低能质子和电子辐照GaAs/Ge太阳电池性能演化及损伤机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过空间辐射环境地面模拟试验,对航天器应用的GaAs/Ge太阳电池在质子、电子及其综合辐照作用下电性能的演化规律及损伤机理进行了研究。采用了单因素质子、单因素电子、先质子后电子、先电子后质子以及质子和电子同时辐照五种辐照方式。质子与电子的能量选为50~170keV,电子注量达到1×10~(16)e/cm~2,质子照注量达到3×10~(12)p/cm~2。通过伏安特性、光谱响应、光致发光光谱、深能级瞬态谱、光学反射光谱及霍尔效应等测试手段揭示了质子、电子单因素和综合因素辐照条件下GaAs/Ge太阳电池的性能演化规律,分析了辐照导致GaAs/Ge太阳电池短路电流(Isc)、开路电压(Voc)、最大功率(Pm)和填充因子(FF)等特性参数退化的机理。
     质子辐照后I-V测试分析结果表明,小于200keV质子辐照能量相同时,随辐照注量的增加,GaAs/Ge太阳电池的Isc、Voc、Pm和FF等特性参数降低。辐照注量相同时,质子能量越高,电池性能衰降程度越大。质子辐照后GaAs/Ge太阳电池的量子效率随辐照能量和注量增大而降低;能量较低时呈现短波效应,而随着能量增高,引起短波效应的同时出现长波效应。随着辐照能量和注量的增加,GaAs/Ge太阳电池光致发光峰的峰高降低,半峰宽变宽,峰位右移。质子辐照在GaAs/Ge太阳电池的p区、结区和n区分别引入了高密度的深能级缺陷,缺陷的能级位置随辐照能量和注量的不同而变化。在所试验的GaAs/Ge太阳电池中主要产生了Ec-0.24eV、Ec-0.33eV、Ec-0.38eV、Ec-0.52eV、Ec-0.72eV和Ec-0.75eV六个深能级。
     原位I-V测试分析结果表明,小于200keV的电子辐照能使GaAs/Ge太阳电池的性能参数降低。电子辐照能量相同时,电池的Isc、Voc、Pm和FF等性能参数均随辐照注量的增加而降低。辐照注量相同时,电池性能随辐照能量增高而下降。能量小于200keV的电子辐照对GaAs/Ge太阳电池引起的性能衰降,可以在室温放置过程中逐步得到恢复。不同能量与注量低能电子辐照后,GaAs/Ge太阳电池的量子效率有所减小,光学反射率有所升高,但尚未发现深能级缺陷形成。
     低能质子与电子顺序辐照和同时辐照试验结果表明,同时辐照比顺序辐照更能使GaAs/Ge太阳电池的电性能降低。顺序辐照时,低能质子对电池性能退化起主要作用。质子与电子同时辐照时,GaAs/Ge太阳电池量子效率衰降最严重,其次是电子和质子的顺序辐照。质子与电子综合辐照对GaAs/Ge太阳电池性能的影响具有协合效应。GaAs/Ge太阳电池综合辐照前后PL光谱发生变化,GaAs特征峰强度经综合辐照后明显降低,半峰宽有少许增宽,峰位发生轻微红移。综合辐照下,量子效率下降的幅度依次是:质子与电子同时辐照>质子和电子顺序辐照>单独质子辐照>>单独电子辐照。
Using the ground-based environmental simulations for the irradiations of protons, electrons and their synergistic effects, the electric property degradations and damage mechanisms of the new-generation GaAs/Ge solar cells were investigated. In this paper, there were five types of irradiated modes chosen to perform the investigations, namely irradiations of single protons, single electrons, protons or electrons followed sequentially by electrons or protons, and synchronous one of both electrons and protons. The energies of protons and electrons were set in the range from 70keV to 170keV, while the maximum fluences were up to 1×1016cm-2 for electrons and 3×1012cm-2 for protons. Some complementary techniques, such as I-V measurements, spectral responses (SR) analysis, photoluminescence spectra (PL), deep level transition spectra (DLTS), x-ray double-crystal diffraction and Hall effect analysis, were applied to expose the property evolutions and damaged mechanisms of the irradiated cells.
     The results indicate that, after <200keV proton irradiations, the electric properties such as the short circuit current (Isc),the open circuit voltage (Voc) ,the maximum output power (Pm) and the filling factor (FF) of the GaAs/Ge solar cells decrease with increasing proton fluence. In the meantime, the damage extent of the solar cells increases with increasing proton energy at a given flux and fluence of protons.
     The analysis of various types of spectra present that proton irradiation induces a great damage and degrades the conversion efficiency of the solar cells. The degradation extent of the spectral responses of the GaAs/Ge solar cells increases with proton energy and fluence in their ranges under investigation. Under the proton irradiation, the degradation occurs in the short wavelength band as the proton energy is lower while the spectral response decreases tend to take place in the longer wavelength bands with increasing the proton energy. The experimental results show also that with increasing the proton energy and fluence, the photoluminescence peak (at around 890 nm) of the GaAs/Ge solar cells reduces, broadens intensively and also presents a slight red-shift in the mean time. It is found from the DLTS results that proton irradiations induce various kinds of deep-level defects in the solar cells. The concentrations and the types of deep level defects in the solar cell change with the proton energy and fluence. The detected defects show deep-level energies at Ec-0.25eV, Ec-0.35eV, Ec-0.54eV, Ec-0.72eV, and Ec-0.75eV, respectively.
     During the <200keV electron irradiation, the in-situ I-V measurements indicate that the irradiation could reduce the electric parameters of the solar cells. The degradation extent increases with increasing the electron energies and fluences. However, it is interested to be noted that this property degradation induced by <200keV electrons can be recovered gradually during afterwards storage period at room temperature. It was also found that the external quantum efficiency shows a slight decrease but the reflectance of the solar cells rises slightly after the electron irradiations. No deep-level defects were detected in the eellctron-irradiated solar cells.
     The results on the combined irradiations of electrons and protons indicate that the electric properties of the solar cells present more degradation after irradiations in the order of the synchronous proton/electrons irradiation, the sequential electron irradiation followed by protons and then protons irradiation followed by electrons. During the sequential process, the damage induced by low-energy protons domains the property degradation of the solar cells. These results imply that there is a synergistic damage effect during the synchronous irradiations. It was also found the degradation effects on the PL spectra and spectral responses of the combined irradiations of the solar cells. Under the experimented irradiations, the quantum effeciencies decrease and the decrease extent is in the following order: synchronous irradiation of electrons and protons > sequential irradiations of protons (electrons) followed by electrons (protons) > single proton irradiations >> single electron irradiations.
引文
1李承受.空间环境下材料的失效.宇航学报. 1992, (1): 1-7
    2赵晶.空间环境对航天器影响的统计分析.环境技术. 1998, 4: 41-52
    3黄本诚,马有礼.航天器空间环境试验技术.北京:国防工业出版社. 2002: 11-93
    4艾尔肯,郭旗,任迪远等.超薄和超薄绒面Si太阳电池的1-MeV电子辐照特性.核技术. 2004, 27(4): 276-280
    5 D.H.Walker, R.L.Statler. Electron Radiation Damage in Gallium Arsenide Solar Cells. Solar Cells. 1987, 22(1): 69-77
    6 N.Tanaka, T.Ishikawa. Energy Dpendence and Dpth Distribution of Electron Beam Induced Damage in GaAs/AlGaAs Fetero-Structures. J Electron Mater. 1994, 23(3): 341
    7吴正云,吴荣华,陈朝等. 1MeV电子辐照对AlxGa1-xAs/GaAs异质面太阳电池性能的影响.量子电子学. 1995, 12(2): 221-226
    8 Xiang Xianbi, Du Wenhui, Chang Xiulan et al. Electron Irradiation and Thermal Anealing Effect on GaAs Solar Cells. Solar Energy Materials and Solar Cells. 1998, (55): 313-322
    9艾尔肯,郭旗,任迪远等.一种国产GaAs/Ge太阳电池的总注量辐照特征.核技术. 2003, 26(9): 696-699
    10金恂叔.航天器环境试验的有效性.环境技术. 1998, 2: 1-11
    11王同权,沈永平,王尚武等.空间辐照环境中的辐照效应.国防科技大学学报. 1999, 21(4): 36-39
    12刘恩科.光电池及其应用.北京:科学出版社. 1996: 109
    13桑野幸德.太阳电池及其应用.北京:中国铁道出版社. 1985: 10-12
    14大林辰藏.冯克嘉译.日地空间物理.北京师范大学出版社. 1984: 1-11
    15孟庆巨,刘海波,孟庆辉.半导体器件物理.北京:科学出版社. 2005: 213-239
    16桑野幸德.太阳电池及其应用.科学出版社. 1990: 33-49
    17夏建白.现代半导体物理.北京大学出版社. 2000: 102-127
    18谢希德,陆栋.固体能带理论.复旦大学出版社. 1998: 140-197
    19都享,叶宗海.低轨道航天器空间环境手册.北京:国防工业出版社.1996:12-14
    20 T.Miyamoto, T.Uchida, N.Yokouchi, et al. Surface Emitting Lasers Grown by Chemical Beam Epitaxy. Journal of Crystal Growth. 1994, 136: 210
    21涂洁磊.新型MIp+-Al0.3Ga0.7As/p-n-n+-GaAs结构太阳电池及辐照效应研究. 四川大学博士论文. 2002: 58
    22王永东,崔容强,徐秀琴.空间太阳电池发展现状及展望.电源技术. 2001, 25(5): 183-185
    23倪明, M.K.Leung, K.Sumathy.太阳电池研究的新进展.可再生能源. 2004, 114(2): 9-11
    24梁宗存,沈辉,李戬洪.太阳电池研究进展.能源工程. 2000(4): 8-11
    25 A.G..Martin, E.Keith, B.Klaus. Solar Cell Efficiency Tables. Progress in Photovoltaics Research and Applications. 1997,(5): 265-268
    26 Y.Ashida. Single-Junction a-Si Solar Cells with over 13% Efficiency. Solar Energy Materials and Solar Cells. 1994, 34: 291-302.
    27 G.Augustine, A.Rohatgi, N.M.Jokerst. IEEE.Transactions on Electron Devices. 1992, 39(10): 2395-2400
    28 D.E.Carlson, C.R.Wroski. Solar Cells Using Discharge-Produced Amorphous Silicon . J Electr. Mater. 1997, 6: 95.
    29 D.B.Bushnell, N.J.Ekins-Daukes, K.W.J.Barnham, et al. Short-Circuit Current Enhancement in Bragg Stack Multi-Quantum-Well Solar Cells for Multi-Junction Space Cell Applications. Solar Energy Materials and Cells. 2003, 75: 299-305
    30 S.S.Li, R.Y.Loo. Deep-Level Defects and Numerical Simulation of Radiation Damage in GaAs Solar Cells. Solar Cells. 1991, 31: 349-377
    31 B.G.Svenfects, C.Jagadish, A.Hallen, et al. Point Defects in MeV Ion-Implanted Silicon Studied by Deep Level Transient Spectroscopy. Nuclear Instruments and Methods in Physics Research. 1995, 106: 183-190
    32 E.F.retwurst, V.Eremin, H.Feick, et al. Investigation of Damage-Induced Defects in Silicon by TCT. Nuclear Instruments and Methods in Physics Research. 1997, 388: 356-360
    33 J.L.Benton, S.Libertino, P.Kringhoj, et al. Evolution from Point to Extended Defects in Ion Implanted Silicon. J.Appl. Phys. 1997, 82(1): 120-130
    34 S.P.Tobin, S.M.Vernon, C.Bajgar, et al. MOCVD Growth of AlGaAs and GaAson Ge Substrates for High Efficiency Tandem Cell Applications. 18th IEEE Photovoltaic Specialists Conference. 1985, 134-139
    35 J.J.Schermer, P.Mulder, G.J.Bauhuis,et al. Thin Film GaAs Epitaxial Lift-OFF Solar Cells for Space Applications. Progress in Photovoltaics: Research and Applications. 2005, 13: 369-380
    36 Rong Wang, Zengliang Guo, Guangpu Wang. Low-Energy Proton Irradiation Effects on GaAs/Ge Solar Cells. Solar Energy Materials and Solar Cells. 2006, 90: 1052-1057
    37 B.E.Anspaugh. GaAs Solar Cell Radiation Handbook. JPL Publication, 1996
    38 Wenjun Chen, Zaixiang Qiao, Qiang Sun et al. Bragg Reflector for GaAs Solar Cells on Ge Substrate. Proceedings of SPIE. 2001, 4288: 414-421
    39 Hongwei Xu, Tingsheng Wang. Enhancement of Photoelectron Emission Efficiency of Negative Electron Affinity GaAs Cathode by Embedded GaAs/AlAs Multilayer Reflector. Chinese Journal of Semiconductors. 1992, 13(11): 675
    40 Guohong Wang, Raoyu Ma, Qing Cao et al. High Intensity AlGaInP Yellow LEDs Grown by LP-MOCVD. Chinese Journal of Semiconductors. 1998,19(9): 712
    41 A.Ibaraki, K.Kawashima, K.Furusawa, et al. GaAs/GaAlAs DBR Surface Emitting Lasers Grown by MOVPE. Journal of Crystal Growth. 1988, 93: 809
    42 W. R. Hardgrove. Space Smulation Test for Thermal Control materials. 16th Space Simulation Conference, New York, 1990: 266-279
    43刘运宏,王荣,孙旭芳等. GaAs太阳电池引入量子阱结构后抗辐照性能的变化.核技术. 2006, 29(4): 269-270
    44 R.Kachare, B.E.Anspaugh. Spatial Resolution and Nature of Defects Produced by Low-Energy Proton Irradiation of GaAs Solar Cells. Applied Physics Letters. 1986, 49(21): 1459-1461
    45王荣,杨靖波,范强等.量子阱GaAs太阳电池的质子辐照效应.半导体学报. 2005, 26(8): 1560
    46 T.Sumita, M.Imaizumi, S.Matsuda, et al. Proton Radiation Analysis of Multi-junction Space Solar Cells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2003, 206: 448
    47 M.Gonzalez, C.L.Andre. Deep Level Defects in Proton Radiated GaAs Grown on Metamorphic SiGe/Si Substrates. Journal of Applied Physics. 2006, 100(034503)
    48刘恩科,朱秉升,罗晋生等.半导体物理学.西安交通大学出版社. 1998:64
    49 D.V.Lang, A.Y.Cho, A.C.Gossard, et al. Study of Electron Traps in n-GaAs Grown by Molecular Beam Epitaxy. Joumal of Applied Physics.1976,47(6): 2558-2564
    50胡震宇.空间辐照及热循环作用下背场硅太阳电池损伤效应与机理.哈尔滨工业大学论文. 2003: 1-6
    51刘运宏,王荣,孙旭芳.碳离子辐照对空间GaAs/Ge太阳电池性能影响的研究.核技术. 2007, 30(4): 260-261
    52 N.Mardesich, M.Gillanders, B.Cavicch. Production and Characterization of High Efficiency LPE AlGaAs Space Solar Cells. 18th IEEE Photovoltaics Specialists Conf . (New York: IEEE P ress). 1985: 1052110
    53 G.Augustine, A.Rohatgi, N.M.Jokerst. Base Doping Optimization for Radiation-hard Si, GaAs, and InP Solar Cells. IEEE Transactions on Electron Devices. 1992, 39(10): 2395
    54 B.Bollani, R.Campesato, R.L.Crabb. Thin GaAs/Ge Solar Cell Development. European Space Power Conference. 1991, 2: 495-500
    55 L.C.Kilmer. Raadiation Degration Modeling of High Efficiency GaAs/Ge Solar Cells. 1994 IEEE First World Conference on Photovoltaic Engrgy Conversion. 1994: 2156-2160
    56 S.Khemthong, M.Yang, T.Ou et al.. Production Experience and Performance of Large Area GaAs/Ge Solar Cells. IEEE First World Conference on Photovoltaic Engrgy Conversion. 1994: 2161-2164
    57 M.O.Manasreh, P.Ballet, J.B.Smathers. Proton Irradiation Effects on the Intersub and Transition in GaAs/AlGaAs Multiple Quantum Wells with Bulk or Superlattice Barriers. Appl Phys Lett. 1999, 75(4): 525
    58 Y.Shon, T.W.Kang, T.W.Kim. Deep Levels in Neutron-Transmutation Doped and Thermally Annealed Semi-Insulating GaAs. Applied Surface Science. 1998, 125(324): 321-324
    59 R.Swanson, P.Verlinden, R.Crane. High Efficiency Silicon Solar Cells. 11th E C Photovoltaic Solar Energy conference. Montreux, Switzerland: 1992, 210212:35-40
    60何炜瑜. GaAs系列太阳电池技术与发展.中国民航学院学报. 2004, (4): 59-64
    61陆剑峰,张忠卫,池卫英等.空间用GaAs/Ge太阳电池器件工艺研究.稀有金属. 2004, 28(3): 508-510
    62 M.Hadrami, L.Roubi, M.Zazoui, et al. Relation between Solar Cell Parameters and Space Degradation. Solar Energy Materials and Solar Cells. 2006, 90: 1486-1497
    63 N.D.Angelis, J.C.Bourgoin, Y.Takamoto, et al. Solar Cell Degradation by Electron Irradiation Comparison between Si, GaAs and GaInD Cells. Solar Energy Materials and Solar Cells. 2001, 66: 495-500
    64张忠卫,陆剑峰,池卫英等.砷化镓太阳电池技术的进展与前景.上海航天. 2003 (3): 33-38
    65 M.Toshiro, S.Yoshitaka. Solar Cells Coated with Fluorescent Coloring Agent. J Electrochem. Soc. 1998, 145 (8): 8
    66杨照德.空间用太阳电池的发展及应用.中国航天. 1993, (3): 15-17
    67周勋,徐明.太阳电池的研究和应用进展.贵州师范大学学报. 2000, 18(2): 64-74
    68李标,向贤碧,游志朴等.高效AlxGa1-xAs/GaAs太阳电池的研制及辐照效应.半导体学报. 1995, 16(10): 25-29
    69杨倩志,吴鼎芬,管丽民. Ga1-xAlxAs/GaAs太阳电池.太阳能学报. 1981, 2(2): 125-130
    70施小忠,夏冠群,汪乐等. MOCVD GaAs太阳电池的结特性.半导体学报. 1999, 20(1): 72-78
    71 S.P.Tobin, S.M.Vernon, M.M.Vernon, et al. Enhanced Light Absorption in GaAs Solar Cells with Internal Bragg Reflectors. 22th IEEE Photovoltaic Specialists Conference, 1991, 147
    72 P. A. Iles, Yea-Chuan M. Yeh, F. H. Ho et al. High-efficiency GaAs Solar Cells Grown on Inactive-Ge Substrates. IEEE Electron Device Letters. 1990, 11(4): 140-142
    73 Ken Takahashi, Shigeki Yamada, Tsunehiro Unno et al. Characteristics of GaAs Solar Cells on Ge Substrate with a Preliminary Grown Thin Layer of AlGaAs. Solar Energy Materials and Solar Cells. 1998, 50: 169-176
    74 Chen Minbo, Zhang Zhongwei. Development of the GaAs Solar Cell for Space Application. 25th IEEE Photovoltaic Specialists Conference, Washington. D. C, 1996, 122
    75 S.P.Tobin. High Efficiency GaAs/Ge Monolithic Tandem Solar Cells. 20th IEEE Photovoltaic Specialists Conference, 1988, 405-410
    76 J.C.Chen, M.L.Ristow, J.L.Cubbage, et al. Effects of Metalorganic Chemical Vapor Deposition Growth Conditions on the GaAs/Ge Solar Cell Properties. Applied Physics Letters. 1991, 58(20): 2282-2284
    77 A.Blondeel, P.Clauws, B.Depuydt. Life Time Measurements on Ge Wafers for Ge/GaAs Solar Cells-Chemical Surface Passivation. Materials Science in Semiconductor Processing. 2001, 4: 301-303
    78 S.Scholz, J.Bauer, G.Leibiger, et al. MOVEP Growth of GaAs on Ge Substrates by Inserting a Thin Low Temperature Buffer Layer. Cryst. 2006, 41(2): 111-116
    79 S.P.Tobin, S.M.Vernon, C.Bajgar. Assessment of MOCVD and MBE - Grown GaAs for High-Efficiency Solar Cell Applications. IEEE Trans. Electron Devices. 1990, 37(2): 469-477
    80 Wang Rong. High-energy Proton Irradiation Effects on GaAs/Ge Space Solar Cells. Acta Metallurgica Sinica. 2001, 14(6): 463
    81 C.M.Yeh, K.I.Chang, J.L.Tandon. Large Scale OM-CVD Grow of GaAs Solar Cells. 17th IEEE Photovoltaics Specialists Conf. (New York: IEEE Press). 1984: 36241
    82 A.W.Bett. Over 31% Efficient GaAs/GaSb Tandem Concentrator Solar Cells. Proceedings of IEEE PVSEC-26. 1997:931-934
    83 A.I.Peter. Future Use of Silicon Solar Cells in Extraterrestrial Applications. Progress in Photovoltaics. 1994, 2: 95-106
    84 B.Regan, M.Gratzel. A Low-Cost High-Efficiency Solar Cell Based on Dyesensitized Colloidal TiO2 Films. Nature. 1991, 353(24): 716- 737
    85 C.Honsberg, A.M.Barnett. Ligh Temission as a Solar Cell Analysis Technique. Solar Cells. 1987, 20: 59-63
    86 S.R.Kurtz, D.Myers, J.M.Olson. Projected Performance of Threeand Fourjunction Devices Using GaAs and GaInP. Anaheim CA: Proceedings of 26th IEEEPVSC. 1997: 875-878
    87 D.S.Day, M.Y.Tsai and B.G.Streetman. Deep-Level-Transient Spectroscopy:System Effects and Data Analysis. J.Appl. Phys. 1979,50(8): 5093-5098
    88 J.C.Bourgoin, M.Zazoui. Irradiation-Induced Degradation in Solar Cell: Characterization of Recombination Centres. Semiconductor Science and Technology. 2002, 17: 453-460
    89 J.G.Werthen, G.F.Virsheep, C.W.Ford. 21% (One Sun, Air Mass Zero) 4cm2 GaAs Space Solar Cells. Appl. Phys. Lett. 1986, 48(1): 74 -75
    90 J.Lachance, C.Coia, A.C.Fozza. Radiation-Induced Degration of Polymeric Spacecraft Materials under Protective Oxide Coatings. Nuclear Insrument and Methods in Physics Research B. 2001, 185: 328-335
    91 L.C.Kilmer, C.Honsberg, J.E.Phillips. Shunt Diode Analysis using Light Emission for Gallium Arsenide Solar Cell Predictability. 20th IEEE Photovoltaics Specialists Conf. (New York: IEEE Press). 1988: 785
    92 P.R.Sharps, D.J.Aiken, M.A.Stan, et al. Proton and Electron Radiation Data and Analysis of GaInP2/GaAs/Ge Solar Cells. 17th Space Photovoltaic Research and Technology Conference. America: NASA, 2002,10: 55-64
    93 L.Fraas, B.Daniels,et al.30%Efficient InGaP/GaAs/GaSb Cell Interconnected Circuits for Line-Focus Concentrator Arrays. Proceedings of European PVSEC-16, 2000.
    94 M.C.Chen, D.V.Lang, W.C.Dautremont-Smith, et al. Effects of Leakage Current on Deep Level Transient Spectroscopy. J.Appl. Phys. 1984, 44(8): 790-792
    95 M.González, C.L.Andre, A.J.Pitera, et al. Deep Level Defects in Proton Radiated GaAs Grown on Metamorphic SiGe/Si Substrates. Journal of Applied Physics. 2006, 100, 034503: 1-7
    96 M.Konagai. Current Status and Perspectives of Amorphous Si Thin Film Solar Cells. Tech. Dig Int PVSEC26. New Delhi. 1996: 429
    97 M.Yamaguchi, S.Katsumoto, C.Amano. Aunified Model for Radiation Resistance of Advanced Space Solar Cells. Hawaii: Proceedings of WCPEC21. 1994: 2149-2152
    98 N.H.Karam,R.R.King,M.H.addad. Recent Developments in High Efficiency Ga0.5In0.5P/GaAs/Ge Dual and Triple-Junction Solar Cells: Steps to Next-Greneration PV Cells. Solar Energy Materials and Solar Cells. 2001,66: 453-466
    99 C.D.Keener. Progress Toward Technology Transition of GaInP/GaAs/Ge Multijunction Solar Cells. Anaheim CA: Proceedings of 26th IEEE PVSC. 1997: 786-792
    100 P.K.Chiang. Experimental Results of Ga InP/GaAs/Ge Triple Junction Cell Development for Space Systerns. Washington DC: Proceedings of 25th IEEEPVSC. 1996: 183-186
    101 R.C.Knechtli, R.Y.Loo, G.S.Kamath. Hith-Efficiency GaAs Solar Cells. IEEE Transactions on Electron Devices. 1984, ED-31(5): 576-588
    102 R.Kimber and C.Goodbody. Cell Types for Geostationary Applications. European Space Power Conference. 1995:393-398
    103 J.l.Boone and T.P.Van Doren. Solar Cell Design Based on a Distributed Diode Analysis. IEEE Trans. On Electron Devices. 1978, ED-25(7): 767-771
    104 S.R.Messenger, E.A.Burke, T.L.Morton, et al. Modelling Low Energy Proton Radiation Effects on Solar Cells. 3rd World Conference on Photovoltaic Energy Conversion. Osaka, Japan. 2003, 5: 11-18
    105 T.A.CROSS. GaAs Solar Panels for Small Satelliets: Performance Data and Technology Trends. Washington DC: Proceedings of 25th IEEE PVSC. 1996: 276-282
    106 W.R.Hardgrove. Space Simulation Test for Thermal Control Materials. 16th Space Simulation Conference New York. 1990: 266-279
    107 R.Kimber, C.Goodbody. Cell Types for Geostationary Array Applications. European Space Power Conference. 1995, 2: 393-398
    108 K.D.Swapan, M.Kanak, K.P.Pratip. Analysis of Thin Silicon Solar Cells for High Efficiency. Solar Energy Materials and Solar Cells. 1994, 33: 483 -497
    109 T.Ishiara, S.Arimoto. High Efficiency Thin Film Silicon Solar Prepared by Zone-Melting Recrystallization. Appl. Phys Lett. 1995, 63: 3604-3606
    110 R.A.Sinton, D.E.Kane, R.A.Crane. Simplified Back-Side-Contact Silicon Solar Cell Designs for One-Sun and Concentrator Applications. Twenty-Third IEEE Photovoltaic Specialists Conference. 1993: 324-327
    111 Takashi Noguchi and Masato Vesugi. Electron Energy Dependence of Relative Damage Coefficient of Silicon Solar Cells for Space Use. Technical Digest of the International PVSEC25. 1990: 557
    112 M.Yamaguchi, S.J.Taylor. Analysis of Damage to Silicon Solar Cells by HighFluence Electron Rrrasiation. Conference Record of the 25th IEEE Photovoltaic Specialists Conference, Washington. 1996: 166-170
    113 Zhao Jianhua, Wang Aihua, A.G.MARTIN. High Efficiency Silicon Space Solar Cell Research at the University of New South Wales. 49th International Astronautical Congress. Melbourne. 1998,9: 28
    114 K.D.Swapan, M.Kanak, K.P.Pratip. Analysis of Thin-Silicon Solar Cells for High Efficiency. Solar Energy Materials and Solar Cells. 1994, 33: 483-497
    115 H.Washio, T.Katsu, Y.Tonomura. High Efficiency Silicon Solar Cell. 11th E C Photovoltaic Solar Energy Conference. Montreux. Switzerland. 1992210: 12-16
    116 J.H.Werner, J.K.Arch, R.Brendel. Crys-talline Thin Film Silicon Solar Cells. Proc 12th European Photovoltaic Solar Energy Conference Amsterdam. The Netherland. 1994: 1823 - 1826
    117夏建白,朱邦芬.半导体超晶格物理,上海:上海科学技术出版社. 1995: 86
    118吴建荣,杜丕一,韩高荣等.非晶硅太阳电池研究现状.材料导报. 1999, 13: 38-39.
    119方亮,韩大星,王万录.非晶硅合金太阳电池的最新进展.太阳能. 1999(1): 10-12.
    120耿新华,李洪波,王宗畔等. 400cm2 a-Si/a-Si叠层太阳电池的研究.太阳能学报. 1998 (4): 345-351
    121施小忠,李世清,鄢和平等. GaAs太阳电池辐照效应的研究现状.半导体光电. 1995, 16(4): 313-321
    122陈晓杰,李爱珍,王嘉宽等. Al0.85Ga0.15As/GaAs太阳电池器件工艺优化研究.半导体光电. 2000, 21(5): 339-342
    123陈晔,李世清.背场硅太阳电池离子辐照效应.半导体光学. 1997, 18(1): 51-55
    124陈晔,鄢和平,李世清. BSF硅太阳电池重离子辐照的深能级瞬态谱.武汉大学学报(自然科学版). 1998, 44(1): 74-76
    125陈允魁.红外吸收光谱法及其应用.上海交通大学出版社. 1993: 140
    126陈哲艮,金步平.一种新型太阳电池的设计.太阳能学报. 1999, 20(3): 229-232
    127丁扣宝,胡莲君.电子辐照CZ—Si单晶的深能级缺陷.半导体技术. 1996 (10): 52-53
    128封松林,周洁,卢励吾.超晶格电子辐照缺陷的亚稳态特性.红外与毫米波学报. 1994, 13 (3): 161
    129葛兆云,林理彬.双束质子辐照砷化镓光电导探测器的I-V特性.强激光与粒子束. 2004, 16(4): 456-460
    130何宝平,王桂珍,龚建成等.空间低注量率辐照诱导电荷效应评估技术研究.强激光与粒子束. 2003, 15(3): 16-19
    131何波,史衍丽,徐静. C-V法测量pn结杂质浓度分布的基本原理及应用.红外. 2006, 27(10): 5-10
    132何延才.电子与固体相互作用Monte Carlo模拟.计算物理. 1985, 2(1): 17
    133季振国,袁骏,卢焕明等.锗/硅短周期超晶格的X射线双晶衍射研究.浙江大学学报. 2001, 35(1): 1
    134林理彬,李有梅,陈卫东等. HEMT材料的电子辐照效应.四川大学学报(自然科学版). 1995, 32 (1): 39
    135刘世友.铜铟硒太阳电池的生产与发展.太阳能. 1999(2): 16-17.
    136刘天宇,陆昉.高分辨率FFT-DLTS测试系统.复旦学报(自然科学版). 2001, 40(3): 1150-1155
    137刘文莉,李林,钟景昌等. GaAlAs/GaAs量子阱材料的光荧光谱研究.光电子技术与信息. 2005, 18(4): 23-24
    138 X.B.Xiang, W.H.Du, X.L.Chang and H.R.Yuan. The Study on High Efficient AlGaAs/GaAs Solar Cells. Solar Energy Material and Solar Cells. 2001, 68: 96-103
    139 X.B.Xiang, X.B.Liao, W.H.Du. Proton Irradiation Effects on High Efficient AlGaAs/GaAs Solar Cells. Chinese Journal of Electronics. 1996, 5(2): 36-39
    140 Xiang X B, Du W H, Chang X L, et al. The Study on High Efficient GaAs/Ge Solar Cells. Solar Energy Material and Solar Cells. 2001,68(1):96-103
    141 Xiang Xianbi, Du Wenhui, Chang Xiulan. Electron Irradiation and Thermal Annealing effect on GaAs solar cells. Solar Energy Materials and Solar Cells. 1998, 55: 313
    142 Xiang Xianbi, Fei Xueying, Xu Ying. A Multi-Wafers LPE Technique for AlxGa1-xAs/GaAs Getero Junction Solar Cells. Solar Energy Materials and Solar Cells. 1994, 35 (1-4): 69-74
    143廖华.薄膜太阳电池及其陶瓷硅衬底材料的制备和电子辐照研究.四川大学博士学位论文. 2003: 53
    144陆昉,龚大卫,孙恒慧.同质硅分子束外延层的界面缺陷的研究.物理学报.1994, 43: 1129
    145闵惠芳,钟金权,王振英等. Ga1-xAlxAs/GaAs太阳电池.太阳能学报. 1990, 2(2): 113-117
    146任电胜,郝建民,马浓浓等.现代表面分析技术在半导体材料中的应用.现代仪器. 2003(3): 20-22
    147任电胜,严如岳,华庆恒等.用AES XPS对异质结材料的研究.半导体情报. 1997, 34(6): 42-45
    148施小忠,汪乐,夏冠群.太阳电池栅线的设计.电子学报. 1999,11: 126-128
    149施小忠,夏冠群,汪乐. GaAs太阳电池的体电阻及旁路漏电对电池结特性的影响.固体电子学研究与进展. 1998, 18(4): 392-398
    150史济群.激光开槽埋槽电极硅太阳电池的性能及分析.太阳能学报. 1994, 15 (1): 6-11
    151 R.Y.Loo, G..S.Kamath, S.S.Li. Radiation Damage and Annealing in GaAs Solar Cells. IEEE Transactions on Electron Devices. 1990, 37(2): 485-497
    152 J.C.Bourgoin, N.D.Angelis. Radiation-Induced Defects in Solar Cell Materials. Solar Energy Materials and Solar Cells. 2001, 66: 466-477
    153 M.Yamaguchi, S.J.Taylor. Analysis of Damage to Silicon Solar Cells by High Fluence Electron Irradiation. Conference Record of the 25th IEEE Photovoltaic Specialists Conference, Washington. 1996: 166-170
    154涂洁磊,王亮兴,张忠卫等. GaAs/Ge太阳电池异常I-V特性曲线分析.半导体学报. 2005, 26(1): 193
    155 S. Makham et al. Prediction of Proton-Induced Degradation of GaAs Space Solar Cells. Solar Energy Materials & Solar Cells. 2006, 90: 1513-1518
    156 T. Sumit et al. Proton Radiation Analysis of Multi-Junction Space Solar Cells. Nuclear Instruments and Methods in Physics Research. 2003, 206: 448-451
    157王子琦,陈朝,刘士毅. GaAs异质面太阳电池光谱响应和暗I -V特性的拟合分析.固体电子学研究与进展. 1987, 7(4): 304-313
    158 158Jeffrey H. Warner, et al. Correlation of Electron Radiation Induced-Damage in GaAs Solar Cells. IEEE Transactions on Nuclear Science. 2006, 53(4): 1988-1994
    159苏红兵,陈庭金,施兆顺.电化学沉积生长GaAs薄膜的工艺研究.电子元件与材料. 2003, 22(4): 22-26
    160魏彦章.最近国外航天电源发展概况.第五届全国新能源学术年会, 1990:20-27
    161曹建中.半导体材料的辐照效应.科学出版社. 1993
    162李澄举.太阳电池的辐照损伤机理.微波与通信. 1997, (3): 19-21
    163辛勇,熊传兵,彭学新. MOCVD生长的未掺杂GaN的结晶特性与补偿度关系的研究.发光学报. 2000, 21(1): 33-37
    164杨向东,刘慎业,李朝光等.高灵敏GaAs探测器及应用.强激光与粒子束. 1992, 4(4): 576-580
    165 Wang Rong, Guo Zengliang, Zhang Xinhui, et al. 5-20MeV Proton Irradiation Effects on GaAs/Ge Solar Cells for Space Use. Solar Energy Materials and Solar Cells. 2003, 77: 351-357
    166 X.B.Xiang, W.H.Du, X.B.Liao and X.L.Chang. Proton Irradiation and Thermal Annealing of GaAs Solar Cells. Chinese Journal of Semiconductors. 2001, 6: 3
    167廖志君,林理彬,邹睿.高能质子辐照缺陷对晶闸管开关特性的影响.原子能科学技术增刊. 2000, 34(9): 36-40
    168王荣,司戈丽,郭增良等. 5-20MeV高能质子辐照对空间实用GaAs/Ge太阳电池性能的影响.北京师范大学学报(自然科学版). 2002, 38 (2): 214-217
    169王荣,杨靖波等.量子阱GaAs太阳电池的质子辐射效应.半导体学报. 2005, 26(8): 1558
    170黄万霞,林理彬,曾一平等.质子辐照对GaAs/AlGaAs多量子阱材料光学性质的影响.半导体学报. 1999, 20(11): 956-962
    171杨艳,薛晨阳,张斌珍等.用X双晶衍射法研究InGaAs/GaAs量子阱结构.半导体技术. 2006, 31(2): 107
    172张新辉. GaAs/Ge抗电子辐照研究.电源技术. 2004, 28(1): 16-21
    173邹睿,林理彬.带电粒子辐照对GaAs/AlGaAs多量子阱光学性质的影响.固体电子学研究与进展. 2002, 22(4): 404-407
    174王祖军,唐本奇,黄绍艳等. GaAs太阳电池1 MeV电子辐射效应数值模拟.核电子学与探测技. 2005, 25(1): 97
    175廖志君,林理彬,黄万霞等.粒子束辐照在AlGaAs/ GaAs量子阱材料中引入的深能级缺陷.四川大学学报(自然科学版). 2000, 37(5): 715-719
    176孙旭芳,王荣,刘运宏等.质子辐照与电子辐照对空间GaAs/Ge太阳电池性能影响比较.北京师范大学学报. 2006, 42(5): 489-491
    177А.Я.格里别尔曼,А.К.查依采娃.硅太阳电池.人民邮电出版社. 1964: 10-36
    178蔡世俊.背面点接触高效太阳电池的背电场与串联电阻.太阳能学报. 1997,18 (1): 72-75
    179 B.E.Anspaugh. GaAs Solar Cell Radiation Handbook. 1996, 7: 4-11
    180 QJ1019-86.太阳电池电性能测试方法.中华人民共和国航天工业部部标准. 1986-10-01
    181胡晨明, R.M.怀特.太阳电池.北京大学出版社. 1990: 34-66
    182 P.R.Sharps, D.J.Aiken, M.A.Stan, et al. Proton and Electron Radiation Data and Analysis of GaInP2/GaAs/Ge Solar Cells. Prog. Photovolt: Res.Appl. 2002,10: 383–390
    183 B.E. Anspaugh. GaAs Solar Cell Radiation Handbook. JPL Publication, 1996; 96-99
    184 B.E.Anspaugh. Proton and Electron Damage Coeffcients for GaAs/Ge Solar Cells. In IEEE Proc. 22nd Photovoltaic Specialists Conference, Louisville, KY. 1991: 1593-1598
    185 S.R.Messenger, G.P.Summers, E.A.Burke, et al. Modeling Solar Cell Degradation in Space: a Comparison of the NRL Displacement Damage Dose and the JPL Equivalent Fluence Spproaches. Prog. Photovolt: Res. Appl. 2001, 9: 103-121
    186 G.P.Summers, R.J.Walters, M.A.Xapsos, et al. A New Approach to Damage Prediction for Solar Cells Exposed to Different Radiations. First WCPEC. Dec.5-9, 1994. Hawaii, PP2068-2076
    187沈学础.半导体光学性质.北京:科学出版社. 1992: 633

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700