小脑顶核调节免疫系统功能的中枢和外周途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     我们实验室以前的研究表明小脑顶核可参与调节淋巴细胞功能。由于小脑与免疫系统之间没有直接的结构上的联系,因此探讨小脑调节免疫功能的途径和机制对于更好地理解小脑的免疫调节功能具有重要的意义。下丘脑是中枢神经系统中重要的免疫调节中枢。为此,本研究一方面进一步揭示小脑顶核至下丘脑的神经投射路径及性质;另一方面,在上述研究的基础上分别研究小脑顶核至下丘脑γ-氨基丁酸(γ-aminobutyric acid, GABA)能和谷氨酸能神经投射对淋巴细胞功能的影响,以探讨小脑顶核调节免疫功能的中枢和外周途径,进一步拓宽和加深对小脑神经免疫调节的认识和理解。
     方法:
     1.单侧小脑顶核内微量注射葡聚糖-德克萨斯红(Texas red dextran amine,TRDA),顺行追踪顶核至下丘脑的神经投射路径及终止部位。单侧下丘脑外侧区(lateral hypothalamic area, LHA)内微量注射逆行追踪剂红色荧光金(Fluoro-Ruby,FR),结合GABA和谷氨酸免疫荧光组织化学染色,进一步确定顶核至下丘脑投射的性质。
     2.双侧小脑顶核内微量注射GABA降解酶—GABA转氨酶的抑制剂氨已烯酸(vigabatrin, VGB)或GABA合成酶—谷氨酸脱羧酶的抑制剂3-巯基丙酸(3-mercaptopropionic acid,3-MP),并以未作任何处理的空白大鼠和双侧小脑顶核注射等量生理盐水的大鼠作为对照。注射后第3天,用羧基荧光素琥珀酰亚胺酯(carboxyl fluorescein succinimidyl ester, CFSE)和抗CD3抗体流式双标技术检测T淋巴细胞对刀豆蛋白A(concanavalin A, Con A)刺激的增殖反应;用酶联免疫吸附法(enzyme-linked immunosorbent assay, ELISA)检测血清中抗绵羊红细胞(sheep redblood cells, SRBC)特异性IgM抗体水平;动物于第6天加强注射药物,3天后用CAM/EH-1流式双标技术检测脾脏自然杀伤(natural killer, NK)细胞杀伤肿瘤靶细胞YAC-1的活性。在检测淋巴细胞功能的同时,用FR逆行追踪结合GABA免疫组化染色检测顶核至LHA投射中GABA能神经元数目的变化,并用高效液相色谱法(highperformance liquid chromatography, HPLC)检测下丘脑中GABA的含量变化。
     3.大鼠用小牛血清白蛋白(bovine serum albumin, BSA)进行免疫。免疫后第3天,双侧小脑顶核内微量注射谷氨酸合成酶—谷氨酰胺酶的抑制剂6-重氮-5-氧代-L-正亮氨酸(6-diazo-5-oxo-L-norleucine, DON),同时双侧LHA或丘脑腹外侧核(ventrolateral thalamic nuclei, VL)内微量注射谷氨酸膜转运体抑制剂苏式-3-羟基天冬氨酸(D,L-threo-β-hydroxyaspartic acid, THA)。动物饲养3天,用抗CD3,CD4,CD8,CD45RA和NKR-P1A抗体标记流式检测外周血中T细胞及其亚群,B细胞和NK细胞的百分比变化;用CD3/CD25和CD3/CFSE流式双标技术分别检测肠系膜淋巴结T细胞对Con A刺激的活化和增殖能力;用real-time PCR法检测淋巴结T细胞中细胞因子IL-2,IFN-γ,IL-4,IL-5,IL-10,TGF-β,IL-22,IL-17mRNA的表达及用ELISA法检测细胞培养上清中细胞因子IL-2,IFN-γ,IL-4,IL-10,TGF-β,IL-22,IL-17的水平。此外,大鼠B细胞抗BSA IgM和IgG抗体生成能力及脾脏NK细胞的杀伤活性也分别用ELISA法及流式细胞术进行检测。在检测上述淋巴细胞功能的同时,同样用FR逆行追踪结合谷氨酸免疫组化染色检测顶核至LHA投射中谷氨酸能神经元数目的变化,以及用HPLC法检测下丘脑及丘脑组织中谷氨酸含量的变化。
     4.注射DON及THA后第3天,用ELISA法检测血清中促肾上腺皮质激素(adrenocorticotropic hormone, ACTH),皮质醇(cortisol),促甲状腺激素(thyroidstimulating hormone, TSH),三碘甲状腺原氨酸(triiodothyronine, T3)及甲状腺素(thyroxin, T4)的水平,用HPLC法进行检测外周免疫器官脾脏及淋巴结中去甲肾上腺素(norepinephrine, NE)的含量变化。
     结果:
     1.顶核神经元发出的TRDA阳性纤维,在小脑上脚中走行,至小脑上脚交叉处交叉至对侧,并进入下丘脑,主要终止于LHA。在LHA注射逆行追踪剂FR,标记的阳性纤维逆行穿行于小脑上脚交叉,并可到达小脑顶核。结合免疫荧光组织化学染色发现顶核投射到LHA的神经元既有GABA能又有谷氨酸能。
     2.双侧顶核注射VGB导致肠系膜淋巴结T细胞对Con A诱导的增殖反应,血清中抗SRBC IgM抗体水平及脾脏NK细胞杀伤肿瘤YAC-1靶细胞的杀伤活性均低于空白组及顶核注射生理盐水的对照组。而双侧顶核注射3-MP,可导致相反的变化。与此同时,顶核注射VGB可显著增加顶核至LHA投射中GABA能神经元的数目和下丘脑中GABA的含量,而顶核注射3-MP,顶核至LHA投射中GABA能神经元的数目和下丘脑中GABA的含量均降低。
     3.双侧顶核注射DON后,外周血中CD3+T细胞,CD3+CD4+T细胞数目及CD4/CD8比值均低于空白组和顶核注射生理盐水的对照组,而CD3+CD8+T细胞数目没有显著变化;肠系膜淋巴结T细胞的活化和增殖能力降低;淋巴结T细胞致炎细胞因子IL-2,IFN-γ,IL-17,IL-22的mRNA表达及在细胞培养上清中的含量均显著低于空白组和生理盐水对照组,而抗炎细胞因子IL-4,IL-10,IL-5,TGF-β的mRNA表达和培养上清中IL-4,IL-10,TGF-β的含量没有显著变化。另外,外周血中B细胞数目及血清中抗BSA IgM和IgG水平也明显下降。外周血中NK细胞数目及脾脏NK细胞杀伤活性也明显降低。与此同时,顶核注射DON后,顶核至LHA投射中谷氨酸能神经元的数量及下丘脑中谷氨酸的含量也降低。顶核注射DON联合LHA注射THA可使上述外周血中CD3+及CD3+CD4+T细胞数目和CD4/CD8比值,淋巴结T细胞的活化和增殖,致炎细胞因子的mRNA表达和细胞培养上清中的含量都显著高于单独顶核注射DON组。此外,外周血中B细胞数目及血清中抗BSA抗体水平,外周血中NK细胞数目及脾脏NK细胞杀伤活性也均高于单纯顶核注射DON组。同时下丘脑中谷氨酸的含量也比单纯顶核注射DON组有所升高。顶核至VL也有直接的谷氨酸能神经投射,而顶核注射DON的同时VL注射THA,虽然丘脑中谷氨酸的含量较单纯顶核注射DON有所升高,但上述T,B,NK细胞的数目和功能降低没有显著改变。
     4.双侧顶核注射DON可导致脾脏和淋巴结中NE含量高于空白组和生理盐水对照组,联合LHA注射THA后脾脏和淋巴结中NE含量较单纯注射DON组有所降低。动物注射DON及THA,血清中ACTH,皮质醇,TSH,T3及T4的水平没有显著变化。
     结论:
     1.小脑顶核发出直接的神经纤维投射至下丘脑,主要终止于LHA;这些神经投射中有GABA能和谷氨酸能纤维。
     2.小脑顶核的GABA能神经元调节T、B和NK细胞的功能,此调节作用由顶核至下丘脑的GABA能神经投射所介导。
     3.小脑顶核的谷氨酸能神经元调节T、B和NK细胞的数目和功能,这种调节作用由顶核投射至下丘脑而不是投射至丘脑的谷氨酸能神经所介导。
     4.交感神经而非肾上腺皮质和甲状腺激素途径介导小脑顶核—下丘脑谷氨酸能神经投射的免疫调节作用。
     5.综合上述结果,提示顶核GABA能/谷氨酸能神经元→下丘脑→交感神经→淋巴细胞途径参与介导了小脑顶核对免疫系统功能的调节。
Objectives:
     Our previous work has shown that the cerebellar fastigial nucleus (FN) participates inthe modulation of lymphocyte functions. Since there are no direct connections in structurebetween the cerebellum and the immune system, it appears especially important to explorethe potential pathways and mechanisms underlying the cerebellar immunomodulation. Thehypothalamus is an important immunoregulatory center in the central nervous system.Herein, we on the one hand further revealed the pathways and properties of the FNprojections to the hypothalamus and on the other hand investigated the effects of FNγ-aminobutyric acid (GABA)-ergic and glutamatergic projections to the hypothalamus onlymphocyte functions so as to explore the central and peripheral pathways involved in thecerebellar FN immunomodulation and obtain more comprehension and knowledge oncerebellar functions.
     Methods:
     1. Texas red dextran amine (TRDA), an anterograde tracer, was injected into unilateralcerebellar FN to trace the traveling courses and ending locations of the neuronalprojections from the cerebellar FN to the hypothalamus. Further, retrograde tracing byinjection of Fluoro-Ruby (FR) into unilateral lateral hypothalamic area (LHA) combinedwith GABA or glutamate fluorescence immunohistochemistry were performed to identifythe properties of FN neurons projecting to the hypothalamus.
     2. Vigabatrin (VGB), an inhibitor of GABA-transaminase (GABA-T) that degradesGABA, or3-mercaptopropionic acid (3-MP), an antagonist of glutamic acid decarboxylase (GAD) that synthesizes GABA, was microinjected into bilateral cerebellar FN. Rats withintact or saline-infused FN were used as controls. On the third day after the injections,carboxyl fluorescein succinimidyl ester (CFSE) and anti-CD3antibody double-labelingflow cytometry was used to detect concanavalin A (Con A)-induced T lymphocyteproliferation. Enzyme-linked immunosorbent assay (ELISA)was employed to measureanti-sheep red blood cell (SRBC) IgM antibody level in the serum. On day three followingthe second injection of VGB or3-MP, NK cell cytotoxicity to YAC-1target cells wasevaluated by means of CAM/EH-1double-labeling flow cytometry. Simultaneously, thenumber of GABA-immunoreactive neurons in FN-LHA projections and GABA content inthe hypothalamus were measured by FR retrograde tracing combined with GABAfluorescence immunohistochemistry and high performance liquid chromatography (HPLC),respectively.
     3. Rats were immunized with bovine serum albumin (BSA). On the third day after theimmunization,6-diazo-5-oxo-L-norleucine (DON), an inhibitor of glutaminase forglutamate synthesis, was microinjected in bilateral FN and D,L-threo-β-hydroxyasparticacid (THA), an inhibitor of glutamate transporters on plasma membrane, wasmicroinjected in both sides of LHA or ventrolateral thalamic nuclei (VL). On day threeafter the injections, flow cytometric assay with anti-CD3, CD4, CD8, CD45RA andNKR-P1A antibody labeling was employed to examine the percentage of T lymphocytesand its subsets, B lymphocytes and NK cells in the peripheral blood. CD3/CD25andCD3/CFSE double-labeling flow cytometry were used to detect Con A-induced Tlymphocyte activation and proliferation, respectively. Real-time PCR was used to measuremRNA expressions of IL-2, IFN-γ, IL-4, IL-5, IL-10, TGF-β, IL-22and IL-17in Tlymphocytes of the mesenteric lymph nodes and ELISA was used to detect theconcentration of IL-2, IFN-γ, IL-4, IL-10, TGF-β, IL-22and IL-17in the cell culturesupernatant. In addition, levels of anti-BSA IgM and IgG antibodies in the serum andsplenic NK cell cytotoxicity were measured by ELISA and flow cytometry, respectively.Similarily, when the lymphocyte functions were assayed, the number of glutamate-immunoreactive neurons in FN–LHA projections and glutamate content in thehypothalamus and thalamus were measured by FR retrograde tracing combined withglutamate fluorescence immunohistochemistry and HPLC, respectively.
     4. On the third day after treatment with DON and THA, the levels ofadrenocorticotropic hormone (ACTH), cortisol, thyroid stimulating hormone (TSH),triiodothyronine (T3) and thyroxin (T4) in the serum and norepinephrine (NE) content inthe spleen and lymph nodes were detected by ELISA and HPLC, respectively.
     Results:
     1. TRDA-labeled fibers from the FN traveled through the superior cerebellar peduncle(SCP), crossed in decussation of SCP (XSCP), entered the hypothalamus, and primarilyterminated in the LHA. By injecting FR in the LHA, the FR-stained fibers retrogradelypassed through the XSCP and reached the FN. Combined with fluorescenceimmunohistochemistry, we observed that among these FR-positive neurons in the FN,there were GABA and glutamate immunoreactive cells.
     2. After VGB injection into the bilateral FN, the Con A-induced T lymphocyteproliferation, the level of anti-SRBC IgM antibody in the serum and the NK cellcytotoxicity to YAC-1cells were all decreased in comparison with control rats with intactor saline-infused FN. However,3-MP injection in the bilateral FN resulted in the contrarychanges. Meanwhile, VGB treatment notably raised but3-MP remarkably reduced thenumber of GABAergic neurons in the FN-LHA projections and GABA content in thehypothalamus.
     3. After DON injection into bilateral FN, the number of CD3+and CD3+CD4+Tlymphocytes as well as CD4/CD8ratio in the peripheral blood were all less than those ofthe intact and saline-treated control rats, but the number of CD3+CD8+T lymphocytes hadno significant change. The Con A-induced T lymphocyte activation and proliferationdecreased following DON treatment in comparison with the two control rats. The mRNAexpressions of proinflammatory cytokines of IL-2, IFN-γ, IL-17, IL-22in T lymphocytesand their concentration in the cell culture supernatant were all significantly reduced following DON treatment when compared with the intact and saline-infused rats, while themRNA expressions of IL-4, IL-10, IL-5, TGF-β and concentration of IL-4, IL-10, TGF-βin the cell culture supernatant had no remarkable change. In addition, DON treatment inthe FN notably attenuated B lymphocyte number in the peripheral blood and anti-BSA IgMand IgG levels in the serum. Injection of DON in the bilateral FN also diminished thenumber of NK cells in the peripheral blood and NK cell cytotoxicity in the spleen.Simultaneously, the number of glutamatergic neurons in the FN-LHA projections andglutamate content in the hypothalamus were also reduced after DON treatment in the FN.Combined treatment with DON in the FN and with THA in the LHA resulted in theenhancement in the number of CD3+, CD3+CD4+T lymphocytes and CD4/CD8ratio inthe peripheral blood, T lymphocyte activation and proliferation, and mRNA expressionsand concentration in the supernatant of proinflammatory cytokines when compared withDON injection alone. In addition, B lymphocyte number in peripheral blood and levels ofanti-BSA antibodies in the serum as well as the NK cell number in peripheral blood andNK cytotoxicity in the spleen were also raised relative to DON treatment alone. Combinedtreatment with DON and THA increased glutamate content in the hypothalamus incomparison with DON injection alone. There were direct glutamatergic projections fromthe FN to the VL. However, co-treatment with DON in the FN and with THA in the VL didnot significantly alter DON-dependent changes in the number and functions of T, B andNK cells, although the co-treatment altered DON-dependent glutamate content in thethalamus.
     4. DON injection into bilateral FN increased NE content in the spleen and lymphnodes relative to the intact and saline-treated rats, co-treatment with DON in the FN andTHA in the LHA reduced the NE content compared with DON treatment alone. Afterinjection with DON and THA, the levels of ACTH, cortisol, TSH, T3and T4in the serumdid not significantly alter.
     Conclusions:
     1. There are direct GABAergic and glutamatergic projections from the cerebellar FNto the LHA.
     2. The cerebellar FN GABAergic neurons regulate the functions of T, B and NK cells,this effect is mediated by the GABAergic neuronal projections from the cerebellar FN tothe hypothalamus.
     3. The cerebellar FN glutamatergic neurons modulate the number and functions of T,B and NK cells, this effect is mediated by the FN glutamatergic projections to thehypothalamus, but not the thalamus.
     4. The sympathetic nerve but not the adrenal cortical hormone or thyroid hormonepathways mediate the immunomodulatory effect of the cerebellar FN glutamatergicprojections to the hypothalamus.
     5. In conclusion, the central and peripheral pathways involved in mediating thecerebellar FN immunomodulation may be the FN GABAergic and glutamatergicneurons—hypothalamus—sympathetic nerves—lymphocytes.
引文
1. Holmes MJ, Cotter LA, Arendt HE, Cass SP, Yates BJ. Effects of lesions of the caudalcerebellar vermis on cardiovascular regulation in awake cats. Brain Res,2002,938(1-2):62-72.
    2. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ. Thecerebellar-hypothalamic circuits: potential pathways underlying cerebellarinvolvement in somatic-visceral integration. Brain Res Rev,2006,52(1):93-106.
    3. Zhuang J, Xu F, Frazier DT. Hyperventilation evoked by activation of the vicinity ofthe caudal inferior olivary nucleus depends on the fastigial nucleus in anesthetizedrats. J Appl Physiol,2008,104(5):1351-1358.
    4. Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism.Cell Mol Neurobiol,2008,28(4):469-478.
    5. Alexander MP, Gillingham S, Schweizer T, Stuss DT. Cognitive impairments due tofocal cerebellar injuries in adults. Cortex,2012,48(8):980-990.
    6. Thürling M, Hautzel H, Küper M, Stefanescu MR, Maderwald S, Ladd ME, TimmannD. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial workingmemory: A7T fMRI study. Neuroimage,2012,62(3):1537-1550.
    7. Green-Johnson JM, Zalcman S, Vriend CY, Nance DM, Greenberg AH. Suppressed Tcell and macrophage function in the “reeler”(rl/rl) mutant, a murine strain withelevated cerebellar norepinephrine concentration. Brain Behav Immun,1995,9(1):47-60.
    8. Ghoshal D, Sinha S, Sinha A, Bhattacharyya P. Immunosuppressive effect ofvestibulo-cerebellar lesion in rats. Neurosci Lett,1998,257(2):89-92.
    9. Gillard SE, Lu M, Mastracci RM, Miller RJ. Expression of functional chemokinereceptors by rat cerebellar neurons. J Neuroimmunol,2002,124(1-2):16-28.
    10. Ragozzino D, Renzi M, Giovannelli A, Eusebi F. Stimulation of chemokine CXCreceptor4induces synaptic depression of evoked parallel fibers inputs onto Purkinjeneurons in mouse cerebellum. J Neuroimmunol,2002,127(1-2):30-36.
    11. Peng YP, Qiu YH, Cao BB, Wang JJ. Effect of lesions of cerebellar fastigial nuclei onlymphocyte functions of rats. Neurosci Res,2005,51(3):275-284.
    12. Ni SJ, Qiu YH, Lu JH, Cao BB, Peng YP. Effect of cerebellar fastigial nuclear lesionson differentiation and function of thymocytes. J Neuroimmunol,2010,222(1-2):40-47.
    13. Peng YP, Qiu YH, Qiu J, Wang JJ. Cerebellar interposed nucleus lesions suppresslymphocyte function in rats. Brain Res Bull,2006,71(1-3):10-17.
    14. Haddad JJ, Saade NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrineinteractions: a role for the hypothalamic-pituitary-adrenal revolving axis. JNeuroimmunol,2002,133(1-2):1-19.
    15. Pittman QJ. A neuro-endocrine-immune symphony. J Neuroendocrinol,2011,23(12):1296-1297.
    16. Madden KS. Catecholamines, sympathetic innervation, and immunity. Brain BehavImmun,2003,17(suppl1): S5-S10.
    17. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system(1987-2007). Brain Behav Immun,2007,21(6):736-745.
    18. Trotter RN, Stornetta RL, Guyenet PG, Roberts MR. Transneuronal mapping of theCNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci,2007,131(1-2):9-20.
    19. Baciu I, Hriscu M, Saulea G. Hypothalamic mechanisms of immunity. Int J Neurosci,2003,113(2):259-277.
    20. Dong J, Mrabet O, Moze E, Li K, Neveu PJ. Lateralization and catecholaminergicneuroimmunomodulation: prazosin, an alpha1/alpha2-adrenergic receptor antagonist,suppresses interleukin-1and increases interleukin-10production induced bylipopolysaccharides. Neuroimmunomodulation,2002,10(3):163-168.
    21. Eskandari F, Webster JI, Sternberg EM. Neural immune pathways and their connectionto inflammatory diseases. Arthritis Res Ther,2003,5(6):251-265.
    22. Hirokawa K, Utsuyama M, Kobayashi S. Hypothalamic control of thymic function.Cell Mol Biol (Noisy-le-grand),2001,47(1):97-102.
    23. Hori T, Katafuchi T, Take S, Shimizu N. Neuroimmunomodulatory actions ofhypothalamic interferon-alpha. Neuroimmunomodulation,1998,5(3-4):172-177.
    24. Sanders VM, Kohm AP. Sympathetic nervous system interaction with the immunesystem. Int Rev Neurobiol,2002,52:17-41.
    25. Stein M, Keller S, Schleifer S. The hypothalamus and the immune response. Res PublAssoc Res Nerv Ment Dis,1981,59:45-65.
    26. Tayebati SK, Bronzetti E, Morra Di Cella S, Mulatero P, Ricci A, Rossodivita I, SchenaM, Schiavone D, Veglio F, Amenta F. In situ hybridization and immunocytochemistryof alpha1-adrenoceptors in human peripheral blood lymphocytes. J Auton Pharmacol,2000,20(5-6):305-312.
    27. Wrona D. Neural-immune interactions: an integrative view of the bidirectionalrelationship between the brain and immune systems. J Neuroimmunol,2006,172(1-2):38-58.
    28. Yang H, Wang L, Ju G. Evidence for hypothalamic paraventricular nucleus as anintegrative center of neuroimmunomodulation. Neuroimmunomodulation,1997,4(3):120-127.
    29. Dietrichs E, Haines DE, Roste GK, Roste LS. Hypothalamocerebellar andcerebellohypothalamic projections: circuits for regulating nonsomatic cerebellaractivity? Histol Histopathol,1994,9(3):603-614.
    30. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebllar-hypothalamic axis:basic circuits and clinical observations. Int Rev Neurobiol,1997,41:83-107.
    31. Cavdar S, Onat F, Aker R, Sehirli U, San T, Yananli HR. The afferent connections ofthe posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat,2001,198(Pt4):463-472.
    32. Cavdar S, San T, Aker R, Sehirli U, Onat F. Cerebellar connections to the dorsomedialand posterior nuclei of the hypothalamus in the rat. J Anat,2001,198(Pt1):37-45.
    33. Dietrichs E, Haines DE. Demonstration of hypothalamo-cerebellar andcerebello-hypothalamic fibers in a prosimian primate (Galago crassicaudatus). AnatEmbryol,1984,170(3):313-318.
    34. Haines DE, Dietrichs E. An HRP study of hypothalamo-cerebellar andcerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). J CompNeurol,1984,229(4):559-575.
    35. Haines DE, Sowa TE, Dietrichs E. Connections between the cerebellum andhypothalamus in the tree shrew (Tupaia glis). Brain Res,1985,328(2):367-373.
    36. Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nucleiand hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol,1990,299(1):106-122.
    37. Wang F, Cao BB, Liu Y, Huang Y, Peng YP, Qiu YH. Role of cerebellohypothalamicGABAergic projection in mediating cerebellar immunomodulation. Int J Neurosci,2011,121(5):237-245.
    38. Lu JH, Mao HN, Cao BB, Qiu YH, Peng YP. Effect of cerebellohypothalamicglutamatergic projections on immune function. Cerebellum,2012,11(4):905-916.
    39. Chen S, Hillman DE. Colocalization neurotransmitters in the deep cerebellar nuclei. JNeurocytol,1993,22(2):81-91.
    40. Chung SH, Marzban H, Hawkes R. Compartmentation of the cerebellar nuclei of themouse. Neuroscience,2009,161(1):123-138.
    41. Sultan F, Konig T, Mock M, Their P. Quantitative organization of neurotransmitters inthe deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol,2002,452(4):311-323.
    42. Uusisaari M, Obata K, Kn pfel T. Morphological and electrophysiological propertiesof GABAergic and non-GABAergic cells in the deep cerebellar nuclei. JNeurophysiol,2007,97(1):901-911.
    43. Uusisaari M, Kn pfel T. GABAergic synaptic communication in the GABAergic andnon-GABAergic cells in the deep cerebellar nuclei. Neuroscience,2008,156(3):537-549.
    44. Katafuchi T, Koizumi K. Fastigial inputs to paraventricular neurosecretory neuronesstudied by extra-and intracellular recordings in rats. J Physiol,1990,421:535-551.
    45. Min BI, Oomura Y, Katafuchi T. Responses of rat lateral hypothalamic neuronalactivity to fastigial nucleus stimulation. J Neurophysiol,1989,61(6):1178-1184.
    46. Wang JJ, Pu YM, Wang T. Influences of cerebellar interpositus nucleus and fastigialnucleus on the neuronal activity of lateral hypothalamic area. Sci China C Life Sci,1997,40(2):176-183.
    47. Zhang YP, Ma C, Wen YQ, Wang JJ. Convergence of gastric vagal and cerebellarfastigial nuclear inputs on glycemia-sensitive neurons of lateral hypothalamic area inthe rat. Neuroscience Res,2003,45(1):9-16.
    48. Onat F, Cavdar S. Cerebellar connections: hypothalamus. Cerebellum,2003,2(4):263-269.
    49. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci,2009,32:413-434.
    50. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates,4th ed. AcademicPress, San Diego,1998.
    51. Evrard B, Dosgilbert A, Jacquemot N, Demeocq F, Gilles T, Chassagne J, Berger M,Tridon A. CFSE flow cytometric quantification of lymphocytic proliferation inextracorporeal photopheresis: use for quality control. Transfus Apher Sci,2010,42(1):11-19.
    52. K bbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S. Current concepts inneuroanatomical tracing. Prog Neurobiol,2000,62(4):327-351.
    53. Ito M. Historical review of the significance of the cerebellum and the role of Purkinjecells in motor learning. Ann N Y Acad Sci,2002,978:273-288.
    54. Mausset AL, de Seze R, Montpeyroux F, Privat A. Effects of radiofrequency exposureon the GABAergic system in the rat cerebellum: clues from semi-quantitativeimmunohistochemistry. Brain Res,2001,912(1):33-46.
    55. Crick EW, Osorio I, Bhavaraju NC, Linz TH, Lunte CE. An investigation into thepharmacokinetics of3-mercaptopropionic acid and development of a steady-statechemical seizure model using in vivo microdialysis and electrophysiologicalmonitoring. Epilepsy Res,2007,74(2-3):116-125.
    56. Engel D, Pahner I, Schulze K, Frahm C, Jarry H, Ahnert-Hilger G, Draguhn A.Plasticity of rat central inhibitory synapses through GABA metabolism. J Physiol,2001,535(Pt2):473-482.
    57. Netopilová M, Drsata J, Kubová H, Mares P. Differences between immature and adultrats in brain glutamate decarboxylase inhibition by3-mercaptopropionic acid.Epilepsy Res,1995,20(3):179-184.
    58. Kwan P, Sills GJ, Brodie MJ. The mechanisms of action of commonly usedantiepileptic drugs. Pharmacol Ther,2001,90(1):21-34.
    59. Jackson MF, Esplin B, Capek R. Reversal of the activity-dependent suppression ofGABA-mediated inhibition in hippocampal slices from γ-vinyl GABA(vigabatrin)-pretreated rats. Neuropharmacology,2000,39(1):65-74.
    60. Behar KL, Rothman DL. In vivo nuclear magnetic resonance studies ofglutamate-gamma-aminobutyric acid-glutamine cycling in rodent and human cortex:the central role of glutamine. J Nutr,2001,131(9Suppl):2498S-2504S.
    61. Kidd FL, Isaac JT. Glutamate transport blockade has a differential effect on AMPA andNMDA receptor-mediated synaptic transmission in the developing barrel cortex.Neuropharmacology,2000,39(5):725-732.
    62. ngür D, Haddad S, Prescot AP, Jensen JE, Siburian R, Cohen BM, Renshaw PF,Smoller JW. Relationship between genetic variation in the glutaminase gene GLS1and brain glutamine/glutamate ratio measured in vivo. Biol Psychiatry,2011,70(2):169-174.
    63. Conti F, Minelli A. Glutamate immunoreactivity in rat cerebral cortex is reversiblyabolished by6-diazo-5-oxo-L-norleucine (DON), an inhibitor of phosphate-activatedglutaminase. J Histochem Cytochem,1994,42(6):717-726.
    64. Kaneko T, Hanazawa A, Mizuno N. Enhancement of glutaminase-likeimmunoreactivity in rat brain by an irreversible inhibitor of the enzyme. Brain ResBull,1992,28(6):897-907.
    65. Hirata A, Nakamura R, Kwak S, Nagata N, Kamakura K. AMPA receptor-mediatedslow neuronal death in the rat spinal cord induced by long-term blockade of glutamatetransporters with THA. Brain Res,1997,771(1):37-44.
    66. Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N,Nakajima T. DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory aminoacid transporters. Mol Pharmacol,1998,53(2):195-201.
    67. Bernink J, Mj sberg J, Spits H. Th1-and Th2-like subsets of innate lymphoid cells.Immunol Rev,2013,252(1):133-138.
    68. Kannangai R, Prakash KJ, Ramalingam S, Abraham OC, Mathews KP, Jesudason MV,Sridharan G. Peripheral CD4+/CD8+T-lymphocyte counts estimated by animmunocapture method in the normal healthy south Indian adults and HIVseropositive individuals. J Clin Virol,2000,17(2):101-108.
    69. Serrano-Villar S, Gutiérrez C, Vallejo A, Hernández-Novoa B, Díaz L, AbadFernández M, Madrid N, Dronda F, Zamora J, Mu oz-Fernández Má, Moreno S. TheCD4/CD8ratio in HIV-infected subjects is independently associated with T-cellactivation despite long-term viral suppression. J Infect,2013,66(1):57-66.
    70. Boissier MC, Assier E, Falgarone G, Bessis N. Shifting the imbalance from Th1/Th2toTh17/treg: the changing rheumatoid arthritis paradigm. Joint Bone Spine,2008,75(4):373-375.
    71. Wilczyński JR. Th1/Th2cytokines balance--yin and yang of reproductive immunology.Eur J Obstet Gynecol Reprod Biol,2005,122(2):136-143.
    72. Fenoglio D, Battaglia F, Parodi A, Stringara S, Negrini S, Panico N, Rizzi M, Kalli F,Conteduca G, Ghio M, De Palma R, Indiveri F, Filaci G. Alteration of Th17and Tregcell subpopulations co-exist in patients affected with systemic sclerosis. Clin Immunol,2011,139(3):249-257.
    73. Xie JJ, Wang J, Tang TT, Chen J, Gao XL, Yuan J, Zhou ZH, Liao MY, Yao R, Yu X,Wang D, Cheng Y, Liao YH, Cheng X. The Th17/Treg functional imbalance duringatherogenesis in ApoE(-/-) mice. Cytokine,2010,49(2):185-193.
    74. Kuruma T, Maruyama T, Hiramatsu S, Yasuda Y, Yasuda S, Odashiro K, Harada M.Relationship between amiodarone-induced subclinical lung toxicity and Th1/Th2balance. Int J Cardiol,2009,134(2):224-230.
    75. Masubuchi Y, Sugiyama S, Horie T. Th1/Th2cytokine balance as a determinant ofacetaminophen-induced liver injury. Chem Biol Interact,2009,179(2-3):273-279.
    76. Sharma R, Sung SS, Ju CY, Deshmukh US, Fu SM, Ju ST. Regulatory T-Cell (Treg)hybridoma as a novel tool to study Foxp3regulation and Treg fate. J Autoimmun,2011,37(2):113-121.
    77. Hall WC. Movement and its central control. In: Purves D, Augustine GJ, Fitzpatrick D,Hall WC, LaMantia AS, McNamara JO, Williams SM.(Eds.), Neuroscience. SinauerAssociates, Inc., Massachusetts,2004,435-452.
    78. Wrona D, Jurkowski M, Luszawska D, Tokarski J, Trojniar W. The effects of lateralhypothalamic lesions on peripheral blood natural killer cell cytotoxicity in rats hyper-and hyporesponsive to novelty. Brain Behav Immun,2003,17(6):453-461.
    79. Wrona D, Trojniar W. Chronic electrical stimulation of the lateral hypothalamusincreases natural killer cell cytotoxicity in rats. J Neuroimunol,2003,141(1-2):20-29.
    80. Taub DD. Neuroendocrine interactions in the immune system. Cell Immunol,2008,252(1-2):1-6.
    81. Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun,2007,21(6):727-735.
    82. Kavelars A. Regulated expression of alpha-1adrenergic receptors the immune system.Brain Behav Immun,2002,16(6):799-807.
    83. Kohm AP, Sanders VM. Norepinephrine and beta-2adrenergic receptor stimulationregulate CD4+T and B lymphocyte function in vitro and in vivo. Pharmacol Rev,2001,53(4):487-525.
    84. Zoukos Y, Thomaides TN, Kidd D, Cuzner ML, Thompson A. Expression of beta-2adrenoreceptors on peripheral blood mononuclear cells in patients with primary andsecondary progressive multiple sclerosis: a longitudinal six month study. J NeurolNeurosurg Psychiatry,2003,74(2):197-202.
    85. Cupic V, Colic M, Pavicic L, Vucevic D, Varagic VM. Immunomodulatory effect ofxylazine, an alpha2-adrenergic agonist, on rat spleen cells in culture. JNeuroimmunol,2001,113(1):19-29.
    1. Ader R, Cohen N. Conditioned immunopharmacologic effects on cell-mediatedimmunity. Int J Immunopharmacol,1992,14(3):323-327.
    2. Hsueh CM, Tyring SK, Hiramoto RN, Ghanta VK. Efferent signals responsible for theconditioned argumentation of natural killer cell activity. Neuroimmunomodulation,1994,1(1):74-81.
    3. Hsueh CM, Chen SF, Ghanta VK, Hiramoto RN. Expression of the conditioned NKcell activity is beta-endorphin dependent. Brain Res,1995,678(1-2):76-82.
    4. Demissie S, Rogers CF, Hiramoto NS, Ghanta VK, Hiramoto RN. Arecolinearemuscarinic cholinergic agent conditions central pathways that modulate naturalkiller cell activity. J Neuroimmunol,1995,59(1-2):57-63.
    5. Goebel MU, Hubell D, Kou W, Janssen OE, Katsarava Z, Limmroth V, Schedlowski M.Behavioral conditioning with interferon beta-1a in humans. Physiol Behav,2005,84(5):807-814.
    6. Pacheco-López G, Niemi MB, Kou W, Harting M, Fandrey J, Schedlowski M. Neuralsubstrates for behaviorally conditioned immunosuppression in the rat. J Neurosci,2005,25(9):2330-2337.
    7. Costa-Pinto FA, Basso AS, Britto LR, Malucelli BE, Russo M. Avoidance behavior andneural correlates of allergen exposure in a murine model of asthma. Brain BehavImmun,2005,19(1):52-60.
    8. Pacheco-López G, Niemi MB, Engler H, Schedlowski M. Neuro-Immune AssociativeLearning. In: Bermúdez-Rattoni F, editor. Neural Plasticity and Memory: From Genesto Brain Imaging. Boca Raton (FL): CRC Press;2007, Chapter14.
    9. Avila AH, Morgan CA, Bayer BM. Stress-induced suppression of the immune systemafter withdrawal from chronic cocaine. J Pharmacol Exp Ther,2003,305(1):290-297.
    10. Painsipp E, Herzog H, Holzer P. Implication of neuropeptide-Y Y2receptors in theeffects of immune stress on emotional, locomotor and social behavior of mice.Neuropharmacology,2008,55(1):117-126.
    11. Gadek-Michalska A, Tadeusz J, Rachwalska P, Spyrka J, Bugajski J. Effect of repeatedrestraint on homotypic stress-induced nitric oxide synthases expression in brainstructures regulating HPA axis. Pharmacol Rep,2012,64(6):1381-1390.
    12. Zhou YY, Wanner NJ, Xiao Y, Shi XZ, Jiang XH, Gu JG, Xu GY. Electroacupuncturealleviates stress-induced visceral hypersensitivity through an opioid system in rats.World J Gastroenterol,2012,18(48):7201-7211.
    13. Huang TL, Lee CT. T-helper1/T-helper2cytokine imbalance and clinical phenotypesof acute-phase major depression. Psychiatry and Clinical Neurosciences,2007,61(4):415-420.
    14. Yoon HK, Kim YK, Lee HJ, Kwon DY, Kim L. Role of cytokines in atypicaldepression. Nord J Psychiatry,2012,66(3):183-188.
    15. Pittman QJ. A neuro-endocrine-immune symphony. J Neuroendocrinol,2011,23(12):1296-1297.
    16. Taub DD. Neuroendocrine Interactions in the Immune System. Cell Immunol,2008,252(1-2):1-6.
    17. Jones HP. Immune cells listen to what stress is saying: neuroendocrine receptorsorchestrate immune function. Methods Mol Biol,2012,934:77-87.
    18. Basu S, Dasgupta PS. Dopamine, a neurotransmitter, influences the immune system. JNeuroimmunol,2000,102(2):113-124.
    19. Dorshkind K, Horseman ND. The roles of prolactin, growth hormone, insulin-likegrowth factor-I, and thyroid hormones in lymphocyte development and function:insights from genetic models of hormone and hormone receptor deficiency. EndocrRev,2000,21(3):292-312.
    20. Adcock IM, Ito K. Molecular mechanisms of corticosteroid actions. Monaldi ArchChest Dis,2000,55(3):256-266.
    21. Meintjes G, Skolimowska KH, Wilkinson KA, Matthews K, Tadokera R,Conesa-Botella A, Seldon R, Rangaka MX, Rebe K, Pepper DJ, Morroni C,Colebunders R, Maartens G, Wilkinson RJ. Corticosteroid-modulated immuneactivation in the tuberculosis immune reconstitution inflammatory syndrome. Am JRespir Crit Care Med,2012,186(4):369-377.
    22. Truckenmiller, ME, Princiotta MF, Norbury CC, Bonneau RH. Corticotropine impairsMHC class I antigen presentation by dendritic cells via reduction of peptidegeneration. J Neuroimmunol,2005,160(1-2):48-60.
    23. Gupta S, Haldar C. Physiological crosstalk between melatonin and glucocorticoidreceptor modulates T-cell mediated immune responses in a wild tropical rodent,Funambulus pennanti. J Steroid Biochem Mol Biol,2013,134:23-36.
    24. Gaber AO, Moore LW, Alloway RR, Woodle ES, Pirsch J, Shihab F, Henning A,Fitzsimmons W, Holman J, Reisfield R, First MR; for the Astellas CorticosteroidWithdrawal Study Group. Acute Rejection Characteristics From a Prospective,Randomized, Double-Blind, Placebo-Controlled Multicenter Trial of EarlyCorticosteroid Withdrawal. Transplantation,2013,95(4):573-579.
    25. Webster JI, Sternberg EM. Role of the hypothalamic-pituitary-adrenal axis,glucocorticoids and glucocorticoid receptors in toxic sequele of exposure to bacterialand viral products. J Endocrinol,2004,181(2):207-221.
    26. Chrousos GP, Kino T. Glucocorticoid signaling in the cell. Expanding clinicalimplications to complex human behavioral and somatic disorders. Ann N Y Acad Sci,2009,1179:153-166.
    27. Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The humanglucocorticoid receptor: molecular basis of biologic function. Steroids,2010,75(1):1-12.
    28. Kaltschmidt B, Kaltschmidt C. NF-kappaB in the nervous system. Cold Spring HarbPerspect Biol,2009,1(3): a001271.
    29. Wolf JM, Rohleder N, Bierhaus A, Nawroth PP, Kirschbaum C. Determinants of theNF-kappaB response to acute psychosocial stress in humans. Brain Behav Immun,2009,23(6):742-749.
    30. Karin M, Chang L. AP-1-glucocorticoid receptor crosstalk taken to a higher level. JEndocrinol,2001,169(3):447-451.
    31. Herrlich P. Cross-talk between glucocorticoid receptor and AP-1. Oncogene,2001,20(19):2465-2475.
    32. Webster JI, Tonelli LH, Moayeri M, Simons Jr SS, Leppla SH, Sternberg EM. Anthraxlethal factor represses glucocorticoid and progesterone receptor activity. Proc NatlAcad Sci U S A,2003,100(10):5706-5711.
    33. Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructivepulmonary disease. J Allergy Clin Immunol,2013,131(3):636-645.
    34. Kim DH, Cheon JH, Park JJ, Yoon JY, Moon CM, Hong SP, Kim TI, Kim WH. Clinicaloutcomes and predictive factors for response after the first course of corticosteroidtherapy in patients with Crohn's disease. Gut Liver,2013,7(1):58-65.
    35. DeRijk RH, Eskandari F, Sternberg EM. Corticosteroidresistance in a subopulation ofmultiple sclerois patients as measured by ex vivo dexamethasone inhibition of LPSinduced IL-6production. J Neuroimmunol,2004,151(1-2):180-188.
    36. Olsen NJ, Kovacs WJ. Hormones, pregnancy, and rheumatoid arthritis. J Gend SpecifMed,2002,5(4):28-37.
    37. Sakiani S, Olsen NJ, Kovacs WJ. Gonadal steroids and humoral immunity. Nat RevEndocrinol,2013,9(1):56-62.
    38. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U,von Bergen M, McCoy KD, Macpherson AJ, Danska JS. Sex differences in the gutmicrobiome drive hormone-dependent regulation of autoimmunity. Science,2013,339(6123):1084-1088.
    39. Bird MD, Karavitis J, Kovacs EJ. Sex differences and estrogen modulation of thecellular immune response after injury. Cell Immunol,2008,252(1-2):57-67.
    40. Kovats S, Carreras E. Regulation of dendritic cell differentiation and function byestrogen receptor ligands. Cell Immunol,2008,252(1-2):81-90.
    41. Kovats S. Estrogen receptors regulate an inflammatory pathway of dendritic celldifferentiation: mechanisms and implications for immunity. Horm Behav,2012,62(3):254-262.
    42. Erlandsson MC, Ohlsson C, Gustafsson JA, Carlsten H. Role of oestrogen receptorsalpha and beta in immune organ development and in oestrogen-mediated effects onthymus. Immunology,2001,103(1):17-25.
    43. Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev,2005,205:72-93.
    44. Hince M, Sakkal S, Vlahos K, Dudakov J, Boyd R, Chidgey A. The role of sex steroidsand gonadectomy in the control of thymic involution. Cell Immunol,2008,252(1-2):122-123.
    45. Kyrou I, Tsigos C. Chronic stress, visceral obesity and gonadal dysfunction. Hormones(Athens),2008,7(4):287-293.
    46. Lang K, Drell TL, Niggemann B, Zanker KS, Entschladen F. Neurotransmittersregulate the migration and cytotoxicity in natural killer cells. Immunol Lett,2003,90(2-3):165-172.
    47. Zoeller RT, Tan SW, Tyl RW. General background on thehypothalamic-pituitary-thyroid (HPT) axis. Crit Rev Toxicol,2007,37(1-2):11-53.
    48. Klecha AJ, Genaro AM, Gorelik G, Barreiro Arcos ML, Silberman DM, Schuman M,Garcia SI, Pirola C, Cremaschi GA. Integrative study ofhypothalamus-pituitary-thyroid-immune system interaction: thyroidhormone-mediated modulation of lymphocyte activity through the protein kinase Csignaling pathway. J Endocrinol,2006,189(1):45-55.
    49. Kimura T, Kanda T, Kotajima N, Kuwabara A, Fukumura Y, Kobayashi I. Involvementof circulating interleukin-6and its receptor in the development of euthyroid sicksyndrome in patients with acute myocardial infarction. Eur J Endocrinol,2000,143(2):179-184.
    50. Olff M, Güzelcan Y, de Vries GJ, Assies J, Gersons BP. HPA-and HPT-axis alterationsin chronic posttraumatic stress disorder. Psychoneuroendocrinology,2006,31(10):1220-1230.
    51. Esquifino AI, Arce A, Alvarez MP, Chacon F, Brown-Borg H, Bartke A. Differentialeffects of light/dark recombinant human prolactin administration on the submaxillarylymph nodes and spleen activity of adult male mice. Neuroimmunomodulation,2004,11(2):119-126.
    52. Carreno PC, Sacedon R, Jimenez E, Vincente A, Zapata AG. Prolactin affects bothsurvival and differentiation of T-cell progenitors. J Neuroimmunol,2005,160(1-2):135-145
    53. Hattori N. Expression, regulation and biological actions of growth hormone (GH) andghrelin in the immune system. Growth Horm IGF Res,2009,19(3):187-197.
    54. Mazziotti G, Giustina A. Glucocorticoids and the regulation of growth hormonesecretion. Nat Rev Endocrinol,2013, doi:10.1038/nrendo.2013.5.
    55. Shelly S, Boaz M, Orbach H. Prolactin and autoimmunity. Autoimmun Rev,2012,11(6-7):A465-470.
    56. Madden KS. Catecholamines, sympathetic innervation, and immunity. Brain BehavImmun,2003,17:S5-S10.
    57. Bellinger DL, Stevens SY, Thyaga Rajan S, Lorton D, Madden KS. Aging andsympathetic modulation of immune function in Fischer344rats: effects of chemicalsympathectomy on primary antibody response. J Neuroimmunol,2005,165(1-2):21-32.
    58. Perez SD, Silva D, Millar AB, Molinaro CA, Carter J, Bassett K, Lorton D, Garcia P,Tan L, Gross J, Lubahn C, Thyagarajan S, Bellinger DL. Sympathetic innervation ofthe spleen in male Brown Norway rats: a longitudinal aging study. Brain Res,2009,1302:106-117.
    59. Kin NW, Sanders VM. It takes nerve to tell T and B cells what to do. J Leukocyte Biol,2006,79(6):1093-1104.
    60. Trotter RN, Stornetta RL, Guyenet PG, Roberts MR. Transneuronal mapping of theCNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci,2007,131(1-2):9-20.
    61. Gan X, Zhang L, Solomon GF, Bonavida B. Mechanism of norepinephrine-mediatedinhibition of human NK cytotoxic functions: inhibition of cytokine secretion, targetbinding, and programming for cytotoxicity. Brain Behav Immun,2002,16(3):227-246.
    62. Dokur M, Boyadjieva N, Sarkar DK. Catecholaminergic control of NK cell cytolyticactivity regulatory factors in the spleen. J Neuroimmunol,2004,151(1-2):148-157.
    63. Pacheco-Lopez G, Niemi MB, Kou W, Bildhauser A, Gross CM, Goebel MU, del ReyA, Besodovsky HO, Schedlowski M. Central catecholamine depletion inhibitsperipheral lymphocyte responsiveness in spleen and blood. J Neurochem,2003,86(4):1024-1031.
    64. Oberbeck R, Schmitz D, Wilsenack K, Schuler M, Pehle B, Schedlowski M, Exton MS.Adrenergic modulation of survival and cellular immune functions duringpolymicrobial sepsis. Neuroimmunomodulation,2004,11(4):214-223.
    65. Pongratz G, Melzer M, Straub RH. The sympathetic nervous system stimulatesanti-inflammatory B cells in collagen-type II-induced arthritis. Ann Rheum Dis,2012,71(3):432-439.
    66. Salles MJ, Hervé D, Rivet JM, Longueville S, Millan MJ, Girault JA, Cour CM.Transient and rapid activation of Akt/GSK-3β and mTORC1signaling by D3dopamine receptor stimulation in dorsal striatum and nucleus accumbens. JNeurochem,2013, doi:10.1111/jnc.12206.
    67. Carr L, Tucker A, Fernandez-Botran R. In vivo administration of L-DOPA or dopaminedecreases the number of splenic IFN-γ producing cells. J Neuroimmunol,2003,137(1-2):87-93.
    68. Levite M. Neurotransmitters activate T-cells and elicit crucial functions vianeurotransmitter receptors. Curr Opin Pharmacol,2008,8(4):460-471.
    69. Teunis MA, Heijnen CJ, Cools AR, Kavelaars A. Reduced splenic natural killer cellactivity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrinology,2004,29(8):1058-1064.
    70. Torres KCL, Antonelli LRV, Souza ALS, Teixeira MM, Dutra WO, Gollob KJ.Norepinephrine, dopamine and dexametha-sone modulate discrete leukocytesubpopulations and cytokine profiles from human PBMC. J Neuroimmunol,2005,166(1-2):144-157.
    71. Ganea D, Rodriquez R, Delgado M. Vasoactive intestinal peptide and pituitaryadenylate cyclase-activating polypeptide: players in innate and adaptive immunity.Cell Mol Biol,2003,49(2):127-142.
    72. Li JM, Southerland L, Hossain MS, Giver CR, Wang Y, Darlak K, Harris W, Waschek J,Waller EK. Absence of vasoactive intestinal peptide expression in hematopoietic cellsenhances Th1polarization and antiviral immunity in mice. J Immunol,2011,187(2):1057-1065.
    73. Puerto M, Guayerbas N, Alvarez P, De la Fuente M. Modulation of neuropeptide Y andnorepinephrine on several leucocyte functions in adult, old and very old mice. JNeuroimmunol,2005,165(1-2):33-40.
    74. Katsanos GS, Anogeianaki A, Orso C, Tete S, Salini V, Antinolfi PL, Sabatino G.Impact of substance P on cellular immunity. J Biol Regul Homeost Agents,2008,22(2):93-98.
    75. Vassiliou E, Sharma V, Jing H, Sheibanie F, Ganea D. Prostaglandin E2promotes thesurvival of bone marrow-derived dendritic cells. J Immunol,2004,173(11):6955-6964.
    76. Dokur M, Chen CP, Advis JP, Sarkar DK. β-endorphin modulation of interferon-g,perforin and granzyme B levels in splenic NK cells: effects of ethanol. JNeuroimmunol,2005,166(1-2):29-38.
    77. Kawashima K, Yoshikawa K, Fujii Y, Moriwaki Y. Expression and function of genesencoding cholinergic components in murine immune cells. Life Sciences,2007,80(24-25):2314-2319.
    78. Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergicanti-inflammatory pathway. Life Sci,2007,80(24-25):2325-2329.
    79. Kawashima K, Fujii T. The lymphocytic cholinergic system and its biological function.Life Sci,2003,72(18-19):2101-2109.
    80. Tracey KJ. Reflex control of immunity. Nat Rev Immunol,2009,9(6):418-428.
    81. Westman M, Saha S, Morshed M, Lampa J. Lack of acetylcholine nicotine alpha7receptor suppresses development of collagen-induced arthritis and adaptive immunity.Clin Exp Immunol,2010,162(1):62-67.
    82. Zimring JC, Kapp LM, Yamada M, Wess J, Kapp JA. Regulation of CD8+cytolytic Tlymphocyte differentiation by a cholinergic pathway. J Neuroimmunol,2005,164(1-2):66-75.
    83. Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ,Al-Abed Y, Metz CN. Cholinergic stimulation blocks endothelial cell activation andleukocyte recruitment during inflammation. J Exp Med,2005,201(7):1113-1123.
    84. Hahm ET, Lee JJ, Lee WK, Bae HS, Min BI, Cho YW. Electroacupunctureenhancement of natural killer cell activity suppressed by anterior hypothalamiclesions in rats. Neuroimmunomodulation,2004,11(4):268-272.
    85. Utsuyama M, Kobayashi S, Hirokawa K. Induction of thymic hyperplasia andsuppression of splenic T cells by lesioning of the anterior hypothalamus in agingWistar rats. J Neuroimmunol,1997,77(2):174-180.
    86. Besedovsky HO, del Rey A. Central and peripheral cytokines mediate immune-brainconnectivity. Neurochem Res,2011,36(1):1-6.
    87. Mori Y, Kaname H, Sumida Y, Tanaka S, Kubo C, Tashiro N, Nomoto K. Changes inthe leukocyte distribution and surface expression of adhesion molecules accompaniedwith hypothalamically induced restlessness in the cat. Neuroimmunomodulation,2000,7(3):135-146.
    88. Pezzone MA, Dohanics J, Rabin BS. Effects of footshock stress upon spleen andperipheral blood lymphocyte mitogenic responses in rats with lesions of theparaventricular nuclei. J Neuroimmunol,1994,53(1):39-46.
    89. Hefco V, Olariu A, Hefco A, Nabeshima T. The modulator role of the hypothalamicparaventricular nucleus on immune response. Brain Behav Immun,2004,18(2):158-165.
    90. Wrona D, Jurkowski M, Luszawska D, Tokarski J, Trojniar W. The effects of lateralhypothalamic lesions on peripheral blood natural killer cell cytotoxicity in rats hyper-and hyporesponsive to novelty. Brain Behav Immun,2003,17(6):453-461.
    91. Wrona D, Klejbor I, Trojniar W. Chronic electric stimulation of the midbrain ventraltegmental area increases spleen but not blood natural killer cell cytotoxicity in rats. JNeuroimmunol,2004,155(1-2):85-93.
    92. Gao Y, Ng YK, Lin JY, Ling EA. Expression of immunoregulatory cytokines inneurons of the lateral hypothalamic area and amygdaloid nuclear complex of ratsimmunized against human IgG. Brain Res,2000,859(2):364-368.
    93. da Cunha AA, Ferreira AG, Loureiro SO, da Cunha MJ, Schmitz F, Netto CA, Wyse AT.Chronic hyperhomocysteinemia increases inflammatory markers in hippocampus andserum of rats. Neurochem Res,2012,37(8):1660-1669.
    94. Chen J, Yu S, Conha Q, Zhu H, Mix Y, Winblad E, Ljunggren H, Zhu J. Kainicacid-induced excitotoxic hippocampal neuro-degeneration in C57BL/6mice: B celland T cell subsets may contribute differently to the pathogenesis. Brain Behav Immun,2004,18(2):175-185.
    95. Jurkowski M, Trojniar W, Borman A, Ciepielewski Z, Siemion D, Tokarski J.Peripheral blood natural killer cell cytotoxicity after damage to the limbic system inthe rat. Brain Behav Immun,2001,15(1):93-113.
    96. Szczytkowski JL, Fuchs RA, Lysle DT. Ventral tegmental area-basolateralamygdala-nucleus accumbens shell neurocircuitry controls the expression ofheroin-conditioned immunomodulation. J Neuroimmunol.2011,237(1-2):47-56.
    97. Sumner RC, Parton A, Nowicky AV, Kishore U, Gidron Y. Hemispheric lateralisationand immune function: a systematic review of human research. J Neuroimmunol,2011,240-241:1-12.
    98. Bryden PJ, Bruyne J, Fletcher P. Handedness and health: an examination of theassociation between different handedness classifications and health disorders.Laterality,2005,10(5):429-440.
    99. Moshel YA, Durkin HG, Amassian VE. Lateralized neocortical control of T lymphocyteexport from the thymus: I. Increased export after left cortical stimulation inbehaviorally active rats, mediated by sympathetic pathways in the upper spinal cord. JNeuroimmunol,2005,158(1-2):3-13.
    100.Cerqueira JJ, Almeida OFX, Sousa N. The stressed prefrontal cortex. Left? Right!Brain Behav Immun,2008,22(5):630-638.
    101.Tuohy VK. The neocortical-immune axis. J Neuroimmunol,2005,158(1-2):1-2.
    102.Trenkner E, Hoffmann MK. Defective development of the thymus and immunologicalabnormalities in the neurological mouse mutation “staggerer”. J Neurosci,1986,6(6):1733-1737.
    103.Green-Johnson JM, Zalcman S, Vriend CY, Nance DM, Greenberg AH. Suppressed Tcell and macrophage function in the “reeler”(rl/rl) mutant, a murine strain withelevated cerebellar norepinephrine concentration. Brain Behav Immun,1995,9(1):47-60.
    104.Ghoshal D, Sinha S, Sinha A, Bhattacharyya P. Immunosuppressive effect ofvestibulo-cerebellar lesion in rats. Neurosci Lett,1998,257(2):89-92.
    105.Gillard SE, Lu M, Mastracci RM, Miller RJ. Expression of functional chemokinereceptors by rat cerebellar neurons. J Neuroimmunol,2002,124(1-2):16-28.
    106.Ragozzino D, Renzi M, Giovannelli A, Eusebi F. Stimulation of chemokine CXCreceptor4induces synaptic depression of evoked parallel fibers inputs onto Purkinjeneurons in mouse cerebellum. J Neuroimmunol,2002,127(1-2):30-36.
    107.Peng YP, Qiu YH, Cao BB, Wang JJ. Effect of lesions of cerebellar fastigial nuclei onlymphocyte functions of rats. Neurosci Res,2005,51(3):275-284.
    108.Ni SJ, Qiu YH, Lu JH, Cao BB, Peng YP. Effect of cerebellar fastigial nuclear lesionson differentiation and function of thymocytes. J Neuroimmunol,2010,222(1-2):40-47.
    109.Peng YP, Qiu YH, Qiu J, Wang JJ. Cerebellar interposed nucleus lesions suppresslymphocyte function in rats. Brain Res Bull,2006,71(1-3):10-17.
    110.Wang F, Cao BB, Liu Y, Huang Y, Peng YP, Qiu YH. Role of cerebellohypothalamicGABAergic projection in mediating cerebellar immunomodulation. Int J Neurosci,2011,121(5):237-245.
    111.Lu JH, Mao HN, Cao BB, Qiu YH, Peng YP. Effect of cerebellohypothalamicglutamatergic projections on immune function. Cerebellum,2012,11(4):905-916.
    112.Bhatt S, Bhatt R, Zalcman SS, Siegel A. Role of IL-1beta and5-HT2receptors inmidbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat.Brain Behav Immun,2008,22(2):224-233.
    113.Demetrikopoulos MK, Siegel A, Schleifer SJ, Obedi J, Keller SE. Electricalstimulation of the dorsal midbrain periaqeductal gray suppresses peripheral bloodnatural killer cell activity. Brain Behav Immun,1994,8(3):218-228.
    114.Banks WA. Neuroimmune networks and communication pathways: the importance oflocation. Brain Behav Immun,2004,18(2):120-122.
    115.Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNSdiseases as mediated at the blood-brain barrier. Neuroimmunomodulation,2012,19(2):121-130.
    116.Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface.Endocrinology,2012,153(9):4111-4119.
    117.Banks WA, Erickson MA. The blood-brain barrier and immune function anddysfunction. Neurobiol Dis,2010,37(1):26-32.
    118.Harden LM, Rummel C, Luheshi GN, Poole S, Gerstberger R, Roth J. Interleukin-10modulates the synthesis of inflammatory mediators in the sensory circumventricularorgans: implications for the regulation of fever and sickness behaviors. JNeuroinflammation,2013,10:22.
    119.Marvel FA, Chen C, Badr N, Gaykema RPA, Goehler LE. Reversible inactivation ofthe dorsal vagal complex blocks lipopoly-saccharide-induced social withdrawal andc-Fos expression in central autonomic nuclei. Brain Behav Immun,2004,18(2):123-134.
    120.Watkins LR, Maier SF. Immune regulation of central nervoussystem functions: fromsickness responses to pathological pain. J Intern,2005,257(2):139-155.
    121.Rivest S. Molecular insights on the cerebral innate immune system. Brain BehavImmun,2003,17(1):13-19.
    122.Engler KL, Rudd ML, Ryan JJ, Stewart JK, Fisher-Stenger K. Autocrine actions ofmacrophage-derived catecholamines on interleukin-1beta. J Neuroimmunol,2005,160(1-2):87-91.
    123.Ching S, He L, Lai W, Quan N. IL-1type receptor plays a key role in mediating therecruitment of leukocytes into the central nervous system. Brain Behav Immun,2005,19(2):127-137.
    124.Tian L, Ma L, Kaarela T, Li Z. Neuroimmune crosstalk in the central nervous systemand its significance for neurological diseases. J Neuroinflammation,2012,9:155.
    125.Besedovsky HO, Del Rey A. Interleukin-1resets glucose homeostasis at central andperipheral levels: relevance for immunoregulation. Neuroimmunomodulation,2010,17(3):139-141.
    126.Goshen I, Yirmiya R. Interleukin-1(IL-1): a central regulator of stress responses.Front Neuroendocrinol,2009,30(1):30-45.
    127.Hansel A, Hong S, Camara RJ, von Kanel R. Inflammation as a psychophysiologicalbiomarker in chronic psychosocial stress. Neurosci Biobehav Rev,2010,35(1):115-121.
    128.Beck Jr RD, King MA, Ha GK, Cushman JD, Huang Z, Petitto JM. IL-2deficiencyresults in altered septal and hippocampal cytoarchitecture: relation to developmentand neurotrophins. J Neuroimmunol,2005,160(1-2):146-153.
    129.Quan N, Banks WA. Brain-immune communication pathways.Brain Behav Immun,2007,21(6):727-735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700