小脑间位核调节免疫功能的作用途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     我们实验室以往的研究表明小脑间位核可调节免疫功能。由于小脑与免疫系统之间没有直接的结构上的联系,因此阐明小脑调节免疫功能的信息传递途径对于更好地理解小脑的免疫调节功能具有重要作用。本研究以小脑—下丘脑的神经投射为切入点来揭示其在传递小脑免疫调节信息中的作用,为小脑神经免疫调节提供新的资料,有助于拓宽小脑功能的知识,促进临床上对小脑神经免疫调节异常疾病的思考和研究。
     方法:
     1.在一侧小脑间位核内微量注射顺行神经束路追踪剂葡聚糖-德克萨斯红(dextran-texas red, dextran-TR),观察小脑间位核至下丘脑神经投射的路径及终止部位。
     2.在一侧下丘脑外侧区(顺行追踪显示下丘脑内终止纤维最丰富的区域)微量注射逆行神经束路追踪剂红色荧光金(fluoro-ruby, FR),观察小脑间位核内FR逆行标记的神经元,同时,结合谷氨酸荧光免疫组织化学法探讨小脑间位核投射至下丘脑的神经元中是否存在谷氨酸能神经元。
     3.在双侧小脑间位核内微量注射谷氨酰胺酶抑制剂6-重氮-5-氧代-L-正亮氨酸(6-diazo-5-oxo-L-norleucine, DON),以抑制间位核内谷氨酸能神经元合成谷氨酸,并以双侧小脑间位核内注射等量生理盐水及未经任何处理的动物作为对照。在上述三组(未处理对照组、生理盐水对照组、DON组)大鼠的单侧下丘脑外侧区微量注射逆行神经束路追踪剂FR,5天后,在双侧小脑间位核内注射DON或生理盐水,3天后,同一层面的间位核脑片应用谷氨酸荧光免疫组织化学技术,观察小脑间位核—下丘脑外侧区谷氨酸能神经投射的数量变化。
     4.在双侧小脑间位核内注射DON后第3天,用高效液相色谱法(high performanceliquid chromatography, HPLC)测定下丘脑内谷氨酸含量的变化。
     5.在双侧小脑间位核内注射DON后第3天,用血细胞计数法检测动物外周血白细胞中淋巴细胞百分比的变化;用羧基二乙酸荧光素琥珀酰亚胺酯(carboxyfluorescein diacetate succinimidyl ester, CFSE)和结合PE的抗大鼠CD3抗体双标肠系膜淋巴结细胞,流式细胞仪检测T淋巴细胞对刀豆蛋白A(concanavalinA,Con A)刺激的增殖能力的变化;用酶联免疫吸附测定法(enzyme-linked immunosorbentassay, ELISA)检测血清中抗绵羊红细胞IgM抗体水平的变化。
     结果:
     1.小脑间位核内微量注射dextran-TR后示踪可见间位核神经元发出离核纤维,行走于同侧小脑上脚中,经小脑上脚交叉到达对侧,然后继续走行于小脑上脚中,进入下丘脑后较多纤维终止于下丘脑外侧区,少数纤维终止于下丘脑室旁核和下丘脑后区。说明小脑间位核神经元发出纤维直接投射至下丘脑(主要是外侧区)。
     2.下丘脑外侧区内微量注射FR后可逆行追踪到对侧小脑间位核具有FR标记的神经元,这进一步证明了小脑间位核与下丘脑之间存在直接的神经投射;利用谷氨酸荧光免疫组织化学法染色小脑间位核,发现这些FR标记的神经元中有许多谷氨酸阳性神经元。表明小脑间位核投射至下丘脑外侧区的神经纤维中有谷氨酸能神经。
     3.双侧小脑间位核内注射DON(50mM)后第3天,间位核内FR和谷氨酸双标神经元的数目明显少于生理盐水对照组和未处理对照组,而两组对照之间无明显差异,说明小脑间位核DON注射减少了小脑间位核—下丘脑外侧区的谷氨酸能神经投射。
     4.双侧小脑间位核内注射DON(50mM)后第3天,下丘脑内谷氨酸含量显著低于生理盐水对照组和未处理对照组,而两组对照之间无显著性差异。双侧小脑间位核内注射低剂量DON(5mM)后,下丘脑内谷氨酸含量没有明显改变。此结果进一步证明双侧小脑间位核内注射DON(50mM)减少了小脑—下丘脑的谷氨酸能神经投射。
     5.在小脑间位核—下丘脑谷氨酸能神经投射减少的同时,即在双侧小脑间位核内注射DON(50mM)后的第3天,动物外周血中淋巴细胞的百分比、淋巴结T细胞对Con A的增殖能力和血清中抗绵羊红细胞的IgM抗体水平均显著降低,而两组对照(生理盐水对照和未处理对照)之间无显著性差异。然而,低剂量的DON(5mM)注射没有明显改变上述免疫功能。说明减少小脑间位核—下丘脑的谷氨酸能神经投射可导致免疫功能减弱。
     6.在小脑皮质内注射DON(50mM),没有改变下丘脑内谷氨酸的含量也不影响外周血中淋巴细胞百分比、淋巴结T细胞对Con A的增殖能力和血清中抗绵羊红细胞的IgM抗体水平。这一阴性结果进一步证明上述免疫功能的变化确实由小脑间位核—下丘脑的谷氨酸能神经投射所介导。
     结论:
     1.小脑间位核至下丘脑外侧区存在直接的谷氨酸能神经投射。
     2.小脑间位核内注射DON减弱了间位核至下丘脑的谷氨酸能神经投射。
     3.减弱小脑间位核—下丘脑的谷氨酸能神经投射导致免疫功能的抑制,提示小脑的免疫调节信息由小脑间位核—下丘脑的谷氨酸能神经投射所传递。
     第二部分小脑间位核GABA能神经投射调节免疫功能的途径
     目的:
     我们在本文的第一部分研究中已说明小脑间位核—下丘脑的谷氨酸能神经投射可调节免疫功能。在这部分工作中,我们探讨小脑间位核的另一传出途径——GABA能神经投射对免疫功能的影响,以更深层次地理解和解释小脑间位核调节免疫功能的作用途径。
     方法:
     1.在一侧下丘脑外侧区微量注射逆行神经束路追踪剂FR,观察小脑间位核内FR逆行标记的神经元,同时,结合GABA荧光免疫组织化学法探讨小脑间位核投射至下丘脑的神经元中是否存在GABA能神经元。
     2.双侧小脑间位核内分别微量注射GABA合成酶抑制剂3-巯基丙酸(3-mercaptopropionic acid,3-MP)、GABA转氨酶抑制剂氨己烯酸(vigabatrin, VGB)以分别减弱或增强间位核的GABA能神经投射,并以双侧小脑间位核内注射等量生理盐水及未经任何处理的动物作为对照。同时,腹腔注射小牛血清白蛋白(bovineserum albumin, BSA)免疫大鼠。术后第3天,流式细胞仪检测动物外周血单个核细胞中T和B淋巴细胞百分比的变化;用CFSE和结合PE的抗大鼠CD3抗体双标肠系膜淋巴结细胞,流式细胞仪检测T淋巴细胞对ConA刺激的增殖能力的变化;ELISA检测血清中抗BSAIgM抗体水平的变化。
     3.双侧小脑间位核注射3-MP或VGB后第3天,HPLC测定下丘脑内GABA、淋巴结和脾脏中去甲肾上腺素(norepinephrine, NE)含量的变化。
     4.双侧小脑间位核注射3-MP或VGB后第3天,ELISA试剂盒检测血清中促肾上腺皮质激素(adrenocorticotropic hormone, ACTH)、皮质醇(cortisol)、促甲状腺激素(thyroid stimulating hormone, TSH)、三碘甲状腺原氨酸(3,5,3’–triiodothyronine,T3)、四碘甲状腺原氨酸(3,5,3’,5’–tetraiodothyronine, T4)水平的变化。
     结果:
     1.下丘脑外侧区微量注射FR后逆行追踪至对侧小脑间位核,可见到FR标记的神经元;利用GABA荧光免疫组织化学法染色小脑间位核,发现这些FR标记的神经元中存在GABA阳性神经元,此结果证明小脑间位核与下丘脑外侧区之间存在直接的GABA能神经投射。
     2.双侧小脑间位核内注射3-MP后第3天,外周血单个核细胞中的T和B淋巴细胞百分比、淋巴结T细胞对ConA的增殖能力、血清中抗BSA的IgM抗体水平均较两组对照显著升高;而双侧小脑间位核内注射VGB后第3天,外周血单个核细胞中的T和B淋巴细胞百分比、淋巴结T细胞对ConA的增殖能力、血清中抗BSA的IgM抗体水平均较两组对照显著降低。在两组对照之间,即双侧间位核内注射生理盐水的对照组和未作任何处理的对照组之间,上述免疫指标无显著性差异。这些结果表明减弱小脑间位核的GABA能神经投射促进了T和B细胞的功能,而增强小脑间位核的GABA能神经投射则抑制了T和B细胞的功能。
     3.在免疫功能发生变化的同时,即在双侧小脑间位核内注射3-MP后第3天,下丘脑内GABA含量明显降低;而注射VGB后第3天,下丘脑内GABA含量显著升高。在两组对照之间,下丘脑内的GABA含量无显著性差异。这些结果表明间位核内注射3-MP减弱了间位核—下丘脑的GABA能神经投射,而间位核内注射VGB则增强了间位核—下丘脑的GABA能神经投射。因此提示,上述间位核内注射3-MP或VGB导致的免疫功能改变可由间位核—下丘脑的GABA能神经投射介导。
     4.在免疫功能发生变化的同时,即在双侧小脑间位核内注射3-MP后的第3天,肠系膜淋巴结和脾脏中的NE含量降低,而注射VGB后的第3天,肠系膜淋巴结和脾脏中的NE含量升高,两对照组之间无显著性差异。这些结果表明,间位核内注射3-MP或VGB导致的免疫功能改变可由交感神经这一外周途径介导。
     5.在免疫功能发生变化的同时,即在双侧小脑间位核内注射3-MP或VGB后的第3天,血清中的ACTH、皮质醇、TSH、T3和T4的水平与两对照组相比无显著性差异,说明腺垂体—肾上腺皮质/甲状腺途径可能不参与介导小脑间位核GABA能神经投射的免疫调节作用。
     结论:
     1.小脑间位核至下丘脑外侧区存在直接的GABA能神经投射。
     2.小脑间位核的GABA能神经投射可调节T和B细胞的功能,其作用是负性调节这些细胞的功能。
     3.小脑间位核GABA能神经投射通过下丘脑—交感神经的途径实现其免疫调节作用。
Objective:
     Our previous work has shown that lesions of the cerebellar interposed nuclei (IN)suppress immune cell functions. Since there is no direct structural connection between thecerebellum and immune system, we explored the pathway mediating the cerebellarimmunomodulation at the profile of cerebellohypothalamic projections to understand thismodulation.
     Methods:
     1. Anterograde tracing of nerve tracts was conducted by injection of anterogradetracer dextran-texas red (dextran-TR) in the cerebellar IN to observe travelling routes andending locations of neuronal projections from the cerebellar IN to the hypothalamus.
     2. Retrograde tracing of nerve tracts from the lateral hypothalamic area (LHA) to thecerebellar IN was conducted by injection of retrograde tracer fluoro-ruby (FR) in the LHA,and fluorescent immunohistochemistry for glutamate was used to identify neurotransmitterof the cerebellar IN projecting to the LHA.
     3. A glutaminase inhibitor,6-diazo-5-oxo-L-norleucine (DON), was microinjectedinto the bilateral IN. The rats infused with same volume of saline in the bilateral IN andwith intact IN were used as control. FR had been infused in the LHA5days earlier. On day3following the DON injection, the cerebellar sections at the same plane were measured forglutamate-immunoreactive positive neurons by the fluorescent immunohistochemistry. Thenumber of FR-glutamate double-labeled neurons was compared among the DON, salineand intact groups.
     4. On the3rd day after DON injection in bilateral cerebellar IN, high performanceliquid chromatography (HPLC) analysis was used to determine glutamate content in thehypothalamus.
     5. On the3rd day after DON injection in bilateral cerebellar IN, lymphocytepercentage in the peripheral blood leukocyte was measured by a complete blood cell count;T lymphocyte proliferation induced by concanavalin A (Con A) was double labelled bycarboxyfluorescein diacetate succinimidyl ester (CFSE) and anti-rat CD3antibody anddetected by a flow cytometer; anti-sheep red blood cell (SRBC) IgM antibody in the serumwas determined by enzyme-linked immunosorbent assay (ELISA).
     Results:
     1. Dextran-TR-labeled nerve fibers, which were sent by cerebellar IN neurons,traveled through the ipsilateral superior cerebellar peduncle (SCP), crossed in SCPdecussation, penetrated the contralateral SCP, and entered the hypothalamus. In thehypothalamus, the fibers mostly terminated in the LHA, and less in the paraventricularnuclei and the posterior hypothalamus area.
     2. Retrograde tracing by injection of retrograde tracer FR in the LHA found that theFR-labeled nerve fibers retrogradely traveled in the SCP decussation, and FR-labeledneurons appeared in contralateral cerebellar IN. Fluorescent immunohistochemistryshowed that a large number of glutamate-immunoreactive neurons (blue) were seen on thecerebellar IN section. Merging the red FR-labeled neurons and the blue glutamate-positiveneurons in the cerebellar IN, many carmine neurons which represented glutamatergicneurons projecting to the LHA were observed on the section.
     3. On the3rd day after DON injection in bilateral cerebellar IN, the double-labeledneurons were significantly lower for their percentage in FR single-stained neurons inDON-injected IN than in intact or saline-treated IN. This indicated that DON infusion inbilateral cerebellar IN reduced glutamatergic projections from the cerebellar IN to theLHA.
     4. Compared with intact or saline-injected rats, the DON-treated rats weresignificantly decreased in glutamate content in the hypothalamus. Between the two groupsof control rats, no significant difference was found. Glutamate content in the hypothalamusdid not change after DON treatment at a lower dose. These data further demonstrated thatDON injection in bilateral cerebellar IN reduced cerebellohypothalamic glutamatergicprojections.
     5. DON injection in bilateral cerebellar IN led to a decrease in lymphocyte percentagein peripheral white blood cells, a suppression of T cell proliferative response to Con A, and a diminishment of serum specific anti-SRBC IgM antibody. But DON injection at a lowerdose in bilateral cerebellar IN did not affect the immune parameters.
     6. To confirm that these immune changes were caused by decrease in cerebellarIN-hypothalamic glutamatergic projections, we injected the same dose of DON in thecerebellar cortex. DON injection in the cerebellar cortex neither altered glutamate contentin the hypothalamus nor affected immune function (lymphocyte percentage in peripheralwhite blood cells, T cell proliferative response to Con A, and the level of serum specificanti-SRBC IgM antibody).
     Conclusions:
     1. A direct glutamatergic projection originates from neurons of the cerebellar IN andterminates mainly in the LHA.
     2. DON injection in the bilateral cerebellar IN effectively reduces thecerebellohypothalamic glutamatergic projections.
     3. The reduced cerebellohypothalamic glutamatergic projection leads to the inhibitionof immune function, which suggests that cerebellohypothalamic glutamatergic projectionstransmit cerebellar immunomodulation.
     Part Two: Pathways of Immunomodulation by GABAergic ProjectionsDeriving from the Cerebellar Interposed Nuclei
     Objective:
     Our work in the first part has shown that cerebellohypothalamic glutamatergicprojection is actively implicated in regulation of immune function. To obtain acomprehensive understanding of the pathways and mechanisms of regulating immunefunction by the cerebellar IN, in the present study, we expored the immune function of theother nerve projection, cerebellohypothalamic GABAergic projections, and its pathways oftransmitting this information.
     Methods:
     1. Retrograde tracing of nerve tracts from LHA to the cerebellar IN was conducted byinjection of FR in the LHA, and fluorescent immunohistochemistry for GABA was used toidentify neurotransmitter of the cerebellar IN projecting to the LHA.
     2. A GABA synthetase inhibitor,3-mercaptopropionic acid (3-MP), and GABAtransaminase inhibitor, vigabatrin (VGB) were respectively microinjected into the bilateral IN. The rats infused with same volume of saline in the bilateral IN and with intact IN wereused as control. Meanwhile, rats were immuned by bovine serum albumin (BSA)intraperitoneal injection. On the3rd day after3-MP and VGB injection in bilateralcerebellar IN, lymphocyte percentage in the peripheral blood mononuclear cells wasmeasured by flow cytometry; T lymphocyte proliferation induced by Con A was doublelabelled by CFSE and anti-rat CD3antibody and detected by a flow cytometer; anti-BSAIgM antibody in the serum was determined by ELISA.
     3. On the3rd day after3-MP and VGB injection in bilateral cerebellar IN, HPLCanalysis was used to determine GABA content in the hypothalamus and norepinephrine(NE) content in the lymph node and spleen.
     4. On the3rd day after3-MP and VGB injection in bilateral cerebellar IN,adrenocorticotropic hormone (ACTH), cortisol, thyroid stimulating hormone (TSH),3,5,3’–triiodothyronine (T3) and3,5,3’,5’–tetraiodothyronine (T4) in the serum weredetected by ELISA.
     Results:
     1. Retrograde tracing by injection of retrograde tracer FR in the LHA found that theFR-labeled nerve fibers retrogradely traveled in the SCP decussation, and FR-labeledneurons appeared in contralateral cerebellar IN. Fluorescent immunohistochemistryshowed that GABA-immunoreactive neurons (green) were seen on the cerebellar INsection. Merging the red FR-labeled neurons and the green GABA-positive neurons in thecerebellar IN, some yellow neurons which represented GABAergic neurons projecting tothe LHA were observed on the section.
     2. On the3rd day after3-MP injection in bilateral cerebellar IN, T and B lymphocytepercentage in the peripheral blood mononuclear cells were increased, T cell proliferativeresponse to Con A was enhanced, and serum specific anti-BSA IgM antibody level waselevated; on the other hand, when VGB was applied, all the parameters (lymphocytepercentage in the peripheral blood mononuclear cells, T cell proliferative response to ConA, and serum specific anti-BSA IgM antibody level) were suppressed. Between the twogroups of control rats, no significant difference was found.
     3. On the3rd day after3-MP and VGB injection in bilateral cerebellar IN, comparedwith intact or saline-injected rats, the3-MP-treated rats were notably decreased in GABAcontent in the hypothalamus, but the VGB-treated rats were significantly increased. Between the two groups of control rats, no significant difference was found. These datademonstrated that3-MP and VGB injection in bilateral cerebellar IN effectively changedcerebellohypothalamic GABAergic projections.
     4. On the3rd day after3-MP and VGB injection in bilateral cerebellar IN, HPLCresult showed that NE content was decreased in the lymph node and spleen when rats weretreated by3-MP and NE content was increased when rats were treated by VGB. Betweenthe two groups of control rats, no significant difference was found. These data showed thatcerebellohypothalamic GABAergic projection regulated immune function by the pathwayof sympathetic nerve-lymphoid organs.
     5. On the3rd day after3-MP and VGB injection in bilateral cerebellar IN, ELISAresult displayed that the levels of ACTH, cortisol, TSH, T3, and T4in the serum did notalter after3-MP and VGB treatment compared with the two control groups. The datadisplayed that the pathway of pituitary-adrenal/thyroid gland-lymphoid organs did notmediate cerebellohypothalamic GABAergic projection regulating immune function.
     Conclusions:
     1. There is a direct cerebellohypothalamic GABAergic projection.
     2. The cerebellar IN GABAergic projection is actively implicated in regulation ofimmune system function including lymphocyte percentage in the peripheral bloodmononuclear cells, T cell proliferative response to Con A, and B cell antibody response tospecific antigen.
     3. The cerebellar IN GABAergic projection regulates immune function by thepathway of hypothalamus-sympathetic nerve-lymphoid organs.
引文
1. Ladabaum U, Minoshima S, Hasler WL, et al. Gastric distention correlates withactivation of multiple cortical and subcortical regions. Gastroenterology,2001,120(2):369-376.
    2. Holmes MJ, Cotter LA, Arendt HE, et al. Effects of lesions of the caudal cerebellarvermis on cardiovascular regulation in awake cats. Brain Res,2002,938(1-2):62-72.
    3. Xu F, Frazier DT. Role of the cerebellar deep nuclei in respiratory modulation.Cerebellum,2002,1(1):35-40.
    4. Zhu JN, Yung WH, Kwok-Chong Chow B, et al. The cerebellar-hypothalamic circuits:potential pathways underlying cerebellar involvement in somatic-visceral integration.Brain Res Rev,2006,52(1):93-106.
    5. Zhuang J, Xu F, Frazier DT. Hyperventilation evoked by activation of the vicinity ofthe caudal inferior olivary nucleus depends on the fastigial nucleus in anesthetized rats.J Appl Physiol,2008,104(5):1351-1358.
    6. Besedovsky HO, Sorkin E, Felix D, et al. Hypothalamic changes during the immuneresponse. Eur J Immunol,1977,7(5):323-325.
    7. Sheela DR, Namasicayam A, Prabhakaran K. Modulation of non-specific immunity byhippocampal stimulation. J Neuroimmunol,1993,42(2):193-197.
    8. Mask K, Petrovicky P. Morphological and pharmacological evidence for the existenceof brain regulatory circuits in the immune response. Int J Immunopharmac,1997,19(9-10):507-510.
    9. Green-Johnson JM, Zalcman S, Vriend CY, et al. Suppressed T cell and macrophagefunction in the "reeler"(rl/rl) mutant, a murine strain with elevated cerebellarnorepinephrine concentration. Brain Behav Immun,1995,9(1):47-60.
    10. Ghoshal D, Sinha S, Sinha A, et al. Immunosuppressive effect of vestibulo-cerebellarlesion in rats. Neurosci Lett,1998,257(2):89-92.
    11. Peng YP, Qiu YH, Cao BB, et al. Effect of lesions of cerebellar fastigial nuclei onlymphocyte functions of rats. Neurosci Res,2005,51(3):275-284.
    12. Peng YP, Qiu YH, Qiu J, et al. Cerebellar interposed nucleus lesions suppresslymphocyte function in rats. Brain Res Bull,2006,71(1-3):10-17.
    13. Ni SJ, Qiu YH, Lu JH, et al. Effect of cerebellar fastigial nuclear lesions ondifferentiation and function of thymocytes. J Neuroimmunol,2010,222(1-2):40-47.
    14. Stein M, Keller S, Schleifer S. The hypothalamus and the immune response. Res PublAssoc Res Nerv Ment Dis,1981,59:45-65.
    15. Cross RJ, Markesbery WR, Brooks WH, et al. Hypothalamic-immune interactions:neuromodulation of natural killer activity by lesioning of the anterior hypothalamus.Immunology,1984,51(2):399-405.
    16. Geddes BJ, Harding TC, Hughes DS, et al. Persistent transgene expression in thehypothalamus following stereotaxic delivery of a recombinant adenovirus: suppressionof the immune response with cyclosporin. Endocrinology,1996,137(11):5166-5169.
    17. Dietrichs E, Wiklund L, Haines DE. The hypothalamo-cerebellar projection in the rat:Origin and transmitter. Arch Ital Biol,1992,130(3):203-211.
    18. Dietrichs E, Roste GK, Roste LS, et al. The hypothalamocerebellar projection in thecat-branching and nuclear termination. Arch Ital Biol,1994a,132(1):25-38.
    19. Dietrichs E, Haines DE, Roste GK, et al. Hypothalamocerebellar andcerebellohypothalamic projections: circuits for regulating nonsomatic cerebellar activity?Histol Histopathol,1994,9(3):603-614.
    20. Haines DE, Dietrichs E, Mihailoff GA, et al. The cerebellar-hypothalamic axis: basiccircuits and clinical observations. Int Rev Neurobiol,1997,41:83-107.
    21. Wang JJ, Pu YM, Wang T. Influences of cerebellar interpositus nucleus and fastigialnucleus on the neuronal activity of lateral hypothalamic area. Sci Chin,1997,40(2):176-183.
    22. Cavdar S, San T, Aker R, et al. Cerebellar connections to the dorsomedial and posteriornuclei of the hypothalamus in the rat. J Anat,2001a,198(Pt1):37-45.
    23. Cavdar S, Onat F, Aker R, et al. The afferent connections of the posterior hypothalamicnucleus in the rat using horseradish peroxidase. J Anat,2001b,198(Pt4):463-472.
    24. Wen YQ, Zhu JN, Zhang YP, et al. Cerebellar interpositus nuclear inputs impinge onparaventricular neurons of the hypothalamus in rats. Neurosci Lett,2004,370(1):25-29.
    25. Reis DJ, Golanov EV. Autonomic and vasomotor regulation. Int Rev Neurobiol,1997,41:121-149.
    26. Zhang YP, Ma C, Wen YQ, et al. Convergence of gastric vagal and cerebellar fastigialnuclear inputs on glycemia-sensitive neurons of lateral hypothalamic area in the rat.Neurosci Res,2003,45(1):9-16.
    27. Zhu JN, Zhang YP, Song YN, et al. Cerebellar interpositus nuclear and gastric vagalafferent inputs reach and converge onto glycemia-sensitive neurons of the ventromedialhypothalamic nucleus in rats. Neurosci Res,2004,48(4):405-417.
    28. Gilerovitch HG, Bishop GA, King JS, et al. The use of electron microscopicimmunocytochemistry with silver-enhanced1.4-nm gold particles to localize GAD inthe cerebellar nuclei. J Histochem Cytochem,1995,43(3):337-343.
    29. Sultan F, K nig T, M ck M, et al. Quantitative organization of neurotransmitters in thedeep cerebellar nuclei of the Lurcher mutant. J Comp Neurol,2002,452(4):311-323.
    30. Uusisaari M, Obata K, Kn pfel T. Morphological and electrophysiological propertiesof GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol,2007,97(1):901-911.
    1. Paxinos G, Waston C. The Rat Brain in Stereotaxic Coordinates.4th ed. San Diego:Academic Press;1998.
    2. Peng YP, Qiu YH, Qiu J, et al. Cerebellar interposed nucleus lesions suppresslymphocyte function in rats. Brain Res Bull,2006,71(1-3):10-17.
    3. Haines DE, Dietrichs E, Mihailoff GA, et al. The cerebellar-hypothalamic axis: basiccircuits and clinical observations. Int Rev Neurobiol,1997,41:83-107.
    4. Dietrichs E, Haines DE, Roste GK, et al. Hypothalamocerebellar and cerebellohypothalamicprojections: circuits for regulating nonsomatic cerebellar activity? Histol Histopathol,1994,9(3):603-614.
    5. Wang F, Cao BB, Liu Y, et al. Role of cerebellohypothalamic GABAergic projection inmediating cerebellar immunomodulation. Int J Neurosci,2011,121(5):237-245.
    6. Uusisaari M, Obata K, Kn pfel T. Morphological and electrophysiological propertiesof GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol,2007,97(1):901-911.
    7. Sherman AD, Mott J. Effects of glutaminase inhibition on release of endogenousglutamic acid. Neuropharmacology,1986,25(12):1353-1357.
    8. Conti F, Minelli A. Glutamate immunoreactivity in rat cerebral cortex is reversiblyabolished by6-diazo-5-oxo-L-norleucine (DON), an inhibitor of phosphate-activatedglutaminase. J Histochem Cytochem,1994,42(6):717-726.
    9. Ortlund E, Lacount MW, Lewinski K, et al. Reactions of Pseudomonas7AGlutaminase-Asparaginase with Diazo Analogues of Glutamine and Asparagine Resultin Unexpected Covalent Inhibitions and Suggests an Unusual Catalytic TriadThr-Tyr-Glu. Biochemistry,2000,39(6):1199-1204.
    10. Brown G, Singer A, Proudfoot M, et al. Functional and structural characterization offour glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry,2008,47(21):5724-5735.
    11. Bear MF, Connors BW, Paradiso MA. Neuroscience: exploring the brain.2nd ed.Baltimore: Lippincott Williams&Wilkins;2001.
    12. Stein M, Keller S, Schleifer S. The hypothalamus and the immune response. Res PublAssoc Res Nerv Ment Dis,1981,59:45-65.
    13. Cross RJ, Markesbery WR, Brooks WH, et al. Hypothalamic-immune interactions:neuromodulation of natural killer activity by lesioning of the anterior hypothalamus.Immunology,1984,51(2):399-405.
    14. Geddes BJ, Harding TC, Hughes DS, et al. Persistent transgene expression in thehypothalamus following stereotaxic delivery of a recombinant adenovirus: suppressionof the immune response with cyclosporin. Endocrinology,1996,137(11):5166-5169.
    15. Sanders VM, Kohm AP. Sympathetic nervous system interaction with the immunesystem. Int Rev Neurobiol,2002,52:17-41.
    16. Klecha AJ, Genaro AM, Gorelik G et al. Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: thyroid hormone-mediated modulation of lymphocyteactivity through the protein kinase C signaling pathway. Journal of Endocrinology,2006,189(1):45-55.
    17. Savastano S, Tommaselli AP, Valentino R, et al. Hypothalamic-pituitary-adrenal axisand immune system. Acta Neurol,1994,16(4):206-213.
    1. Uusisaari M, Obata K, Kn pfel T. Morphological and electrophysiological propertiesof GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol,2007,97(1):901-911.
    2. Paxinos G, Waston C. The Rat Brain in Stereotaxic Coordinates.4th ed. San Diego:Academic Press;1998.
    3. Peng YP, Qiu YH, Cao BB, et al. Effect of lesions of cerebellar fastigial nuclei onlymphocyte functions of rats. Neurosci Res,2005,51(3):275-284.
    4.曹蓓蓓,彭聿平,邱一华.小脑顶核损毁对淋巴细胞功能的影响.中国应用生理学杂志,2006,22(4):410-414.
    5.吴亚芳,邱一华,曹蓓蓓等.小脑—下丘脑投射在小脑顶核调节淋巴细胞数量与功能中的介导作用.中国应用生理学杂志,2008,24(4):457-462.
    6. Ni SJ, Qiu YH, Lu JH, et al. Effect of cerebellar fastigial nuclear lesions on differentiationand function of thymocytes. J Neuroimmunol,2010,222(1-2):40-47.
    7. Peng YP, Qiu YH, Qiu J, et al. Cerebellar interposed nucleus lesions suppress lymphocytefunction in rats. Brain Res Bull,2006,71(1-3):10-17.
    8. Wang F, Cao BB, Liu Y, et al. Role of cerebellohypothalamic GABAergic projection inmediating cerebellar immunomodulation. Int J Neurosci,2011,121(5):237-245.
    9. Lu JH, Mao HN, Cao BB, et al. Effect of cerebellohypothalamic glutamatergic projectionson immune function. Cerebellum,2012, Online: DOI10.1007/s12311-012-0356-8.
    10. Haines DE, Dietrichs E, Mihailoff GA, et al. The cerebellar-hypothalamic axis: basiccircuits and clinical observations. Int Rev Neurobiol,1997,41:83-107.
    11. Dietrichs E, Haines DE, Roste GK, et al. Hypothalamocerebellar and cerebellohypothalamicprojections: circuits for regulating nonsomatic cerebellar activity? Histol Histopathol,1994,9(3):603-614.
    12.韩济生.神经科学.第三版.北京:北京大学医学出版社,2009.
    13. Stein M, Keller S, Schleifer S. The hypothalamus and the immune response. Res PublAssoc Res Nerv Ment Dis,1981,59:45-65.
    14. Cross RJ, Markesbery WR, Brooks WH, et al. Hypothalamic-immune interactions:neuromodulation of natural killer activity by lesioning of the anterior hypothalamus.Immunology,1984,51(2):399-405.
    15. Geddes BJ, Harding TC, Hughes DS, et al. Persistent transgene expression in thehypothalamus following stereotaxic delivery of a recombinant adenovirus: suppressionof the immune response with cyclosporin. Endocrinology,1996,137(11):5166-5169.
    16. Sheridan J. The HPA axis, SNS, and immunity: a commentary. Brain Behav Immun,2003,1:S17.
    17. Hori T, Katafuchi T, Take S, et al. The autonomic nervous system as a communicationchannel between the brain and the immune system. Neuroimmunomodulation,1995,2(4):203-215.
    18. Okamoto S, Ibaraki K, Hayashi S, et al. Ventromedial hypothalamus suppresses spleniclymphocyte activity through sympathetic innervation. Brain Res,1996,739(1-2):308-313.
    19. Okamoto S, Irie Y, Ishikawa I, et al. Central leptin suppresses splenic lymphocytefunctions through activation of the corticotropin-releasing hormone-sympatheticnervous system. Brain Res,2000,855(1):192-197.
    20. Cao WH, Fan W, Morrison SF. Medullary pathways mediating specific sympatheticresponses to activation of dorsomedial hypothalamus. Neuroscience,2004,126(1):229-240.
    21. Haddad JJ, Saade NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrineinteractions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunel,2002,133(1-2):1-19.
    22. Savastano S, Tommaselli AP, Valentino R, et al. Hypothalamic-pituitary-adrenal axisand immune system. Acta Neurol,1994,16(4):206-213.
    23. Karanikas E, Harsoulis F, Giouzepas I, et al. Neuroendocrine stimulatory tests ofhypothalamus-pituitary-adrenal axis in psoriasis and correlative implications withpsychopathological and immune parameters. Journal of Dermatology,2009,36(1):35-44.
    24. Klecha AJ, Genaro AM, Gorelik G, et al. Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: thyroid hormone-mediated modulation of lymphocyteactivity through the protein kinase C signaling pathway. Journal of Endocrinology,2006,189(1):45-55.
    25. Armstrong MD, Klein JR. Immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis: integration, communication and homeostasis. Archivum immunologiaeet therapiae experimentalis,2001,49(3):231-237.
    26. Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathetic nerve: an integrativeinterface between two supersystems: the brain and the immune system. Pharmacol Rev,2000,52(4):595-638.
    27. Vizi ES, Elenkov IJ. Nonsynaptic noradrenaline release in neuro-immune responses.Acta Biol Hung,2002,53(1-2):229-244.
    28. Felten DL, Felten SY, Carlson SL, et al. Noradrenergic and peptidergic innervation oflymphoid tissue. J Immunol,1985,135(2):755s-765s.
    29. Panuncio AL, De La Pena S, Gualco G, et al. Adrenergic innervation in reactive humanlymph nodes. J Anat,1999,194(Pt1):143-146.
    30. Sanders VM. Sympathetic nervous system interaction with the immune system. Int RevNeurobiol,2002,52:17-41.
    31. Del Rey A, Kabiersch A, Petzoldt S, et al. Involvement of noradrenergic nerves in theactivation and clonal deletion of T cells stimulated by superantigen in vivo. J
    Neuroimmunol,2002,127(1-2):44-53.
    1. Zhu JN, Yung WH, Chow BKC, et al. The cerebellar-hypothalamic circuits: potentialpathways underlying cerebellar involvement in somatic-visceral integration. BrainRes Rev,2006,52(1):93-106.
    2.韩济生.神经科学.第三版.北京:北京大学医学出版社,2009.
    3. Ivry RB, Spencer RMC. The neural representation of time. Curr Opin Neurobiol,2004,14(2):225-232.
    4. Dietrichs E, Haines DE, Roste GK, et al. Hypothalamocerebellar and cerebellohypoth-alamic projections: circuits for regulating nonsomatic cerebellar activity? HistolHistopathol,1994,9(3):603-614.
    5. Haines DE, Dietrichs E, Mihailoff GA, et al. The cerebellar-hypothalamic axis: basiccircuits and clinical observations. Int Rev Neurobiol,1997,41:83-107.
    6. Dietrichs E. Cerebellar autonomic function: direct hypothalamocerebellar pathway.Science,1984,223(4636):591-593.
    7. Dietrichs E, Wiklund L, Haines DE. The hypothalamo-cerebellar projection in the rat:origin and transmitter. Arch Ital Biol,1992,130(3):203-211.
    8. Haines DE, Sowa TE, Dietrichs E. Connections between the cerebellum andhypothalamus in tree shrew (Tupain glis). Brain Res,1985,328(2):367-373.
    9. Dietrichs E, Haines DE. Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibers in a prosimian primate (Galago crassicaudatus). Anat Embryol(Berl),1984,170(3):313-318.
    10. Haines DE, Dietrichs E, Culberson JL, et al. The organization of hypothalamo-cerebellar cortical fibers in the squirrel monkey (Saimiri sciureus). J Comp Neurol,1986,250(3):377-388.
    11. Bangma GC, ten Dongkelaar H. Afferent connections of the cerebellum in varioustypes of reptiles. J Comp Neurol,1982,207(3):255-273.
    12. Künzle H. Supraspinal cell populations projecting to the cerebellar cortex in theturtle (Pseudemys scripta elegans). Exp Brain Res,1983,49(1):1-12.
    13. Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebeller nucleiand hypothalamus in macaca fascicularis: Cerebello-visceral circuits. J Comp Neurol,1990,299(1):106-122.
    14. Dietrichs E, Haines DE. Do hypothalamo-cerebellar fibres terminate in all layers ofthe cerebellar cortex? Anat Embryol,1985,173(2):279-284.
    15. Dietrichs E, Roste GK, Roste LS, et al. The hypothalamocerebellar projection in thecat-branching and nuclear termination. Arch Ital Biol,1994,132(1):25-38.
    16. Dietrichs E,Zheng ZH. Are hypothalamo-cerebeller fibers collaterals from thehypothalamo-spinal projection? Brain Res,1984,296(2):225-231.
    17. Dietrichs E,Haines DE. Do the same hypothalamic neurons project to both amygdalaand cerebellum? Brain Res,1986,364(2):241-248.
    18. Bratus NV,Ioltukhovskii MV. Electrophysiologic analysis of the effects of thehypothalamus on the cerebellar cortex. Fiziol Z,1986,32(3):257-263.
    19. Supple WF. Hypothalamic modulation of Purkinje cell activity in the anteriorcerebellar vermis. NeuroReport,1993,4(7):979-982.
    20. Wang T, Chen WY, Chen J, et al. Effects of stimulating lateral hypothalamic area andventromedial nucleus of hypothalamus on cerebellar cortical neuronal activity in thecat. Chin J Physiol Sci,1993,45(4):338-347.
    21. Ter Horst GJ and PG. The projections of the dorsomedial hypothalamic nucleus in therat. Brain Res Bull,1986,16(2):231-248.
    22. Jacobs VL. The cerebellofugal system in the tarsius (Tarsiidae carbonarius) and themarmoset (Oedipomidas oedipus), Doctoral dissertation University of Kansas.Lawrence, Kansas,1965.
    23. Martin GF, King JS, Dom R. The projection of the deep cerebellar nuclei of theopossum, Didelphis marsupialis virginiana. J Hirnforsch,1974,15:545-573.
    24. Haines DE, Dietrichs E. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol,1984,229(4):559-575.
    25.吴亚芳,毛伟峰,邱一华等.小脑顶核—下丘脑神经纤维投射的形态学观察.南通大学学报,2008,28(5):321-323.
    26. Wang F, Cao BB, Liu Y, et al. Role of cerebellohypothalamic GABAergic projectionin mediating cerebellar immunomodulation. Int J Neurosci,2011,121(5):237-245.
    27. Lu JH, Mao HN, Cao BB, et al. Effect of cerebellohypothalamic glutamatergicprojections on immune function. Cerebellum,2012, Online: DOI10.1007/s12311-012-0356-8.
    28. Min BI, Oomura Y, Katafuchi T. Responses of rat lateral hypothalamic neuronalactivity to fastigial nucleus stimulation. J Neurophysiol,1989,61(6):1178-1184.
    29. Katafuchi T, Koizumi K. Fastigial inputs to paraventricular neurosecretory neuronesstudied by extra-and intracellular recordings in rats. J Physiol,1990,421:535-551.
    30. Pu YM, Wang JJ, Wang T, et al. Cerebellar interpositus nucleus modulates neuronalactivity of lateral hypothalamic area. NeuroReport,1995,6(7):985-988.
    31. Wang JJ, Pu YM, Wang T. Influences of cerebellar interpositus nucleus and fastigialnucleus on the neuronal activity of lateral hypothalamic area. Sci China C Life Sci,1997,40(2):176-183.
    32. Zhang YP, Zhu JN, Chen K, et al. Neurons in the rat lateral hypothalamic areaintegrate information from the gastric vagal nerves and the cerebellar interpositusnucleus. NeuroSignals,2005,14(5):234-243.
    33. Zhu JN, Zhang YP, Song YN, et al. Cerebellar interpositus nuclear and gastric vagalafferent inputs could reach and converge onto glycemia-sensitive neurons of theventromedial hypothalamic nucleus in rats. Neurosci Res,2004,48(4):405-417.
    34. Wen YQ, Zhu JN, Zhang YP, et al. Cerebellar interpositus nuclear inputs impinge onparaventricular neurons of the hypothalamus in rats. Neurosci Lett,2004,370(1):25-29.
    35. Reis DJ, Golanov EV. Autonomic and vasomotor regulation. Inter Rev Neurobiol,1997,41:121-149.
    36. Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguist,2000,13:189-214.
    37. Dietrichs E, Haines DE. Possible pathways for cerebellar modulation of autonomicresponses: micturition. Scand J Urol Nephrol Suppl,2002,(210):16-20.
    38. Martner J. Cerebellar influences on autonomic mechanisms. An experimental study inthe cat with special reference to the fastigial nucleus. Acta Physiol Scand,1975,425:1-42.
    39. Mahler JM. An unexpected role of the cerebellum: involvement in nutritionalorganization. Physiol Behav,1993,54(6):1063-1067.
    40. Colombel C, Lalonde R, Caston J. The effects of unilateral removal of the cerebellarhemispheres on motor functions and weight gain in rats. Brain Res,2002,950(1-2):231-238.
    41. Schmahmann JD, Doyon J, McDonald D, et al. Three-dimensional MRI atlas of thehuman cerebellum in proportional stereotaxic pace. Neuro Image,1999,10(3Pt1):233-260.
    42. Liu Y, Gao JH, Liu HL, et al. The temporal response of the brain after eating revealedby functional MRI. Nature,2000,405(6790):1058-1061.
    43. Tataranni PA, Gautier JF, Chen K, et al. Neuroanatomical correlates of hunger andsatiation in humans using positron emission tomography. Proc Natl Acad Sci USA,1999,96(8):4569-4574.
    44. Gautier JF, Chen K, Uecker A, et al. Regions of the human brain affected during aliquid-meal taste perception in the fasting state: a positron emission tomography study.Am J Clin Nutr,1999,70(5):806-810.
    45. Teves D, Videen TO, Cryer PE, et al. Activation of human medial prefrontal cortexduring autonomic responses to hypoglycemia. Proc Natl Acad Sci USA,2004,101(16):6217-6221.
    46. Parsons LM, Denton D, Egan G, et al. Neuroimaging evidence implicating cerebellumin support of sensory/cognitive processes associated with thirst. Proc Natl Acad SciUSA,2000,97(5):2332-2336.
    47. Zhang YP, Ma C, Wen YQ, et al. Convergence of gastric vagal and cerebellar fastigialnuclear inputs on glycemia-sensitive neurons of lateral hypothalamic area in the rat.Neurosci Res,2003,45(1):9-16.
    48. Orsini JC, Wiser AK, Himmi T, et al. Sensitivity of lateral hypothalamic neurons toglycemia level: possible involvement of an indirect adrenergic mechanism. Brain ResBull,1991,26(4):473-478.
    49. Karádi Z, Oomura Y, Nishino H, et al. Complex attribute of lateral hypothalamicneurons in the regulation of feeding of alert rhesus monkeys. Brain Res Bull,1990,25(6):933-939.
    50. Aou S, Takaki A, Karádi Z, et al. Functional heterogeneity of the monkey lateralhypothalamus in the control of feeding. Brain Res Bull,1991,27(3-4):451-455.
    51. Schwartz GJ. The role of gastrointestinal vagal afferents in the control of food intake:current prospects. Nutrition,2000,16(10):866-873.
    52. Lisander B, Martner J. Effects on gastric motility from the cerebellar fastigial nucleus.Acta Physiol Scand,1975,94(3):368-377.
    53. Gao L, Fei SJ, Qiao WL, et al. Protective effect of chemical stimulation of cerebellarfastigial nucleus on stress gastric mucosal injury in rats. Life Sciences,2011,88(19-20):871-878.
    54. Doba N, Reis DJ. Changes in regional blood flow and cardiodynamics evoked byelectrical stimulation of the fastigial nucleus in the cat and their similarity toorthostatic reflexes. J Physiol (London),1972,227(3):729-747.
    55.江红,刘运娣,沈迎念等.小脑顶核刺激对老年椎-基底动脉供血不足的影响.中国康复,2007,22(2):106-107.
    56.刘运娣,何华英,王芸等.小脑顶核刺激辅助治疗老年脑梗死患者的效果观察.护理学杂志,2009,24(1):43-44.
    57. Bradley DJ, Pascoe JP, Paton JE, et al. Cardiovascular and respiratory responsesevoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol,1987,393:107-121.
    58. Kondo M, Sears TA, Sadakane K, et al. Vagal afferent projections to lobule VIIa ofthe rabbit cerebellar vermis related to cardiovascular control. Neurosci Res,1998,30(2):111-117.
    59. Holmes MJ, Cotter LA, Arendt HE, et al. Effects of lesions of the caudal cerebellarvermis on cardiovascular regulation in awake cats. Brain Res,2002,938(1-2):62-72.
    60.瞿家武.小脑顶核刺激对急性心肌梗死患者心率变异性的影响.西部医学,2009,21(7):1113-1115.
    61.张巧英,张晓刚,何全.小脑顶核电刺激用于心律失常患者的临床研究.中华心血管病杂志,2008,36:539-540.
    62. Golanov EV, Christensen JR, Reis DJ. The medullary cerebrovascular vasodilator areamediates cerebrovascular vasodilation and electroencephalogram synchronizationelicited from cerebellar fastigial nucleus in Sprague-Dawley rats. Neurosci Lett,2000,288(3):183-186.
    63. Nisimaru N, Kawaguchi Y. Excitatory effects on renal synpathetic nerve activityinduced stimulation at two distinctive sites in the fastigial nucleus of rabbits. BrainRes,1984,304(2):372-376.
    64. Somana R, Walberg F. Cerebellar afferents from the nucleus of the solitary tract.Neurosci Lett,1979,11(1):41-47.
    65. Xu FD, Frazier DT. Modulation of respiratory motor output by cerebellar deep nucleiin the rat. J Appl Physiol,2000,89(3):996-1004.
    66. Lurtherer LO, Williams JL. Stimulating fastigial nucleus pressor region elicitspatterned respiratory responses. Am J physiol,1986,250(3Pt2):R418-426.
    67. Harper RM, Gozal D, Bandler R, et al. Regional brain activation in humans duringrespiratory and blood pressure challenges. Clin Exp Pharmacol Physiol,1998,25(6):483-486.
    68. Zheng Z. Cerebellar affrents fibers from the dorsal motor vagal nucleus in the cat.Neurosci Lett,1982,32(2):113-118.
    69. Xu FD, Zhang Z, Frazier DT. Microinjection of acetazolamide into the fastigial nucleusaugments respiratory output in the rat. J Appl Physiol,2001,91(5):2342-2350.
    70. Gaytán SP, Pásaro R. Connections of the rostral ventral respiratory neuronal cellgroup: an anterograde and retrograde tracing study in the rat. Brain Res Bull,1998,47(6):625-642.
    71. Gaytán SP, Pásaro R, Coulon P, et al. Identification of central nervous systemneurons innervating the respiratory muscles of the mouse: a transneuronal tracingstudy. Brain Res Bull,2002,57(3-4):335-339.
    72. Xu FD, Frazier DT. Involvement of fastigial nuclei in vagally mediated respiratoryresponses. J Appl Physiol,1997,82(6):1853-1861.
    73.张建福,彭聿平,闫长栋.人体生理学.第二版.北京:高等教育出版社,2010.
    74. Sheela DR, Sivaprakash RM, Namasivayam A. Rat hippocampus and primaryimmune response. Indian Journal of Physiology and Pharmacology,2004,48(3):329-336.
    75. Besedovsky HO, Sorkin E, Felix D, et al. Hypothalamic changes during the immuneresponse. Eur J Immunol,1977,7(5):323-325.
    76. Mask K, Petrovicky P. Morphological and pharmacological evidence for the existenceof brain regulatory circuits in the immune response. Int J Immunopharmacol,1997,19(9-10):507-510.
    77. Sarkar DK, Zhang C, Murugan S et al. Transplantation of beta-Endorphin Neuronsinto the Hypothalamus Promotes Immune Function and Restricts the Growth andMetastasis of Mammary Carcinoma. Cancer Research,2011,71(19):6282-6291.
    78. Trenkner E, Hoffmann MK. Defective development of the thymus and immunologicalabnormalities in the neurological mouse mutation "staggerer". The Journal ofNeuroscience,1986,6(6):1733-1737.
    79. Green-Johnson JM, Zalcman S, Vriend CY, et al. Supressed T cell and macrophagefunction in the ‘Reeler”(rl/rl) mutant, a murine strain with elevated cerebellarnorepinephrine concentration. Brain Behave Immun,1995,9(1):47-60.
    80. Ghoshal D, Sinha S, Sinha A, et al. Immunosuppressive effect of vestibulo-cerebellarlesion in rats. Neurosci Lett,1998,257(2):89-92.
    81. Peng YP, Qiu YH, Cao BB, et al. Effect of lesions of cerebellar fastigial nuclei onlymphocyte functions of rats. Neurosci Res,2005,51(3):275-284.
    82.曹蓓蓓,彭聿平,邱一华.小脑顶核损毁对淋巴细胞功能的影响.中国应用生理学杂志,2006,22(4):410-414.
    83.吴亚芳,邱一华,曹蓓蓓等.小脑—下丘脑投射在小脑顶核调节淋巴细胞数量与功能中的介导作用.中国应用生理学杂志,2008,24(4):457-462.
    84. Ni SJ, Qiu YH, Lu JH, et al. Effect of cerebellar fastigial nuclear lesions ondifferentiation and function of thymocytes. J Neuroimmunol,2010,222(1-2):40-47.
    85. Peng YP, Qiu YH, Qiu J, et al. Cerebellar interposed nucleus lesions suppresslymphocyte function in rats. Brain Res Bull,2006,71(1-3):10-17.
    86. Wang F, Cao BB, Liu Y, et al. Role of cerebellohypothalamic GABAergic projectionin mediating cerebellar immunomodulation. Int J Neurosci,2011,121(5):237-245.
    87. Stein M, Keller S, Schleifer S. The hypothalamus and the immune response. Res PublAssoc Res Nerv Ment Dis,1981,59:45-65.
    88. Cross RJ, Markesbery WR, Brooks WH, et al. Hypothalamic-immune interactions:neuromodulation of natural killer activity by lesioning of the anterior hypothalamus.Immunology,1984,51(2):399-405.
    89. Geddes BJ, Harding TC, Hughes DS, et al. Persistent transgene expression in thehypothalamus following stereotaxic delivery of a recombinant adenovirus: suppressionof the immune response with cyclosporin. Endocrinology,1996,137(11):5166-5169.
    90. Sheridan J. The HPA axis, SNS, and immunity: a commentary. Brain Behav Immun,2003,1:S17.
    91. Hori T, Katafuchi T, Take S, et al. The autonomic nervous system as a communicationchannel between the brain and the immune system. Neuroimmunomodulation,1995,2(4):203-215.
    92. Okamoto S, Ibaraki K, Hayashi S, et al. Ventromedial hypothalamus suppressessplenic lymphocyte activity through sympathetic innervation. Brain Res,1996,739(1-2):308-313.
    93. Okamoto S, Irie Y, Ishikawa I, et al. Central leptin suppresses splenic lymphocytefunctions through activation of the corticotropin-releasing hormone-sympatheticnervous system. Brain Res,2000,855(1):192-197.
    94. Cao WH, Fan W, Morrison SF. Medullary pathways mediating specific sympatheticresponses to activation of dorsomedial hypothalamus. Neuroscience,2004,126(1):229-240.
    95. Haddad JJ, Saade NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrineinteractions: a role for the hypothalamic-pituitary-adrenal revolving axis. JNeuroimmunel,2002,133(1-2):1-19.
    96. Savastano S, Tommaselli AP, Valentino R, et al. Hypothalamic-pituitary-adrenal axisand immune system. Acta Neurol,1994,16(4):206-213.
    97. Karanikas E, Harsoulis F, Giouzepas I, et al. Neuroendocrine stimulatory tests ofhypothalamus-pituitary-adrenal axis in psoriasis and correlative implications withpsychopathological and immune parameters. Journal of Dermatology,2009,36(1):35-44.
    98. Klecha AJ, Genaro AM, Gorelik G, et al. Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: thyroid hormone-mediated modulation of lymphocyteactivity through the protein kinase C signaling pathway. Journal of Endocrinology,2006,189(1):45-55.
    99. Armstrong MD, Klein JR. Immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis: integration, communication and homeostasis. ArchivumImmunologiae Et Therapiae Experimentalis,2001,49(3):231-237.
    100. Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathetic nerve: an integrativeinterface between two supersystems: the brain and the immune system. PharmacolRev,2000,52(4):595-638.
    101. Vizi ES, Elenkov IJ. Nonsynaptic noradrenaline release in neuro-immune responses.Acta Biol Hung,2002,53(1-2):229-244.
    102. Felten DL, Felten SY, Carlson SL, et al. Noradrenergic and peptidergic innervation oflymphoid tissue. J Immunol,1985,135(2):755s-765s.
    103. Panuncio AL, De La Pena S, Gualco G, et al. Adrenergic innervation in reactivehuman lymph nodes. J Anat,1999,194(Pt1):143-146.
    104. Sanders VM. Sympathetic nervous system interaction with the immune system. IntRev Neurobiol,2002,52:17-41.
    105. Del Rey A, Kabiersch A, Petzoldt S, et al. Involvement of noradrenergic nerves in theactivation and clonal deletion of T cells stimulated by superantigen in vivo. JNeuroimmunol,2002,127(1-2):44-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700