the present thesis.
     The main results are as following:
     35S:GA20 transgenic cotton plants showed GA-overproduction phenotype. This phenotype includes higher plant, longer internodes and fiber, smaller leaf and seed, later flowering and lower boll setting rate.
     A total of eighty-three GUS positive primary (T_0) transgenic lines (Fbp7:GA20, Fbp7:AntiGA20, E6:GA20, E6:AntiGA20, Sub:GA20 and Sub:AntiGA20 ) were generated in this study. RT-PCR was employed to assess GhGA20ox1 mRNA levels in these transgenic cottons, and several lines with enhanced or reduced expression of targeted genes were identified and were used to analyze the effects of transgenes on cotton development. Southern blotting analysis indicated that there was single copy of T-DNA present in the investigated cotton lines.
     There were no significant phenotypic changes in plant growth observed between wild-type and Fbp7-, E6-, and Sub-driven GhGA20ox1 transformed cottons. Scanning electron microscope (SEM) observation indicated that the number of fibers initial decreased in 0-DPA ovules of Fbp7:AntiGA20 transgenic cotton, but fiber initiation showed no obvious changes in Fbp7:GA20 cottons, compared to the control ovules. Furthermore, the 1DPA ovules of 35S:GA20, 35S:GA20RNAi, Fbp7:GA20 and Fbp7:AntiGA20 cottons were observed by optical microscope. Only the fibers initiation in 35S:GA20RNAi ovules were found to be reduced.
     The number of mature fiber from the 35S:GA20, 35S:GA20RNAi, Fbp7:GA20, Fbp7:AntiGA20, E6:AntiGA20, Sub:GA20 and Sub:AntiGA20 plants was further investigated. It was found that the number of mature fiber per seed in Fbp7:AntiGA20 and 35S:GA20RNAi transgenic plants were significantly decreased compared to the control.
     Cotton fiber quality test displayed that the fineness and strength of Fbp7: GA20 fiber was slightly improved compared with control fiber, consistent with the improved quality of 35S: GA20 transgenic fiber.
     Our results demonstrated that the GhGA20ox1 gene play an important role in fiber development and the quality formation in cotton.
引文
1.曹宗冀,吴相钰(1980).植物生理学.北京:人民教育出版社;
    2.陈兵林,曹卫星,周治国,朱艳(2007).棉花纤维品质指标的时空分布模型研究.33(5):763-770
    3.单世华(2000).温度对棉纤维品质性状的影响.华北农学院,15(4):120-125.
    4.杜雄明,潘家驹,汪若海(2000).棉纤维细胞分化和发育.棉花学报,12(4):212-217.
    5.杜雄明,陈金桂,张天真,潘家驹,汪若海(1998).5个棉花纤维突变体胚珠胚珠内源激素差异及对纤维分化和前期生长的影响.棉花学报,10(1):43-51.
    6.郭旺珍,孙敬,张天真(2003).棉花纤维品质基因的克隆与分子育种.科学通报,48(5):410-417.
    7.侯磊(2007).棉花GhSCFP的克隆和功能分析.西南大学博士学位论文
    8.李名扬(1992).植物显微技术.西南农业大学植物教研组自编教材.
    9.刘进元,赵广荣,李骥(2000).棉花纤维品质改良的分子工程.植物学报,42(10):991-995.
    10.刘康,孙敬,张天真,潘家驹(1999).内源及外源植物激素对陆地棉无絮突变体胚珠纤维初始发育诱导效应的研究.棉花学报,11(1):48-56.
    11.潘家驹 主编(1999).棉花育种学.北京:中国农业出版社
    12.沈新莲,周宝良(1998)棉纤维发育过程中内源激素动态变化的研究.江苏农业学报,14(4):204-206;
    13.孙振元(1992).IAA和GA在离体棉花胚珠生长和纤维发育中的作用.北京农业大学学报.21:129-135
    14.王朝晖,李景龙(2006).气象因子对湖南省棉花纤维品质的影响 湖南农业大学学报,32(2):111-115;
    15.王学德,朱玉贤,季道藩,蒋淑丽,李悦有(2000).科学通报.45(17):1852-1857;
    16.肖月华(2005)棉花GA-20氧化酶基因的克隆和功能分析.西南农业大学博士学位论文.
    17.于晓红,朱勇清,陈晓亚,许智宏,周宝良,陈松,沈新莲(2000a).种子特异表达ipt转基因棉花的根和纤维的改变.植物学报,42:59-63.
    18.于晓红,朱勇清,林之萍,陈晓亚,许智宏(2000b).亚洲棉GAE6-3A上游序列的分离及其在烟草中的表达.植物生理学报,26(2):143-147.
    19.袁高峰,汪俏梅(2003).赤霉素信号转导研究进展.细胞生物学杂志.25(20):90-94
    20.张天真,孙敬(1992).陆地棉无絮棉突变体纤维初始发育的体外诱导.棉花学报,4(2):84-89;
    21.张震林,周宝良,刘正銮,陈松,张香桂(2004)外源纤维改良基因对棉花纤维品质的的影响研究.华中农业大学学报.2:25-29;
    22.郑雪莲(2007).利用FBP7启动子特异表达生长素合成相关基因(iaaM)对棉花纤维产量和品质的影响.西南大学博士学位论文.
    23.Angenent GC,Busscher M,Franken J,Mol JNM,Van Tunen A(1992).Differential expression of two MADS box genes in wild-type and mutant petunia flowers.The Plant Cell,4:983-993;
    24.Beasley CA(1973).Hormonal regulation of growth in unfertilized cotton ovules.Science,179:1003-1005.
    25.Beasley CA(1979).Cellulose content in fibers of cotton which differ in their lint lengths and extent of fuzz.Physiol Plant,45:77-82.
    26.Beasley CA,Ting IP(1973).The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules.Am J Bot,60:130-139.
    27.Benedic CR,Kohel RJ,Lewis HL(1999).Cotton fiber quality,pp269-288.In Smith CW and Cothren JT(ed.)Cotton.Jhon Wiley & Sons Inc.New York.
    28.Benfey PN,Ren L,Chua NH(1989).The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns.EMBO J,8:2195-2202.
    29.Blazquez MA,Weigel D(2000).Integration of floral inductive signals in Arabidopsis.Nature,404:889-892;
    30.Cedroni M,Cronn R,Adams KL,Wilkins TA,Wendel JF(2003).Evolution and expression of Myb genes in diploid and polyploid cotton.Plant Mol Biol,51:313-325.
    31.Chien JC,Sussex IM(1996).Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana(L.)Heynh.Plant Physiol,111:1321-1328;
    32.Delmer DP,Amor Y(1995).Cellulose biosynthesis.Plant Cell,7:987-1000.
    33.Delmer DP,Pear JR,Andrawis A Stalker DM(1995).Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers.Mol Gen Genet,248:43-51;
    34.Dhindsa RS(1978).Hormonal regulation of cotton ovule and fiber growth.Effects of bromodeoxyurdine,AMO-1618,and p-chlorophenoxyisobutyric acid.Planta,141:269-273.
    35.Dixon DC,Seagull RW,Triplett BA(1994).Changes in the accumulation of β- and β-tubulin isotypes during cotton fiber development.Plant Physiol,105:1347-1353;
    36.Gialvalis S,Seagull R W(2001)Plant hormones alter fiber initiation in unfertilized cultured ovules of Gossypium hirsutum,Jcotton Sci.5:252-258;
    37.Graves DA,Stewart JM(1988).Chronology of the differentiation of cotton.(Gossypium hirsutum L.)fiber cells.Planta,175:254-258.
    38.Gubler F,Raventors D,Keys M,Watts R,Mundy J,Jacobsen JV(1999).Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone.Plant J,17:1-9;
    39.Hedden P,Phillips AL(2000).Gibberellin metabolism:New insights revealed by the genes.Trends Plant Sci.5:523-530;
    40.Huang S,Raman AS,Ream JE Fujiwara H,Cerny RE,Brown SM(1998)Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis.Plant Physiol.118:773-781;
    41.Itoh H,Tanaka-Ueguchi M,Kawaaide H,Chen X,Kamiya Y,Matsuoka M(1999).The gene encoding tobacoo gibberellin 3 beta-hydroxylase at the site of GA acting during stem elongation and flower organ development.Plant J,20(1):15-24;
    42.Ji SJ,Lu YC,Li J,Wei G,Liang XJ,Zhu YX(2002).Aβ-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast.Biochem Biophy Res Commu,296:1245-1250.
    43.John ME(1992).Gene expression in cotton(Gossypium hirsutum L)fiber:Cloning of the mRNAs Proceedings of the National Academy of Sciences(USA).89:5769-5773
    44.John ME(1995).Characterization of a botton(Gossypium hirsutum L.)fiber mRNA(Fb-B6).Plant Physiol,107:1477-1478.
    45.John ME(1996a).Genetically engineering cotton plants for altered fiber.United States patent no:5495070.
    46.John ME(1996b).Structural characterization of genes corresponding to cotton fiber mRNA,E6:reduced E6 protein in transgenic plants by antisense gene.Plant Mol Biol,30:297-306.
    47.John ME(1999).Genetic engineering strategies for cotton fiber modification.In Basra AS(ed)Cotton fibers:developmental biology,quality improvement,and textile processing.Food Prodicts Press.an imprinting of Haworth Press.Inc.New York.271-292
    48.John ME,Keller G(1996).Metabolic pathway engineering in cotton fiber:Biosynthesis of polyhydroxybutyrate in fiber cells.Proc Acad Sci USA,93:12768-12773.
    49.Jonh ME,Crow LJ(1992).Gene expression in cotton(Gossypium hirsutum L.)fiber:cloning of the mRNAs.Proc Acad Sci USA,89:5769-5773;
    50.Joshi P,Stewazd A,Med J,(1988).Ultrastruetuzal localization of ATPase activity in cotton fiber during elongation.Protoplasma,143:1-10;
    51.Kawai M,Atsuka S,Uchimiya H(1998).Isolation of a cotton CAP gene:a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation.Plant Cell Physiol,39:1380-1383;
    52.Kim HJ,Triplett BA(2001).Cotton fiber growth in planta and in vitro.Models for plant cell elongation and cell wall biogenesis.Plant Physiol,127:1361-1366;
    53.Kosuge T,Heskett M.G,Wilson EE(1966).Microbial synthesis and degradation of indole-3-acetic acid I.The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi.J Bio.Chem,241:3738-3744.
    54.Liang X E,Xue Y B(2002)Development and application of a transformation-competent artificial chromosome(TAC)genomic DNA library in allotetrapolid Cotton(Gossypium hirsutum L).棉花学报.14:52-56
    55.Liu H C,Jenkins J N(2000).Cloning and promoter analysis of thecotton lipid transfer protein gene Ltp3.Biochim and Biophysica Acta.1487(1):106-111
    56.Loguerico LL,Zhang JQ,Wilkins TA(1999).Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton(Gossypium hirsutum L.). Mol Gen Genet, 261: 660-671.
    57. Ma DP, TAN H (1997). Cloning and characterization of a cotton lipidtransfer protein specifically expressed in fiber cells . Biochim and Biophysica Acta . 1344 :111-114
    58. Ma DP, Si Y (1995). Differential expression of lipid transfer proteingene in cotton fiber. Biochim and Biophysica Acta 1257 :81-84
    59. Maria E. Eriksson, Maria Israelsson, Olof Olsson, and Thomas Moritz (2000). Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology..7(18)184-788;
    60. Murashige T, Skoog F (1962 ). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant, 1962,15: 473-497
    61. Orford S J, Timmis J N.( 1998) Specific expression of an expansion gene during elongation of cotton fibers. Biochim Biophy Acta, .1398: 342-346;
    62. Orford SJ, Timmis JN (1997). Abundant mRNAs specific to the developing cotton fiber. Theor Appl Genet, 94: 909-918.
    63. Orford SJ, Timmis JN (2000). Expression of a lipid transfer protein gene family during cotton fibre development. Biochim Biophys Acta, 1483: 275-284.
    64. Perazza D,Vachon G,and Herzog M (1998) .Gibberellins promoter trichome formation by up-regulating GLABROUS1 in Arabidopsis.Plant Physiol,117:375-383;
    65. Phillips AL, Ward DA, Uknes S, Appleford NEJ, Lange T, Huttly A, Gaskin P, Graebe JE, Hedden P (1995) .Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol, 108:1049-1057;
    66. Rinehart J A ,Petersen M W, John M E (1996) . Tissue- specific and developmental regulation of cotton gene FbL2A. Plant Physiol, 112 :1331-1341;
    67. Ruan YL, Llewellyn DJ, Furbank RT (2003). Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell, 15: 952-964.
    68. Sambrook J, Russell DW (2001). Molecular cloning: A laboratory manual (3nd). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
    69. Sanders PR, Winter JA, Barnason AR, Rogers SG, Fraley RT (1987). Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res 4:1543-1558.
    70. Savidge B, Rounsley SD, Yanofsky MF (1995). Temporal relationship berween the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell, 7: 721-733.
    71. Seagull RW (1990). The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma, 159: 44-59.
    72. Seagull RW, Giavalis S. (2004). Pre- and post-anthesis application of exogenous hormones alters fiber production in Gossypium hirsutum L. cultivar Maxxa GTO. J Cotton Sci, 8: 105-111.
    73. Shenk RU, Hildebrandt AC (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot. 50:199-204
    74. Shimizu Y , S atoshi S,Hatoshi S, Hasegawa O, Kawada T,Sakai F,Hayashi T (1997) .Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells.Plant Cell Physiol,38:375-378;
    75. Silverstone AL, Mak PYA, Casamitjana Martinez E, Sun T (1997).The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics,146:1087-1099;
    76. Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998). Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regualated . Plant Physiol,116:1539-1549;
    77. Song P, Allen RD (1997). Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display. Biochim Biophys Acta, 1351:305-312;
    78. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jurgens G (1999). Coordinated polar localisation of auxin efflux carrier PIN1 by GNOM ARF GEF. Science, 286: 316-318.
    79. Stewart JM (1975). Fiber initiation on the cotton ovule (Gossypium hirsutum). Am J Bot, 62: 723-730.
    80. Sun Y, Fokar M, Asami T, Yoshida S, Allen RD (2004). Characterization of the brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol, 54(2): 221-232.
    81. Whittaker DJ, Triplett BA (1999). Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiol, 121:181-188.
    82. Wooder FL, Gubler F, Pogon BJ, Jacobsen JV (2003) .A Mak-lilk kinase is arepressor of GAMYB in barley aleurone .Plant J,33:707-717;
    83. Wu K, Li L,Gage DA, Zeevaart JAD (1996). Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol , 110:547-554
    84. Xiao YueHua, Ye YingFu, Peng Yi, Li XianBi, Luo Ming, Hou Lei, Luo Xiao Ying, Li DeMou, Pei Yan (2006). Functional Expression of the Cotton Gibberellic Acid Oxidase Homologous Gene GhGA20oxl in Tobacco. Journal of Plant Physiology and Molecular Biology, 32 (5): 563 -569;
    85. Zhao GR, Liu JY (2002). Isolation of a cotton RGP gene: A homology of reversibly glycosylated polypeptide highly expressed during fiber development. Biochem Biophys Acta, 1574: 370-374;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700