InAs/GaSb超晶格界面微观结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaSb/GaAs薄膜及InAs/GaSb超晶格等GaSb基材料作为重要的光电功能材料在中远红外探测等领域展现出了极大的应用前景。本文主要研究了GaAs衬底上GaSb薄膜及InAs/GaSb超晶格材料的生长方法及其缺陷分布、结构特征和光电性质。
     本文系统研究了GaAs(001)衬底上GaSb薄膜的外延生长方法。采用二步生长法,引入低温缓冲层提高了GaSb外延层的质量。对GaSb低温缓冲层的生长速度、V/III比、厚度等进行了分析,得到了优化的低温GaSb缓冲层生长参数:生长速率为1.43μm/h,厚度为20nm,V/III束流比为3.0。通过引入低温GaSb缓冲层,降低了GaSb薄膜生长早期的温度,控制了生长初期岛的粗化过程,有效抑制了60°失配位错的形成,从而降低了GaSb薄膜中的穿透位错密度。
     开展了GaSb/GaAs薄膜的微观结构研究。透射电子显微镜观察发现, GaAs衬底上生长的GaSb薄膜中存在着大量的位错,包括位于{111}滑移面内的穿透位错和界面处的失配位错。利用高分辨X射线衍射对在沿[110]方向4°斜切的GaAs衬底上生长的GaSb薄膜中的位错分布进行了研究,结果表明(111)滑移面上的穿透位错密度高于(111)面上的穿透位错密度,[110]方向的位错间距大于[110]方向上的位错间距。这是由GaSb薄膜中的应力分布不均匀和GaSb岛生长的方向性决定的。另外,对斜切衬底引起的外延层中的错向角的大小和成因进行了分析,指出了在外延生长早期主要形成90°失配位错,而在随后的岛的合并过程中才形成60°位错,进而使错向角增大。
     未掺杂GaSb/GaAs薄膜的霍尔测试结果表明,GaSb/GaAs薄膜呈明显的p型导电特性,其77K下的空穴浓度为3.6×10~(15)cm~(-3),霍尔迁移率为4200cm~2v~(-1)s~(-1),这主要与GaSb中高浓度的Ga反位缺陷有关。实验研究发现,高温退火能够减少GaSb薄膜中的缺陷,降低载流子浓度,提高GaSb薄膜的迁移率。
     采用Sb浸渍的方法,利用Sb/As置换反应生长了高质量的GaAs/GaAsSb超晶格,并对衬底温度、Sb束流大小和Sb束流下暴露时间与超晶格中的Sb含量的关系进行了研究,实验结果表明,随着衬底温度的提高,Sb的解吸附程度增加,使超晶格中的Sb含量下降,在Sb4束流作用下,Sb/As置换反应很弱,仅局限在GaAs表面层中,因此对暴露时间和束流大小不敏感。
     利用分子束外延方法生长了InAs/GaSb超晶格,研究了生长中断和表面迁移增强(MEE)方法对超晶格材料的界面结构的影响。采用MEE工艺,可以在InAs/GaSb超晶格的界面处形成较好的GaAs型和InSb型界面;而采用生长中断的方法会使V族原子在界面处聚集,导致超晶格界面起伏较大,质量下降。
     InAs/GaSb超晶格的界面结构研究表明,界面结构对超晶格中的应变状态有很大的影响;与GaAs型界面相比,采用InSb型界面使超晶格的平均晶格常数增加。研究发现,在超晶格生长过程中可以通过调整界面生长工艺,控制界面结构来调节超晶格中的应变量。
As a promising photoelectric materials, GaSb-based materials such as GaSb/GaAs and InAs/GaSb superlattices have made great progress in the fields of infrared detector in recent years. In this dissertation, growth method, dislocation distribution, structure and electrical properties of GaSb epilayer and InAs/GaSb superlattices grown on GaAs substrates by Molecular Beam Epitaxy (MBE) were investigated systematically.
     The growth of highly mismatched GaSb epilayer on GaAs (001) substrates was studied both experimentally and theoretically. The two-step growth method was used and low-temperature buffer layer was introduced in order to improve the quality of the GaSb epilayer. The growth parameters of low temperature (LT) GaSb buffer layer (including growth rate, thickness, and V/III beam equivalent pressure ratio ) were studied and it was found that the optimum growth rate, thickness, and V/III beam equivalent pressure ratio of the LT GaSb buffer were 1.43μm/h, 20nm and 3.0 respectively. The LT buffer restricted the formation of the 60°misfit dislocations(MDs) during the initial GaSb epilayer growth process and then reduced the density of the threading dislocations(TD) in the epilayer.
     The observation of TEM shows high density dislocations in the GaSb epilayer on GaAs substrates, including the TD in the {111} glide plane and the 90°MDs at the interface of the GaSb/GaAs. GaSb epilayers grown on GaAs (001) vicinal substrate 4°misoriented towards [110] direction were studied using high resolution X-ray diffraction (HRXRD). We found that the densities of TDs in (111) plane were higher than in (111) plane and the TDs have a bigger spacing in the [110] direction than in [110] direction. This is a consequence of the unequal distribution of stress due to the miscut substrate and associated with the shape of GaSb island. The investigation of the tilt in the GaSb epilayer shows that the formation of 60°MDs is later than 90°MDs.
     The electrical properties of undoped GaSb/GaAs epilayer were studied by Hall measurements. The results show that the epilayers have Hall hole concentration p =3.6×10~(15)cm~(-3) and mobilityμ=4200cm~2v~(-1)s~(-1) at 77 K, which is related with the high concentration of Ga antisite defects (GaSb) in the GaSb epilayer. The experiment results show that the annealing treatment can effectively reduce the defects in the GaSb epilayer and then reduce the hole concentration, even improve the electronic mobility.
     High quality GaAs/GaAsSb superlattices were grown by the Sb soak using Sb/As displacement reaction on the GaAs layer surface. The effects of growth parameter of the substrate temperature, Sb flux and Sb soak time on the concentration of Sb were investigated. The results show that the Sb content in the superlattices decreased with the increasing of growth temperature due to the desorption of the Sb. The Sb4 flux and Sb4 soak time have no obvious effects on the structure of the superlattice, which means that the Sb/As exchange only happens in the surface monolayer of the GaAs.
     The InAs/GaSb superlattices were grown by MBE, and the influence of growth interruption and migration enhanced epitaxy (MEE) methods to the interface structure of superlattices were studied. High quality GaAs and InSb interface between InAs/GaSb superlattices were induced by the MEE technique and the Sb4-soak or As4-soak process resulted in the atom aggregation at the interface with the consequence of high interface roughness.
     Interface structure analysis of InAs/GaSb superlattices shows that the interface structure of InAs/GaSb superlattices has an effect on the strain in the superlattice. The InSb-type interface can increase the average lattice constant of the superlattice compared to the GaAs-type interface. Therefore, the strain can be accommodated by changing the growth parameters and controlling the interface structure.
引文
1 G. A. Sai-Halasz, R. Tsu, L. Esaki. A New Semiconductor Superlattice. Appl. Phys. Lett. 1977, 30: 651-653
    2 D. Smith, C. Mailhiot. Proprosal for Strained Type-II Superlattice for Infrared Detectors. J. Appl. Phys. 1987, 62: 2544-2548
    3 A. Rogalski, P. Martyniuk. InAs/GaInSb Superlattices as a Promising Material Mystem For Third Generation Infrared Detectors. Infrared Physics & Technology 2006, 48: 39-52
    4 P. Norton, J. Campbell, S. Horn, D. Reago. Third-generation Infrared Imagers. Proc. of SPIE 2000, 4130: 226-236.
    5 A. Wilk, M. E. Gazoul, M. E. Skouri, P. Christol, P. Grech, A. N. Baranov, A. Joullié. Type-II InAsSb/InAs Strained Quantum-Well Laser Diodes Emitting at 3.5μm. Appl. Phys. Lett. 2000, 77 (15): 2298
    6 T. C. Hasenberg, R. H. Miles, A. R. Kost, L. West. Recent Advances in Sb-based Midwave-Infrared Lasers. IEEE Journal of Quantum Electronics 1997, 33 (8): 1403-1406
    7 J. B. Boos, W. Kruppa, B. R. Bennett, D. Park, S. W. Kirchoefer, R. Bass, H. B. Dietrich. AlSb/InAs HEMT's for Low-voltage, High-speed Applications. IEEE Transactions on Electron Devices 1998, 45 (9): 1869-1875
    8 H. Kroemer. The 6.1? Family(InAs, GaSb, AlSb) and its Heterostructures: a Selective Review. Physica. E 2004, 20 (3-4): 196-203
    9 A. Rogalski. Material Considerations For Third Generation Infrared Photon Detectors. Infrar. Phys. & Technol. 2007, 50: 240-252
    10 H. Kroemer, E. Hu. Nanotechnology. Springer, Berlin 1999: p629
    11 I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. Band Parameters forⅢ-ⅤCompound Semiconductors and Their Alloys. J. Appl. Phys. 2001, 89 (11): 5815-5875
    12夏建白,朱邦芬.半导体超晶格物理.上海科学技术出版社1995: 18
    13 A. Rogalski. Infrared Detectors: Status and Trends. Progr. Quant. Electr. 2003, 27 (2-3): 59-210
    14 G. J. Brown, F. Szmulowicz, R. Linville, A. Saxler. Type II SuperlatticePhotodetector on a Compliant GaAs Substrate. IEEE Photo. Tech. Lett. 2000, 12: 684-686
    15 Y. J. Van der Meulen. Growth Properties of GaSb: The Structure of the Residual Acceptor Centers. J. Phys. Chem. Solids 1967, 28: 25-32
    16 S. Gonda, H. Asahi, K. Yamamoto, K. Hidaka, J. Sato, T. Tashima, K. Asami. Metalorganic Molecular Beam Epitaxyretching of III-V Semiconductors. Appl. Surf. Sci. 1998, 130-132:377-381
    17 M. Thomas, H. R. Blank, K. C. Wong, H. Kroemwe. Buffer-dependent Mobility and Morphology of InAs/(Al,Ga)Sb Quantum Wells. J. Cryst. Growth 1997, 175/176: 894-897
    18 M. E. Twigg, B. R. Bennett, B. V. Shanabrook. Influence of Interace and Buffer Layer on the Structure of InAs/GaSb Superlattices. Appl. Phys. Lett. 1995, 67: 1609-1612
    19 S. V. Ivanov, P. D. Altukhov, T. S. Argunova, A. A. Bakun. Molecular Beam Epitaxy Growth and Characterization of Thin (<2μm) GaSb Layer on GaAs(100) Substrates. Semicond. Sci. Technol. 1993, 8: 347-356
    20 H. Mohseni, A. Tahraoul, J. Wojkowski, M. Razeghi, G. J. Brown, W. C. Mitchel, Y. S. Park. Very long wavelength infrared type II detectors operating at 80K. Appl. Phys. Lett. 2000, 77 (11): 1572-1574
    21 K. D. Hobart, F. J. Kub, M. Fatemi, M. E. Twigg, P. E. Thompson, T. S. Kuan, C. K. Inoki. Compliant Substrates: A Comparative Study of the Relaxation Mechanisms of Strained Films Bonded to High and Low Viscosity Oxides. J. Electr. Mater. 2000, 29 (7): 897-900
    22 D. H. Tomich, K. G. Eyink, L. Grazulis, G. L. Brown, F. Szmulowicz, K. Mahalingam, M. L. Seaford, C. H. Kuo, W. Y. Hwang, C. H. Lin. Comparison of InGaSb/InAs Superlattice Structures Grown by MBE on GaSb, GaAs, and Compliant GaAs Substrates. J. Electr. Mater. 2000, 29 (7): 940-943
    23 K. Akahane, N. Yamamoto, S. Gozu, N. Ohtani. Heteroepitaxial Growth of GaSb on Si (001) Substrates. J. Cryst. Growth 2004, 264 (1-3): 21-25
    24 Y. H. Kim, J. Y. Lee, Y. G. Noh, M. D. Kim, S. M. Cho, Y. J. Kwon, J. E. Oh. Growth Mode and Structural Characterization of GaSb on Si (001) Substrate: A Transmission Electron Microscopy Study. Appl. Phys. Lett. 2006, 88: 241907
    25邱永鑫,李美成,赵连城. InAs/ GaInSb应变层超晶格材料的界面结构.功能材料2005, 36 (9): 1316-1323
    26 H. Mohseni. Type II InAs/GaSb Superlattices for Infrared Detectors. Northwestern University Dissertation 2001: 48
    27 F. Szmulowicz, E. R. Heller, K. F. Frank, L. Madarasz. Optimization of Absorption in InAs/InxGa1-xSb Superlattices for Long-wavelengrh Infrared Detection. Superlatt. Microstruct. 1995, 17: 373-379
    28 S. Kim, S. S. Li. Theoretical Investigation of InAs/InxGa1-xSb type II Superlattice Infrared Detectors for Long Wavelength and Very Long Wavelength Infrared Applications. Physica E 2003, 16: 199-208
    29 D. N. Talwar, B. Jogai, J. P. Lochr. Nevel Type II Strained Layer Superlattices for Long Wavelength Infrared Detectors. Mater. Sci. Engineer. B 1993, 51: 12-17
    30 C. H. Grein, P. M. Young, M. E. Flatté, H. Ehrenrelch. Long Wavelength InAs/GaInSb Infrared Detectors: Optimization of Carrier Lifetimes. J. Appl. Phys. 1995, 78 (12): 7143-7151
    31 E. R. Youngdale, J. R. Meyer, C. A. Hoffman, F. J. Bartoli, R. H. Miles, D. H. Chow. Recombination Llifetime in InAs–GaInSb Superlattices. J. Vac. Sci. Technol. B 1994, 12: 1129-1135
    32 C. Jenner, E. Corbin, B. M. Adderley, M. Jaros. InAs/Ga1-xInxSb and InAsAl1-xGaxSb superlattices for infrared applications. Semicond. Sci. Technol. 1998, 13: 359-375
    33 S. Kim, J. Shen, B. Z. Nosho, S. C. Erwin, L. J. Whitman. Interface Structures of III/V Semiconductor Heterostructures. Intern. J. Quan. Chem. 2003, 95: 561-571
    34 C. Gadaleta, G. Scamarcio, F. Fuchs, J. Schmitz. Influence of the Interface Bond Type on the Far-infrared Reflectivity of InAs/GaSb Superlattices. J. Appl. Phys. 1995, 78 (9): 5642-5644
    35 J. Wagner, J. Schmitz, N. Herres, F. Fuchs, D. Serries, B. Grietens, S. Nemeth, C. VanHoof, G. Borghs. InAs/(GaIn)Sb Superlattices for IR Optoelectronics: Strain Optimization by Controlled Interface Formation. Physica E 1998, 2: 320-324
    36 P. Jozef, R. Antoni. New generation of infrared photodetectors. Sensors andActuators A 1998, 67: 146-152
    37 E. Corbin, M. J. Shaw, M. R. Kitchin, J. P. Hagon, M. Jaros. Systematic Study of Type II Ga1-xInxSb/InAs Superlattices for Infrared Detection in the 10-12μm Wavelength Range. Semicond. Sci. Technol. 2001, 16: 263-272
    38 B. R. Benett, B. V. Shanabrook, R. J. Wagner, J. L. Davis, J. R. Waterman, M. E. Twigg. Interface Composition Control in InAs/GaSb Superlattices. Solid-State Electronics 1994, 37: 733-737
    39 D. H. Chow, R. H. Miles, A. T. Hunter. Effects of Interface Stoichiometry on the Structural and Electronic Properties of Ga1-xInxSb/InAs Superlattices. J. Vac. Sci. Technol. B 1992, 10 (2): 888-891
    40 J. P. Omaggio, J. R. Meyer, R. J. Wagner, C. A. Hoffman, M. J. Yang, D. H. Chow, R. H. Miles. Determination of Band Gap and Effective Masses in InAs/GaInSb Superlattices. Appl. Phys. Lett. 1992, 61: 207-209
    41 M. W. Wang, D. A. Collins, T. C. McGill, R. W. Grant, R. M. Feenstra. Effect of Interface Composition and Growth Order on the Mixed Anion InAs/GaSb Valence Band Offset. Appl. Phys. Lett. 1995, 66: 2981-2983
    42 J. Schmitz, J. Wagner, F. Fuchs, N. Herres, P. Koidl, J. D. Ralston. Optical and Structural Investigations of Intermixing Reactions at the Interfaces of InAs/AlSb and InAs/GaSb Quantum Wells Grown by Molecular-Beam Epitaxy. J. Cryst. Growth 1995, 150: 858-862
    43 R. Magri, A. Zunger. Segregation Effects on the Optical Properties of (InAs)/(GaSb) Superlattices. Physica E 2002, 13 (2-4): 325-328
    44 R. Magri, A. Zunger. Theory of Optical Properties of 6.1? III–V Superlattices: The Role of the Interfaces. Journal of Vacuum Science & Technology B 2003, 21: 1896-1903
    45 Q. Xie, J. E. V. Nostrand, J. L. Brown, C. E. Stutz. Arsenic for Antimony Exchange on GaSb, Its Impacts on Surface Morphology, and Interface Structures. J. Appl. Phys. 1999, 86: 329-337
    46 R. Kaspi, J. Steinshniderb, M. Weimerb, C. Moellera, A. Ongstad. As-soak Control of the InAs-on-GaSb Interface. J. Cryst. Growth 2001, 225: 544-549
    47 J. T. Zborowski, W. C. Fan, T. D. Golding, A. Vigliante, P. C. Chow, H. D. Shih, J. M. Anthony. Epitaxial and Interface Properties of InAs/InGaSb Multilayered Structures. J. Appl. Phys. 1992, 71 (12): 5908-5912
    48 D. H. Chow, R. H. Miles, J. R. S?derstr?m, T. C. McGill. InAs/Ga1-xInxSb Strained-layer Superlattices Grown by Molecular-beam Epitaxy. J. Vac. Sci. Technol. B 1990, 8 (4): 710-714
    49 R. Kaspi, K. R. Evans. Sb-surface Segregation and the Control of Compositional Abruptness at the GaAsSb/GaAs Interface. J. Cryst. Growth 1997, 175: 838-843
    50 R. Kaspi. Compositional Abruptness at the InAs-on-GaSb Interface: Optimizing Growth by Using the Sb Desorption Signature. J. Cryst. Growth 1999, 201/202: 864-867
    51 J. Steinshnider, J. Harper, M. Weimer, C. H. Lin, S. S. Pei, D. H. Chow. Origin of Antimony Segregation in GaInSb/InAs Strained-Layer Superlattices. Phys. Rev. Lett. 2000, 85 (21): 4562-4565
    52 J. Steinshnider, M. Weimer, R. Kaspi, G. W. Turner. Visualizing Interfacial Structure at Non-Common-Atom Heterojunctions with Cross-Sectional Scanning Tunneling Microscopy. Phys. Rev. Lett. 2000, 85 (14): 2953-2956
    53 C. Renard, X. Marcadet, J. Massies, I. Prevot, R. Bisaro, P. Galtier. Indium Surface Segregation in AlSb and GaSb. J. Cryst. Growth 2003, 259 (1): 69-78
    54 M. W. Wang, D. A. Collins, T. C. McGill, R. W. Grant, R. M. Feenstra. Study of Interface Asymmetry in InAs/GaSb Heterojunctions. J. Vac. Sci. Technol. B 1995, 13: 1689-1693
    55 A. Y. Lew, E. T. Yu, D. H. Chow, R. H. Miles. Scanning Tunneling Microscopy of InAs/GaInSb Superlattices. Appl. Phys. Lett. 1994, 65: 201
    56 A. Y. Lew, S. L. Zuo, E. T. Yu, R. H. Miles. Anisotropy and Growth-sequence Dependence of Atomic-scale Interface Structure in InAs/GaInSb Superlattices. Appl. Phys. Lett. 1997, 70: 75-79
    57 J. L. Johnson, L. A. Samoska, A. C. Gossard, J. L. Merz, M. D. Jack, G. R. Chapman, B. A. Baumgratz, K. Kosai, S. M. Johnson. Electrical and optical Properties of Infrared Photodiodes Using the InAs/GaInSb Superlattice in Heterojunctions with GaSb. J. Appl. Phys. 1996, 80: 1116
    58 Y. Wei, A. Gin, M. Razegh, G. J. Brown. Type II InAs/GaSb Superlattice Photovoltaic Detectors with Cutoff Wavelength Approaching 32μm. Appl. Phys. Lett. 2002, 81 (19): 3675-3677
    59 H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, W.Mitchel. UncooledInAs/GaSb Type II Infrared Detectors grown on GaAs Substrates for the 8-12μm atmospheric window. IEEE J. Quan. Elect. 1999, 35 (7): 1041-1044
    60 E. Plis, S. J. Lee, Z. Zhu, A. Amtout, S. Krishna. InAs/GaSb Superlattice Detectors Operating at Room Temperature. IEEE J. Select. Topics in Quant. Electr. 2006, 12 (6): 1269-1274
    61 E. Plis, S. Annamalai, K. T. Posani, S. J. Lee, S. Krishna. Room Temperature Operation of InAs/GaSb SLS Infrared Photovoltaic Detectors with Cut-off Wavelength ~ 5μm. Proc. of SPIE 2006, 6206: 62060-62066
    62 M. Razeghi, Y. Wei, J. Bae, A. Gin, A. Hood, J. Jiang, J. Nah. Type II InAs/GaSb Superlattices for High-performance Photodiodes and FPAs. Proc. of SPIE 2003, 5246: 501-511
    63 P. Delaunay, B. M. Nguyen, D. Hoffman, M. Razeghi. 320x256 Infrared Focal Plane Array Based on Type II InAs/GaSb Superlattice with a 12μm Cutoff Wavelength. Proc. of SPIE 2007, 6542: 654204
    64 M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B. M. Nguyen, P. Y. Delaunay, E. Michel, R. McClintock. Type-II Superlattice Photodetectors for MWIR to VLWIR Focal Plane Arrays. Proc. of SPIE 2006, 6206: 62060-62065
    65 R. Rehm, M. Walther, J. Fleissner, J. Schmitz, J. Ziegler, W. Cabanski, R. Breiter. Bispectral Thermal Imaging with Quantum-well Infrared Photodetectors and InAs/GaSb Type-II Superlattices. Proc. of SPIE 2006, 6206: 333-343
    66 W. Cabanski, K. Eberhardt, W. Rode, J. Wendler, J. Ziegler, J. Flei?ner, F. Fuchs, R. Rehm, J. Schmitz, H. Schneider. 3 rdGen Focal Plane Array IR Detection Modules and Applications. Proc. of SPIE 2005, 5406: 184–192
    67 E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, J. R. Meyer. Dual band LWIR/VLWIR Type-II Superlattice Photodiodes. Proc. of SPIE 2005, 5783: 112-122
    68 D. R. Rhiger, R. E. Kvaas, S. F. Harris, R. E. Bornfreund, Y. N. Thai, C. J. Hill, J. V. Li, S. D. Gunapala, J. M. Mumolo. Progress with Type-II Superlattice IR Detector Arrays. Proc. of SPIE 2007, 6542: 654202
    69 M. Walther, R. Rehm, J. Fleissner, J. Schmitz, J. Ziegler, W. Cabanski, R. Breiter. InAs/GaSb Type-II Short-period Superlattices for Advanced Single and Dual-color Focal Plane Arrays. Proc. of SPIE 2007, 6542: 654206-654211
    70 A. Rocher, J. M. Kang, H. Atmani, J. Crestou, G. Vanderschaeve, L. Lassabatere, R. Bonnet. Misfit Dislocations in GaSb/GaAs(001) Heterostructures. Microscopy of Semiconducting Materials 1991: 509-514
    71 R. N. Kyutt, R. Scholz, S. S. Ruvimov, T. S. Argunova, A. A. Budza, S. V. Ivanov, P. S. Kop'Ev, L. M. Sorokin, M. P. Shcheglov, A. Tybulewicz. Dislocation Structure of Epitaxial GaSb Films Grown on(001) GaAs Substrates by Molecular Beam Epitaxy. Physics of the Solid State 1993, 35 (3): 372-378
    72 N. Miyagishima, T. Shinoda, K. Suzuki, T. Kaneko, K. Takeda, K. Shiraishi, T. Ito. Atomic and Electronic Structure of Misfit Dislocations in GaSb/GaAs (001). Physica B: Physics of Condensed Matter 2003, 340: 1009-1012
    73 E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, P. Gibart. Stress Control in GaN Grown on Silicon (111) by Metalorganic Vapor Phase Epitaxy. Appl. Phys. Lett. 2001, 79: 3230
    74 M. Seon, T. Prokofyeva, M. Holtz, S. A. Nikishin, N. N. Faleev, H. Temkin. Selective Growth of High Quality GaN on Si (111) Substrates. Appl. Phys. Lett. 2000, 76: 1842-1845
    75 N. Bertru, M. Nouaoura, J. Bonnet, L. Lassabatere. Reflection high Energy Electron Diffraction Intensity Modifications Induced by Antimony Flux Interruption During GaSb Growth by Molecular Beam Epitaxy. J. Cryst. Growth 1995, 156 (4): 327-332
    76李林,王勇,刘国军,李梅,王晓华. GaSb薄膜生长的RHEED研究.人工晶体学报2006, 35 (1): 139-142
    77 C. K. Sun, G. Wang, J. E. Bowers, B. Brar, H. R. Blank, H. Kroemer, M. H. Pilkuhn. Optical Investigations of the Dynamic Behavior of GaSb/GaAs Quantum DOts. Appl. Phys. Lett. 1996, 68: 1543-1455
    78 J. P. Silveira, J. M. García, F. Briones. Surface Stress Effects During MBE Growth of III-V Semiconductor Nanostructures. J. Cryst. Growth 2001, 227 (228): 995-999
    79 R. W. Vook. Structure and Growth of Thin Films. Int. Met. Rev. 1982, 27 (4): 209-245
    80 K. Makoto, M. Tomoyoshi, I. Satoshi. Long-Wavelength Luminescence from GaSb Quantum Dots Grown on GaAs Substrates [J]. Physica E 2004, 21: 275-278
    81 F. Hatami, N. N. Ledentsov, M. Grundmann, J. Bohrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gosele. Radiative Recombination in Type‐II GaSb/GaAs Quantum Dots. Appl. Phys. Lett. 1995, 67: 656-658
    82 B. R. Bennett, B. V. Shanabrook, P. M. Thibado, L. J. Whitman, R. Magno. Stranski-Krastanov Growth of InSb, GaSb, and AlSb on GaAs: Structure of the Wetting Layers. J. Cryst. Growth 1997, 175: 888-893
    83 J. W. Matthews, A. E. Blakeslee. Defects in Epitaxial Multilayers: I. Misfit Dislocations. J. Cryst. Growth 1974, 27: 118-125
    84 J. W. Matthews, A. E. Blakeslee. Defects in Epitaxial Multilayers: II. Dislocation Pile-Ups, Threading Dislocations, Slip Lines and Cracks. J. Cryst. Growth 1975, 29: 273-280
    85 A. Rocher, E. Snoeck. Misfit Dislocations in (001) Semiconductor Heterostructures Grown by Epitaxy. Mater. Sci. Engineer. B 1999, 67 (1-2): 62-69
    86赵智彪,李伟.氮化镓光辅助湿法刻蚀后的位错密度估算.固体电子学研究与进展2002, 22 (2): 195-198
    87 P. Gay, P. B. Hirsch, A. Kelly. The Estimation of Dislocation Densities in Metals from X-ray Data. Acta Metall. 1953, 1 (3): 315-328
    88 C. G. Dunn, E. F. Koch. Comparison of Dislocation Densities of Primary and Secondary Recrystallization Grains of SiFe. Acta Metall. 1957: 548-551
    89 J. M. Kang, S. K. Min, A. Rocher. Asymmetric Tilt Interface Induced by 60°Misfit Dislocation Arrays in GaSb/GaAs (001). Appl. Phys. Lett. 1994, 65: 2954-2956
    90 S. F. Fang, K. Adomi, S. Iyer, H. Morko, H. Zabel, C. Choi, N. Otsuka. Gallium Arsenide and Other Compound Semiconductors on Silicon. J. Appl. Phys. 1990, 68: R31
    91 W. Qian, M. Skowronski, R. Kaspi, M. De Graef, V. P. Dravid. Nucleation of Misfit and Threading Dislocations During Epitaxial Growth of GaSb on GaAs (001) Substrates. J. Appl. Phys. 1997, 81: 7268
    92 A. Bourret, P. H. Fuoss. Structure of GaAs= GaSb Incoherent Interface After Epitaxial Growth. Appl. Phys. Lett. 1992, 61: 1034-1036
    93 S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, D. L. Huffaker. Strain Relief by Periodic Misfit Arrays for Low Defect Density GaSb on GaAs. Appl. Phys. Lett. 2006, 88: 131911-131913
    94 J. M. Kang, M. Nouaoura, L. Lassabatere, A. Rocher. Accomodation of Lattice Mismatch and Threading of Dislocations in GaSb Films Grown at Different Temperatures on GaAs(001). J. Cryst. Growth 1994, 143 (3-4): 115-123
    95 Motlan, E. M. Goldys, T. L. Tansley. Growth Optimization of GaSb/GaAs Self-assembled Quantum Dots Grown by MOCVD. J. Cryst. Growth 2002, 236: 621-626
    96 C. Anayama, T. Tanahashi, H. Kuwatsuka, S. Nishiyama, S. Isozumi, K. Nakajima. High‐ purity GaSb Epitaxial Layers Grown from Sb‐ rich Solutions. Appl. Phys. Lett. 1990, 56: 239-242
    97 K. F. Longenbach, W. I. Wang. Molecular Beam Epitaxy of GaSb. Appl. Phys. Lett. 1991, 59: 2427-2429
    98 M. C. Wu, C. C. Chen. Photoluminescence of High‐quality GaSb Grown from Ga‐and Sb‐rich Solutions by Liquid‐phase Epitaxy. J. Appl. Phys. 1992, 72: 4275-4278
    99 C. G. Darwin. The Theory of X-ray Reflection. Phil. Mag. 1914, 27: 315
    100 F. Riesz. Rotated Tilting in Lattice-mismatched Heteroepitaxial Systems. J. Cryst. Growth 1994, 140: 213-218
    101 X. R. Huang, J. Bai, M. Dudley, R. D. Dupuis, U. Chowdhury. Epitaxial Tilting of GaN Grown on Vicinal Surfaces of Sapphire. Appl. Phys. Lett. 2005, 86: 211916-211918
    102 Y. Qiu, M. Li, G. Liu, Y. Wang, B. Zhang, Y. Wang, L. Zhao. Investigation of Crystallographic Tilting in GaSb/GaAs Heteroepitaxial Structures by High Resolution X-ray Diffraction. J. Cryst. Growth 2007, 308: 325-329
    103 A. Pesek, K. Hinger, F. Riesz, K. Lischka. Lattice Misfit and Relative Tilt of Lattice Planes in Semiconductor Heterostructures. Semicond. Sci. Technol. 1991, 6: 705-708
    104 H. Nagai. Structure of Vapour-Deposited GaxIn1-xAs Crystals. J. Appl. Phys. 1974, 45: 3789-2792
    105 F. Riesz. Crystallographic Tilting in High-misfit(100) SemiconductorHeteroepitaxial System. J. Vac. Sci. Technol. A 1996, 14: 425-430
    106 P. M. Mooney, F. K. LeGoues, J. Tersoff, J. O. Chu. Nucleation of Dislocations in SiGe Layers Grown on (001) Si. J. Appl. Phys. 1994, 75: 3968-3977
    107 R. S. Goldman, K. L. Kavanagh, H. H. Wieder, S. N. Ehrlich, R. M. Feenstra. Effects of GaAs Substrate Misorientation on Strain Relaxation in InGaAs Films and Multilayers. J. Appl. Phys. 1998, 83: 5137-5149
    108 J. E. Ayers, S. K. Ghandhi, L. J. Schowalter. Crystallographic Tilting of Hetteroepitaxial Layers. J. Cryst. Growth 1991, 113 (3): 430-440
    109 R. S. Goldman, H. H. Wieder, K. L. Kavanagh. Correlation of Anisotropic Strain Relaxation with Substrate Misorientation Direction at InGaAs/GaAs (001) Interfaces. Appl. Phys. Lett. 1995, 67: 344-346
    110 V. Srikant, J. S. Speck, D. R. Clarke. Mosaic Structure in Epitaxial Thin Films Having Large Lattice Mismatch. J. Appl. Phys. 1997, 82: 4286-4295
    111 R. Chierchia, T. Bettcher, H. Heinke, S. Einfeldt, S. Figge, D. Hommel. Microstructure of Heteroepitaxial GaN Revealed by X-ray Diffraction. J. Appl. Phys. 2003, 93: 8918-8925
    112 G. K. Williamson, W. H. Hall. X-ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1 (1): 22-31
    113 T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stammer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht. Defect Structure of Epitaxial GaN Films Determined by Transmission Electron Microscopy and Triple-axis X-ray Diffractometry. Philos. Magaz. A 1998, 77 (4): 1013-1025
    114 Y. Qiu, M. Li, Y. Wang, B. Zhang, Y. Wang, G. Liu, L. Zhao. Investigation of GaSb Epilayer Grown on Vicinal GaAs(001) Substrate by High Resolution X-ray Diffraction. Phys. Scrip. 2007, T129: 27-30
    115 J. E. Ayers. The Measurement of Threading Dislocation Densities in Semiconductor Crystals by X-ray Diffraction. J. Cryst. Growth 1994, 135: 71-75
    116 T. Brown, A. Brown, G. May. Anion Exchange at the Interfaces of Mixed Anion III-V Heterostructures Grown by Molecular Beam Epitaxy. Journal of Vacuum Science & Technology B 2002, 20: 1771-1776
    117 Z. Sobiesierski, D. I. Westwood, P. J. Parbrook, K. B. Ozanyan, M.Hopkinson, C. R. Whitehouse. As/P Exchange on InP (001) Studied by Reflectance Anisotropy Spectroscopy. Appl. Phys. Lett. 1997, 70: 1423-1425
    118许振嘉.半导体的检测与分析(第二版).科学出版社2007: 109, 114-121
    119 Y. Q. Wang, Z. L. Wang, T. Brown, A. Brown, G. May. Thermodynamic Analysis of Anion Exchange during Heteroepitaxy. J. Cryst. Growth 2002, 242: 5-14
    120 M. Losurdo, P. Capezzuto, G. Bruno, A. S. Brown, T. Brown, G. May. Fundamental Reactions Controlling Anion Exchange During Mixed Anion Heterojunction Formation: Chemistry of As-for-Sb and Sb-for-As Exchange Reactions. J. Appl. Phys. 2006, 100 (1): 013531-013535
    121 B. Satpati, J. B. Rodriguez, A. Trampert, E. Tournié, A. Joullié, P. C. hristol. Interface analysis of InAs/GaSb superlattice grown by MBE. J. Cryst. Growth 2007, 301-302: 889-892
    122 G. J. Liu, B. Fruhberger, I. Schuller. Quantitative Structural characterization of InAs/GaSb Superlattices. J. Appl. Phys. 2006, 100: 063536
    123 B. Z. Nosho, B. R. Bennett, L. J. Whitman, M. Goldenberg. Effects of As2 versus As4 on InAs/GaSb Heterostructures: As-for-Sb Exchange and Film Stability. Journal of Vacuum Science & Technology B 2001, 19 (4): 1626-1630
    124 Z. Pan, Y. T. Wang, Y. Zhuang, Y. W. Lin, Z. Q. Zhou, L. H. Li, R. H. Wu, Q. M. Wang. Investigation of Periodicity Fluctuations in Strained (GaNAs)(GaAs) Superlattices by the Kinematical Simulation of x-ray Diffraction. Appl. Phys. Lett. 1999, 75: 223-225
    125 M. Yano, M. Okuizumi, Y. Iwai, M. Inoue. Molecular-beam-epitaxial Growth and Optical Analysis of InAs/AlSb Strained-layer Superlattices. J. Appl. Phys. 1993, 74: 7472-7475
    126 I. Sela, C. R. Bolognesi, L. A. Samoska, H. Kroemer. Study of Interface Composition and Quality in AlSb/InAs/AlSb Quantum Wells by Raman Scattering from Interface Modes. Appl. Phys. Lett. 1992, 60: 3283-3285
    127 C. López, R. J. Springett, R. J. Nicholas, P. J. Walker, N. J. Mason, W. Hayes. Interface Studies of InAs/GaSb Superlattices by Raman Scattering. Surface Science 1992, 267 (1-3): 176-180
    128 M. Inoue, M. Yano, H. Furuse, N. Nasu, Y. Iwai. Optical Analysis of InAs Heterostructures Grown by Migration-enhanced Epitaxy. Semicond. Sci.Technol. 1993, 8 (1S): S121-S124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700