室旁核对大鼠心交感传入反射的调控作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     心交感传入反射(cardiac sympathetic afferent reflex,CSAR)是一种交感兴奋性反射,心脏表面应用缓激肽、辣椒素或过氧化氢可刺激神经末梢,兴奋通过心交感传入神经到达中枢,经中枢整合后反射性地引起交感传出活动增强和动脉血压升高。心肌缺血时产生的化学物质也可以引起CSAR。慢性心力衰竭(chronic heart failure,CHF)是严重危害人类健康的常见病。交感神经系统活动过度增强是CHF的重要特征之一,是加速病情恶化并使存活期缩短的重要因素。CHF时CSAR的病理性增强是导致交感活动亢进的重要原因之一,在CHF发病机制中起了极其重要的作用。室旁核(paraventricular nucleus,PVN)是心血管活动整合的重要中枢结构之一,我们以前研究表明PVN内血管紧张素Ⅱ(AngⅡ)和AT_1受体调节正常大鼠和犬的CSAR,并与CHF状态下过度增强的CSAR有关。最近我们发现PVN内NAD(P)H氧化酶来源的活性氧,尤其是超氧阴离子和过氧化氢介导了AngⅡ对CSAR的调节作用。虽然PVN的信号分子在CSAR调节中起极其重要的作用,但至今对CSAR的中枢传导通路仍不够了解。进一步探讨PVN在CSAR中枢通路中的作用及其调控机制不仅有重要理论意义,而且可为寻找新的防治CHF药物提供线索和奠定理论基础。
     目的
     1研究PVN是否为CSAR反射弧中枢通路的重要结构之一
     2探讨PVN中γ-氨基丁酸(GABA)对CSAR的调节作用及其受体机制
     方法
     实验在去压力感受器神经支配和双侧迷走神经切断的麻醉SD大鼠上进行,采用立体定位仪进行大鼠双侧PVN定位、核团损毁和微量注射,利用Powerlab生物信号采集系统,在体记录肾交感神经放电活动(RSNA)、平均动脉压(MAP)和心率(HR),以心室表面应用缓激肽(BK)和辣椒素引起RSNA的变化值作为评价CSAR的指标。
     1可逆性抑制或兴奋PVN神经元对CSAR、RSNA和MAP的影响大鼠随机分为3组,每组7只,分别在双侧PVN内注射生理盐水、8.5 nmol利多卡因和1 nmol L-谷氨酸。观察注射前、注射后5 min和30 min的CSAR、RSNA和MAP的变化。
     2电损毁PVN对CSAR、RSNA和MAP的影响
     大鼠随机分为PVN损毁组和假损毁组,每组6只,分别观察损毁前和损毁后10 min的CSAR、RSNA和MAP的变化。
     3选择性损毁PVN神经元胞体对CSAR、RSNA和MAP的影响
     大鼠随机分为2组,每组6只,分别在双侧PVN内注射生理盐水、2 nmol海人酸,分别观察注射前和注射后90 min的CSAR、RSNA和MAP的变化。另外还观察PVN注射海人酸1周后对CSAR的影响(n=3)。为排除药物扩散至PVN邻近部位产生效应的可能性,另取3只大鼠,观察下丘脑前区微量注射2 nmol海人酸对CSAR的影响。
     4 GABA_A受体激动剂和拮抗剂对CSAR、RSNA和MAP的影响
     大鼠随机分为6组,每组6只,分别在双侧PVN内注射生理盐水、3种剂量的GABA_A受体激动剂isoguvacine(0.1 nmol,1 nmol或10nmol)、GABA_A受体拮抗剂gabazine(0.1 nmol)和isoguvacine(10nmol)+gabazine(0.1 nmol)(gabazine预处理10 min后注射isoguvacine),观察其对CSAR、RSNA和MAP的影响。PVN微量注射药物10 min后测定CSAR。
     5 GABA_B受体激动剂和拮抗剂对CSAR、RSNA和MAP的影响
     大鼠随机分为6组,每组6只,分别在双侧PVN内注射生理盐水、3种剂量的GABA_B受体激动剂baclofen(0.01 nmol,0.1 nmol或1nmol)、GABA_A受体拮抗剂CGP-35348(10 nmol)和baclofen(1 nmol)+CGP-35348(10 nmol)(CGP-35348预处理10 min后注射baclofen),观察其对CSAR、RSNA和MAP的影响。PVN微量注射药物10min后测定CSAR。
     6 PVN内源性GABA对CSAR、RSNA和MAP的影响
     大鼠随机分为5组,每组6只,分别在双侧PVN内注射生理盐水、GABA转氨酶抑制剂vigabatrin(10 nmol)、vigabatrin(10 nmol)+gabazine(0.1 nmol)、vigabatrin(10 nmol)+CGP-35348(10 nmol)、和vigabatrin(10 nmol)+gabazine(0.1 nmol)+CGP-35348(10 nmol),vigabatrin注射30 min后再应用gabazine和/或CGP-35348,观察其对CSAR、RSNA和MAP的影响。PVN微量注射vigabatrin或生理盐水70 min后测定CSAR。
     结果
     1双侧PVN内微量注射利多卡因抑制PVN神经元活动对基础RSNA和MAP无显著影响,但可消除CSAR;而应用L-谷氨酸兴奋PVN神经元则增强CSAR、增加基础RSNA和MAP。
     2双侧电损毁PVN不可逆地消除CSAR,而对基础RSNA和MAP无显著影响。
     3双侧PVN注射海人酸选择性损毁神经元胞体,引起基础RSNA增加和MAP升高,持续约60 min,继后保持在正常水平,90 min时测定CSAR发现海人酸化学损毁PVN后消除CSAR。下丘脑前部注射海人酸则对CSAR无显著影响。
     4双侧PVN内微量注射GABA_A受体激动剂isoguvacine引起剂量依赖性的基础RSNA减少、MAP降低和CSAR减弱,其效应可被GABA_A受体拮抗剂gabazine阻断。Gabazine增加基础RSNA和MAP,但对CSAR无显著影响。
     5双侧PVN内微量注射GABA_B受体激动剂baclofen剂量依赖性减弱RSNA、降低MAP,并抑制CSAR,大剂量baclofen可完全阻断CSAR。GABA_B受体拮抗剂CGP-35348则产生相反的效应,并可阻断baclofen的作用。静脉注射相同剂量的baclofen对RSNA、MAP和CSAR无显著影响。
     6双侧PVN内微量注射特异性的GABA转氨酶抑制剂vigabatrin,显著降低RSNA和MAP,消除CSAR。应用GABA_A受体拮抗剂gabazine或GABA_B受体拮抗剂CGP-35348预处理,均可部分抑制vigabatrin的作用,而联合应用gabazine和CGP-35348则可完全阻断vigabatrin的作用。
     结论
     1应用利多卡因抑制PVN神经元活动可消除CSAR,而应用L-谷氨酸兴奋PVN神经元则增强CSAR。非选择性电损毁PVN或选择性化学损毁PVN神经元胞体均可完全阻断CSAR。表明PVN是CSAR反射弧重要整合中枢之一。
     2激活PVN中GABA_A受体使CSAR减弱,而激活GABA_B受体则完全消除CSAR。阻断GABA_A受体对CSAR无显著影响,但阻断GABA_B受体增强CSAR。PVN中内源性GABA水平升高可抑制CSAR,其效应是通过GABA_A和GABA_B受体共同介导的。表明PVN中GABA是调控CASR的重要神经递质或调质,其抑制CSAR作用是由GABA_A和GABA_B受体受体共同介导的。
Background
     The cardiac sympathetic afferent reflex(CSAR)is a sympatho-excitatory reflex.The sympathetic afferent endings innervating the heart are stimulated by epicardial application of bradykinin(BK), capsaicin,or hydrogen peroxide,the afferent signals from cardiac receptors arrive the central,or then reflexly increases sympathetic tone and arterial pressure.During myocardial ischemia and infarction,CSAR is induced.Chronic heart failure(CHF)is a common disease threatening human's health with its high mortality.It is well accepted that CHF is characterized by enhanced sympathetic tone which plays a critical role in the pathogenesis of CHF.The degree of sympathoexcitation is positively correlated with mortality in the CHF state.The CSAR is enhanced in CHF and partially contributes to the over-excitation of sympathetic nervous system.
     The paraventricular nucleus(PVN)is an important integrative region in the control of sympathetic outflow and arterial pressure.Our previous studies have shown that angiotensinⅡ(AngⅡ)and AT_1 receptors in the PVN modulate the CSAR in normal rats and dogs and partially contribute to the enhanced CSAR in CHF.Recently,we have found that NAD(P)H oxidase-derived reactive oxygen species especially superoxide anions and hydrogen peroxide in the PVN contribute to the effect of AngⅡin the PVN on the CSAR in rats.These results suggest the importance of PVN in the central control of the CSAR.However the central pathway of the CSAR is not clear.The present study was designed to more conclusively demonstrate that the PVN is an important component of the central neurocircuitry of the CSAR and further elucidate the central mechanism responsible for modulation of the CSAR.It will lay a foundation in finding new drugs for management of CHF.
     Objective
     1.The effects of inhibiting and exciting the PVN,or bilateral electrolytic and chemical lesion of the PVN on the CSAR were respectively determined.
     2.The roles of GABA_A and GABA_B receptors as well as GABA in the PVN in the control of the CSAR and sympathetic outflow were investigated.
     Methods
     In anesthetized rats with sinoaortic denervation and cervical vagotomy,renal sympathetic nerve activity(RSNA),mean arterial pressure(MAP)and heart rate(HR)were recorded in vivo on a PowerLab data acquisition system.The CSAR was evaluated by the RSNA response to epicardial application of bradykinin(BK)or capsaicin.The coordinates for PVN were determined in a stereotaxic instrument according to the Paxinos and Watson rat atlas.All the drugs are bilaterally microinjected into PVN.
     1.The effects of lidocaine and glutamate,which respectively inhibit and activate the neurons in the PVN on the CSAR,were investigated. Lidocaine(8.5 nmol),L-glutamate(1 nmol)and saline were respectively microinjected into the bilateral PVN in three groups of rats(n=7 for each group).The CSAR was determined before microinjection,5 and 30 minutes after microinjection.
     2.Electrolytic lesion and sham lesion of the PVN were carried out in two groups of rats(n=6 for each group).The CSAR was respectively determined before lesion and 10 minutes after the lesion.
     3.Kainic acid(KA)was used to creat a chemical lesion to destroy neuronal perikarya in the PVN but spare axons of passage and terminals in the vicinity of the injection site.The effects of microinjection of KA(2 nmol)and saline into the PVN on the CSAR were determined in two groups of rats(n=6 for each group).The CSAR was evaluated before microinjection and 90 minutes after microinjection.To exclude the possibility that the effect of KA on the CSAR was caused by diffusion to other brain area,the effect of microinjection of same dose of KA into the anterior hypothalamic area,which is adjacent to the PVN,on the CSAR was also determined(n=3).Furthermore,the long-term effect of KA on the CSAR was observed at the eighth day after microinjection(n=3).
     4.The rats were randomly divided into six groups(n=6 for each group), which were subjected to the bilateral PVN microinjection of saline,three doses of GABA_A receptor agonist isoguvacine(0.1,1 or 10 nmol), GABA_A receptor antagonist gabazine(0.1 nmol),or gabazine plus the high dose of isoguvacine(pretreatment with gabazine 10 min before isoguvacine).The CSAR was evaluated 10 minutes after the microinjection.
     5.The rats were randomly divided into six groups(n=6 for each group), which were subjected to the bilateral PVN microinjection of saline,three doses of GABA_B receptor agonist baclofen(0.01,0.1 or 1 nmol),GABA_B receptor antagonist CGP-35348(10 nmol),or CGP-35348 plus the high dose of baclofen(pretreatment with CGP-35348 10 min before baclofen). The CSAR was evaluated 10 minutes after the microinjection.
     6.The rats were randomly divided into five groups(n=6 for each group), which were subjected to the bilateral PVN microinjection of saline, GABA-transminase inhibitor vigabatrin(10 nmol),vigabatrin plus gabazine,vigabatrin plus CGP-35348,and vigabatrin plus combined gabazine and CGP-35348.The gabazine and/or CGP-35348 were microinjected into the PVN 30 minutes after microinjection of vigabatrin. The CSAR was evaluated 70 minutes after microinjection of saline or vigabatrin.
     Result
     1.The effects of inhibiting and exciting the neurous in PVN on the CSAR and sympathetic outflow.
     Microinjection of lidocaine into the PVN abolished the CSAR without significant effects on the baseline RSNA and MAP,while glutamate which excites the neurons in the PVN enhanced the CSAR and increased the baseline RSNA and MAP.
     2.The effects of electrolytic lesion of the PVN on the CSAR and sympathetic outflow.
     Electrolytic lesions of the PVN irreversibly abolished the CSAR without significant effects on the baseline RSNA and MAP.
     3.The effects of selective lesion of the neuronal perikarya in PVN on the CSAR and sympathetic outflow.
     Selective lesion of the neuronal perikarya in the PVN with kainic acid induced rapid and great increases in both RSNA and MAP,which lasted about 60 minutes and then remained at the baseline levels.At the 90th minute after kainic acid,epicardial application of bradykinin or capsaicin failed to induce the CSAR.
     4.The effects of GABA_A receptor agonist and antagonist in the PVN on the CSAR and sympathetic outflow.
     The PVN microinjection of isoguvacine,a GABA_A receptor agonist, induced dose-dependently decreases in RSNA and MAP,and inhibited the CSAR.The high dose of isoguvacine caused great decreases in the baseline RSNA and MAP,but only showed a weakly inhibitory effect on the CSAR.These effects of isoguvacine were completely abolished by gabazine,a GABA_A receptor antagonist.However,gabazine alone did not cause any significant effect on the CSAR,but increased the baseline RSNA and MAP.
     5.The effects of GABA_B receptor agonist and antagonist in the PVN on the CSAR and sympathetic outflow.
     The PVN microinjection of baclofen,a GABA_B receptor agonist, dose-dependently caused decreases in RSNA and HR,and inhibited the CSAR evoked by either capsaicin or BK.The high dose of baclofen caused great decreases in the baseline RSNA and MAP,and almost completely abolished the CSAR.These effects of baclofen were completely antagonized by CGP-35348,a GABA_B receptor antagonist. Moreover,CGP-35348 alone enhanced the CSAR,but only slightly increased the baseline RSNA and MAP.Intravenous administration of same dose of baclofen had no significant effect on the CSAR,baseline RSNA and MAP.
     6.The effects of GABA-transaminase inhibitor in the PVN on the CSAR and sympathetic outflow.
     The PVN microinjection of vigabatrin,a selective GABA-transaminase inhibitor which increases endogenous GABA level, caused great decreases in baseline RSNA,MAP and HR,and almost completely abolished the CSAR.These effects of vigabatrin were partially inhibited by either GABA_A receptor antagonist gabazine or GABA_B receptor antagonist CGP-35348,and were completely blocked by gabazine plus CGP-35348.
     Conclusions
     1.PVN microinjection of lidocaine to inhibit the neural activity of the PVN abolishes the CSAR,but excitatory amino acid L-glutamate enhances the CSAR.Either nonselective electrolytic lesion of the PVN or selective lesion of the neuronal perikarya in the PVN with KA abolishes the CSAR.The results indicate that the PVN is a pivotal component of the central neurocircuitry of the CSAR.
     2.Activating the GABA_A receptors in the PVN attenuates the CSAR, while activating the GABA_B receptors abolishes the CSAR.The blockade of the GABA_A receptors in the PVN has no significant effect on the CSAR,while blockade of the GABA_B receptors enhances the CSAR.The increased endogenous GABA level in the PVN caused by the GABA-transaminase inhibitor inhibits the CSAR,which is mediated by both the GABA_A and GABA_B receptors.These results indicate that the GABA in the PVN plays an important role in inhibiting the CSAR,which is involved in both the GABA_A and GABA_B receptors in the PVN.
引文
1. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart.2007;93:1137-1146.
    
    2. Thomas S, Rich MW. Epidemiology, pathophysiology, and prognosis of heart failure in the elderly. Clin Geriatr Med. 2007;23:l-10.
    
    3. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB,Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819-823.
    
    4. Floras JS. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll cardiol. 1993;22:72A-84A.
    
    5. Francis GS, Cohn JN, Johnson G, Rector TS, Goldman S, Simon A. Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87:VI40-VI48.
    
    6. Du YH, Chen AF. A "love triangle" elicited by electrochemistry: complex interactions among cardiac sympathetic afferent, chemo-, and baroreflexes. J Appl Physiol. 2007;102:9-10.
    
    7. Zucker IH, Pliquett RU. Novel mechanisms of sympatho-excitation in chronic heart failure. Heart Fail Monit. 2002;3:2-7.
    
    8. Gao L, Pan YX, Wang WZ, Li YL, Schultz HD, Zucker IH, Wang W. Cardiac sympathetic afferent stimulation augments the arterial chemoreceptor reflex in anesthetized rats. J Appl Physiol. 2007;102:37-43.
    
    9. Gao L, Pan YX, Wang WZ, Li YL, Schultz HD, Zucker IH, Wang W. Cardiac sympathetic afferent stimulation augments the arterial chemoreceptor reflex in anesthetized rats. J Appl Physiol. 2007;102:37-43.
    
    10. Wang W, Ma R. Cardiac sympathetic afferent reflexes in heart failure. Heart Fail Rev. 2000;5:57-71.
    
    11. Zhu GQ, Gao L, Li Y, Patel KP, Zucker IH, Wang W. AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2004;287:H1828-H1835.
    12. Zhu GQ, Patel KP, Zucker IH, Wang W. Microinjection of ANG II into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats. Am J Physiol Heart Circ Physiol. 2002;282:H2039-H2045.
    
    13. Zhu GQ, Zucker IH, Wang W. Central AT1 receptors are involved in the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure.Basic Res Cardiol. 2002;97:320-326.
    
    14. Wang HJ, Zhang F, Zhang Y, Gao XY, Wang W, Zhu GQ. AT1 receptor in paraventricular nucleus mediates the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Auton Neurosci. 2005;121:56-63.
    
    15. Fu LW, Schunack W, Longhurst JC. Histamine contributes to ischemia-related activation of cardiac spinal afferents: role of H1 receptors and PKC. J Neurophysiol. 2005;93:713-722.
    
    16. Longhurst JC, Tjen ALS, Fu LW. Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes.Ann N YAcad Sci. 2001;940:74-95.
    
    17. Schultz HD, Ustinova EE. Capsaicin receptors mediate free radical-induced activation of cardiac afferent endings. Cardiovasc Res. 1998;38:348-355.
    
    18. Kaye D, Esler M. Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovasc Res. 2005;66:256-264.
    
    19. Malliani A, Montano N. Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension. 2002;39:63-68.
    
    20. Wang W, Ma R. Cardiac sympathetic afferent reflexes in heart failure. Heart Failure Reviews. 2000;5:57-71.
    
    21. Badoer E. Hypothalamic paraventricular nucleus and cardiovascular regulation.Clin Exp Pharmacol Physiol. 2001;28:95-99.
    
    22. Pyner S, Coote JH. Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord.Neuroscience. 2000;100:549-556.
    
    23. Gao L, Zhu Z, Zucker IH, Wang W. Cardiac sympathetic afferent stimulation impairs baroreflex control of renal sympathetic nerve activity in rats. Am J Physiol Heart Circ Physiol. 2004;286:H1706-H1711.
    24. Zhu GQ, Gao L, Patel KP, Zucker IH, Wang W. ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol. 2004;97:1746-1754.
    
    25. Han Y, Zhang Y, Wang HJ, Gao XY, Wang W, Zhu GQ. Reactive oxygen species in paraventricular nucleus modulates cardiac sympathetic afferent reflex in rats. Brain Res. 2005;1058:82-90.
    
    26. Han Y, Shi Z, Zhang F, Yu Y, Zhong MK, Gao XY, Wang W, Zhu GQ.Reactive oxygen species in the paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats. Eur J Heart Fail.2007;9:967-973.
    
    27. Yu Y, Zhong MK, Li J, Sun XL, Xie GQ, Wang W, Zhu GQ. Endogenous hydrogen peroxide in paraventricular nucleus mediating cardiac sympathetic afferent reflex and regulating sympathetic activity. Pflugers Arch.2007;454:551-557.
    
    28. Decavel C, Van den Pol AN. GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol. 1990;302:1019-1037.
    
    29. Li DP, Pan HL. Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension. Am J Physiol Heart Circ Physiol.2006;290:H1110-H1119.
    
    30. Li YF, Jackson KL, Stern JE, Rabeler B, Patel KP. Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus. Am J Physiol Heart Circ Physiol.2006;291:H2847-H2856.
    
    31. Chen Q, Pan HL. Signaling Mechanisms of Angiotensin II-Induced Attenuation of GABAergic Input to Hypothalamic Presympathetic Neurons. J Neurophysiol.2007;97:3279-3287.
    
    32. Zahner MR, Pan HL. Role of paraventricular nucleus in the cardiogenic sympathetic reflex in rats. Am J Physiol Regul Integr Comp Physiol.2005;288:R420-R426.
    1. Du YH, Chen AF. A "love triangle" elicited by electrochemistry: complex interactions among cardiac sympathetic afferent, chemo-, and baroreflexes. J Appl Physiol. 2007;102:9-10.
    
    2. Ludbrook J. Cardiovascular reflexes from cardiac sensory receptors. Aust N Z J Med. 1990;20:597-606.
    
    3. Malliani A. Cardiocardiac excitatory reflexes during myocardial ischemia. Basic Res Cardiol. 1990;85 Suppl 1:243-252.
    
    4. Malliani A, Montano N. Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension. 2002;39:63-68.
    
    5. Staszewska-Woolley J, Woolley G Participation of the kallikrein-kinin-receptor system in reflexes arising from neural afferents in the dog epicardium. J Physiol.1989;419:33-44.
    
    6. Abe T, Morgan D, Sengupta JN, Gebhart GF, Gutterman DD. Attenuation of ischemia-induced activation of cardiac sympathetic afferents following brief myocardial ischemia in cats. J Auton Nerv Syst. 1998;71:28-36.
    
    7. Guo ZL, Li P, Longhurst JC. Central pathways in the pons and midbrain involved in cardiac sympathoexcitatory reflexes in cats. Neuroscience.2002;113:435-447.
    
    8. Han Y, Zhang Y, Wang HJ, Gao XY, Wang W, Zhu GQ. Reactive oxygen species in paraventricular nucleus modulates cardiac sympathetic afferent reflex in rats.Brain Res. 2005;1058:82-90.
    
    9. Ma R, Schultz HD, Wang W. Chronic central infusion of ANG II potentiates cardiac sympathetic afferent reflex in dogs. Am JPhysiol. 1999;277:H15-H22.
    
    10. Gao L, Schultz HD, Patel KP, Zucker IH, Wang W. Augmented input from cardiac sympathetic afferents inhibits baroreflex in rats with heart failure. Hypertension.2005;45:1173-1181.
    11.Ma R,Zucker IH,Wang W.Reduced NO enhances the central gain of cardiac sympathetic afferent reflex in dogs with heart failure.Am J Physiol.1999;276:H19-H26.
    12.Wang HJ,Zhang F,Zhang Y,Gao XY,Wang W,Zhu GQ.AT1 receptor in paraventricular nucleus mediates the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure.Auton Neurosci.2005;121:56-63.
    13.Zhu GQ,Gao L,Li Y,Patel KP,Zucker IH,Wang W.AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure.Am J Physiol Heart Circ Physiol.2004;287:H1828-H1835.
    14.Han Y,Shi Z,Zhang F,Yu Y,Zhong MK,Gao XY,Wang W,Zhu GQ.Reactive oxygen species in the paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats.Eur J Heart Fail.2007;9:967-973.
    15.Dampney RA,Horiuchi J,Killinger S,Sheriff MJ,Tan PS,McDowall LM.Long-term regulation of arterial blood pressure by hypothalamic nuclei:some critical questions.Clin Exp Pharmacol Physiol.2005;32:419-425.
    16.Coote JH.A role for the paraventricular nucleus(PVN)of the hypothalamus in the autonomic control of heart and kidney.Exp Physiol.2005;90:169-173.
    17.Badoer E.Hypothalamic paraventricular nucleus and cardiovascular regulation.Clin Exp Pharmacol Physiol.2001;28:95-99.
    18.Zhang Y,Yu Y,Zhang F,Zhong MK,Shi Z,Gao XY,Wang W,Zhu GQ.NAD(P)H oxidase in paraventricular nucleus contributes to the effect of angiotensin Ⅱ on cardiac sympathetic afferent reflex.Brain Res.2006;1082:132-141.
    19.Yu Y,Zhong MK,Li J,Sun XL,Xie GQ,Wang W,Zhu GQ.Endogenous hydrogen peroxide in paraventricular nucleus mediating cardiac sympathetic afferent reflex and regulating sympathetic activity.Pflugers Arch. 2007;454:551-557.
    
    20. Guo ZL, Moazzami AR. Involvement of nuclei in the hypothalamus in cardiac sympathoexcitatory reflexes in cats. Brain Res. 2004;1006:36-48.
    
    21. Zhu GQ, Patel KP, Zucker IH, Wang W. Microinjection of ANG II into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats. Am JPhysiol Heart Circ Physiol. 2002;282:H2039-H2045.
    
    22. Dube MG, Kalra SP, Kalra PS. The hypothalamic paraventricular nucleus is not essential for orexigenic NPY or anorexigenic melanocortin action. Peptides.2006;27:2239-2248.
    
    23. Selvage DJ, Rivier C. Importance of the paraventricular nucleus of the hypothalamus as a component of a neural pathway between the brain and the testes that modulates testosterone secretion independently of the pituitary.Endocrinology. 2003;144:594-598.
    
    24. Rossi NF, Chen H. PVN lesions prevent the endothelin 1-induced increase in arterial pressure and vasopressin. Am J Physiol Endocrinol Metab.2001;280:E349-E356.
    
    25. Peng YP, Qiu YH, Chao BB, Wang JJ. Effect of lesions of cerebellar fastigial nuclei on lymphocyte functions of rats. Neurosci Res. 2005;51:275-284.
    
    26. Sakaguchi T, Bray GA, Eddlestone G. Sympathetic activity following paraventricular or ventromedial hypothalamic lesions in rats. Brain Res Bull.1988;20:461-465.
    
    27. Li YF, Patel KP. Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol Scand. 2003;177:17-26.
    
    28. Schlenker EH. Integration in the PVN: another piece of the puzzle. Am J Physiol Regul Integr Comp Physiol. 2005;289:R653-R655.
    29. Kenney MJ, Weiss ML, Haywood JR. The paraventricular nucleus: an important component of the central neurocircuitry regulating sympathetic nerve outflow.Acta Physiol Scand. 2003;177:7-15.
    
    30. Sandkuhler J, Maisch B, Zimmermann M. The use of local anaesthetic microinjections to identify central pathways: a quantitative evaluation of the time course and extent of the neuronal block. Exp Brain Res. 1987;68:168-178.
    
    31. Fernandes KB, Tavares RF, Pelosi GG, Correa FM. The paraventricular nucleus of hypothalamus mediates the pressor response to noradrenergic stimulation of the medial prefrontal cortex in unanesthetized rats. Neurosci Lett.2007;426:101-105.
    
    32. Busnardo C, Tavares RF, ntunes-Rodrigues J, Correa FM. Cardiovascular effects of L-glutamate microinjection in the supraoptic nucleus of unanaesthetized rats.Neuropharmacology. 2007;52:1378-1384.
    
    33. Braga VA, Antunes VR, Machado BH. Autonomic and respiratory responses to microinjection of L-glutamate into the commissural subnucleus of the NTS in the working heart-brainstem preparation of the rat. Brain Res.2006;1093:150-160.
    
    34. Vieira AA, Colombari E, De LL, Jr., de Almeida Colombari DS, Menani JV.Cardiovascular responses to microinjection of L-glutamate into the NTS in AV3V-lesioned rats. Brain Res. 2004;1025:106-112.
    
    35. Li YF, Jackson KL, Stern JE, Rabeler B, Patel KP. Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus. Am J Physiol Heart Circ Physiol.2006;291:H2847-H2856.
    
    36. Martin DS, Haywood JR. Sympathetic nervous system activation by glutamate injections into the paraventricular nucleus. Brain Res. 1992;577:261-267.
    
    37. Li DP, Pan HL. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension.2007;49:916-925.
    
    38. Metzner W, Juranek J. A method to biotinylate and histochemically visualize ibotenic acid for pharmacological inactivation studies. J Neurosci Methods.1997;76:143-150.
    
    39. Olazabal DE, Ferreira A. Maternal behavior in rats with kainic acid-induced lesions of the hypothalamic paraventricular nucleus. Physiol Behav.1997;61:779-784.
    
    40. Coyle JT. Kainic acid: insights into excitatory mechanisms causing selective neuronal degeneration. Ciba Found Symp. 1987;126:186-203.
    
    41. Zhu GQ, Gao L, Patel KP, Zucker IH, Wang W. ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol. 2004;97:1746-1754.
    
    42. Han Y, Shi Z, Zhang F, Yu Y, Zhong MK, Gao XY, Wang W, Zhu GQ. Reactive oxygen species in the paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats. Eur J Heart Fail. 2007;9:967-973.
    
    43. Lomber SG. The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. J Neurosci Methods. 1999;86:109-117.
    
    44. Guo ZL, Lai HC, Longhurst JC. Medullary pathways involved in cardiac sympathoexcitatory reflexes in the cat. Brain Res. 2002;925:55-66.
    
    45. Li DP, Pan HL. Responses of neurons in rostral ventrolateral medulla to activation of cardiac receptors in rats. Am J Physiol Heart Circ Physiol.2000;279:H2549-H2557.
    
    46. Wang WZ, Gao L, Pan YX, Zucker IH, Wang W. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius.Neurosci Lett. 2006;409:146-150.
    47.Wang WZ,Gao L,Pan YX,Zucker IH,Wang W.AT1 receptors in the nucleus tractus solitarii mediate the interaction between the baroreflex and the cardiac sympathetic afferent reflex in anesthetized rats.Am J Physiol Regul Integr Comp Physiol.2007;292:R1137-R1145.
    48.Xie Q,Itoh M,Miyamoto K,Li L,Takeuchi Y.Cardiac afferents to the nucleus of the tractus solitarius:A WGA-HRP study in the rat.Ann Thorac Cardiovasc Surg.1999;5:370-375.
    49.Coote JH.A role for the paraventricular nucleus(PVN)of the hypothalamus in the autonomic control of heart and kidney.Exp Physiol.2005;90:169-173.
    50.Zahner MR,Pan HL.Role of paraventricular nucleus in the cardiogenic sympathetic reflex in rats.Am J Physiol Regul Integr Comp Physiol.2005;288:R420-R426.
    51.Reddy MK,Patel KP,Schultz HD.Differential role of the paraventricular nucleus of the hypothalamus in modulating the sympathoexcitatory component of peripheral and central chemoreflexes.Am J Physiol Regul Integr Comp Physiol.2005;289:R789-R797.
    52.Sakaguchi T,Bray GA,Eddlestone G.Sympathetic activity following paraventricular or ventromedial hypothalarnic lesions in rats.Brain Res Bull.1988;20:461-465.
    1.Han Y,Zhang Y,Wang HJ,Gao XY,Wang W,Zhu GQ.Reactive oxygen species in paraventricular nucleus modulates cardiac sympathetic afferent reflex in rats.Brain Res.2005;1058:82-90.
    2.Wang HJ,Zhang F,Zhang Y,Gao XY,Wang W,Zhu GQ.AT1 receptor in paraventricular nucleus mediates the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure.Auton Neurosci.2005;121:56-63.
    3.Yu Y,Zhong MK,Li J,Sun XL,Xie GQ,Wang W,Zhu GQ.Endogenous hydrogen peroxide in paraventricular nucleus mediating cardiac sympathetic afferent reflex and regulating sympathetic activity.Pflugers Arch.2007;454:551-557.
    4.Zhang Y,Yu Y,Zhang F,Zhong MK,Shi Z,Gao XY,Wang W,Zhu GQ.NAD(P)H oxidase in paraventricular nucleus contributes to the effect of angiotensin Ⅱ on cardiac sympathetic afferent reflex.Brain Res.2006;1082:132-141.
    5.Zhu GQ,Patel KP,Zucker IH,Wang W.Microinjection of ANG Ⅱ into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats.Am J Physiol Heart Circ Physiol.2002;282:H2039-H2045.
    6.Decavel C,Van den Pol AN.GABA:a dominant neurotransmitter in the hypothalarnus.J Comp Neurol.1990;302:1019-1037.
    7.Li DP,Pan HL.Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension.Am J Physiol Heart Circ Physiol.2006;290:H1110-H1119.
    8.Li YF,Jackson KL,Stem JE,Rabeler B,Patel KP.Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus. Am J Physiol Heart Circ Physiol.2006;291:H2847-H2856.
    
    9. Chen Q, Pan HL. Signaling Mechanisms of Angiotensin II-Induced Attenuation of GABAergic Input to Hypothalamic Presympathetic Neurons. J Neurophysiol.2007;97:3279-3287.
    
    10. Zahner MR, Pan HL. Role of paraventricular nucleus in the cardiogenic sympathetic reflex in rats. Am J Physiol Regul Integr Comp Physiol.2005;288:R420-R426.
    
    11. Yin M, Sved AF. Role of gamma-aminobutyric acid B receptors in baroreceptor reflexes in hypertensive rats. Hypertension. 1996;27:1291-1298.
    
    12. Xi ZX, Stein EA. Increased mesolimbic GABA concentration blocks heroin self-administration in the rat. J Pharmacol Exp Ther. 2000;294:613-619.
    
    13. Li DP, Pan HL. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension.2007;49:916-925.
    
    14. Stratford TR, Kelley AE. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J Neurosci. 1997;17:4434-4440.
    
    15. Benturquia N, Parrot S, Sauvinet V, Renaud B, Denoroy L. Simultaneous determination of vigabatrin and amino acid neurotransmitters in brain microdialysates by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B. 2004;806:237-244.
    
    16. Li YF, Patel KP. Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol Scand. 2003;177:17-26.
    
    17. Schlenker EH. Integration in the PVN: another piece of the puzzle. Am J Physiol Regul Integr Comp Physiol. 2005;289:R653-R655.
    18. Kenney MJ, Weiss ML, Haywood JR. The paraventricular nucleus: an important component of the central neurocircuitry regulating sympathetic nerve outflow.Acta Physiol Scand. 2003;177:7-15.
    
    19. Li DP, Pan HL. Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension. Am J Physiol Heart Circ Physiol.2006;290:H1110-H1119.
    
    20. Li DP, Pan HL. Role of {gamma}-Aminobutyric Acid (GABA)A and GABAB Receptors in Paraventricular Nucleus in Control of Sympathetic Vasomotor Tone in Hypertension. J Pharmacol Exp Ther. 2007;320:615-626.
    
    21. Han Y, Shi Z, Zhang F, Yu Y, Zhong MK, Gao XY, Wang W, Zhu GQ. Reactive oxygen species in the paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats. Eur J Heart Fail. 2007;9:967-973.
    
    22. Serafini R, Ma W, Maric D, Marie I, Lahjouji F, Sieghart W, Barker JL. Initially expressed early rat embryonic GABA(A) receptor Cl- ion channels exhibit heterogeneous channel properties. Eur J Neurosci. 1998;10:1771-1783.
    
    23. Brown JT, Davies CH, Randall AD. Synaptic activation of GABA(B) receptors regulates neuronal network activity and entrainment. Eur J Neurosci.2007;25:2982-2990.
    
    24. Zhu GQ, Gao L, Patel KP, Zucker IH, Wang W. ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol. 2004;97:1746-1754.
    
    25. Zhu GQ, Gao L, Li Y, Patel KP, Zucker IH, Wang W. AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2004;287:H1828-H1835.
    
    26. Benturquia N, Parrot S, Sauvinet V, Renaud B, Denoroy L. Simultaneous determination of vigabatrin and amino acid neurotransmitters in brain microdialysates by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B. 2004;806:237-244.
    
    27. Dibner-Dunlap ME, Kinugawa T, Thames MD. Activation of cardiac sympathetic afferents: effects of exogenous adenosine and adenosine analogues.Am J Physiol. 1993;265:H395-H400.
    
    28. Huang HS, Stahl GL, Longhurst JC. Cardiac-cardiovascular reflexes induced by hydrogen peroxide in cats. Am J Physiol. 1995;268:H2114-H2124.
    
    29. Malliani A, Montano N. Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension. 2002;39:63-68.
    
    30. Malliani A, Pagani M, Pizzinelli P, Furlan R, Guzzetti S. Cardiovascular reflexes mediated by sympathetic afferent fibers. J Auton Nerv Syst. 1983;7:295-301.
    
    31. Thames MD, Kinugawa T, Dibner-Dunlap ME. Reflex sympathoexcitation by cardiac sympathetic afferents during myocardial ischemia. Role of adenosine.Circulation. 1993;87:1698-1704.
    
    32. Gnecchi-Ruscone T, Montano N, Contini M, Guazzi M, Lombardi F, Malliani A.Adenosine activates cardiac sympathetic afferent fibers and potentiates the excitation induced by coronary occlusion. JAuton Nerv Syst. 1995;53:175-184.
    
    33. Abe T, Morgan D, Sengupta JN, Gebhart GF, Gutterman DD. Attenuation of ischemia-induced activation of cardiac sympathetic afferents following brief myocardial ischemia in cats. JAuton Nerv Syst. 1998;71:28-36.
    
    34. Du YH, Chen AF. A "love triangle" elicited by electrochemistry: complex interactions among cardiac sympathetic afferent, chemo-, and baroreflexes. J Appl Physiol. 2007;102:9-10.
    
    35. Guo ZL, Moazzami AR, Longhurst JC. Stimulation of cardiac sympathetic afferents activates glutamatergic neurons in the parabrachial nucleus: Relation to neurons containing nNOS. Brain Res. 2005;1053:97-107.
    1. Ryu V, Lee JH, Urn JW, Yoo SB, Lee J, Chung KC, Jahng JW. Water-deprivation-induced expression of neuronal nitric oxide synthase in the hypothalamic paraventricular nucleus of rat. J Neurosci Res. 2007.
    
    2. Kwon MS, Seo YJ, Shim EJ, Lee JK, Jang JE, Park SH, Jung JS, Suh HW. The differential effects of emotional or physical stress on pain behaviors or on c-Fos immunoreactivity in paraventricular nucleus or arcuate nucleus. Brain Res.2008;1190:122-131.
    
    3. Cham JL, Badoer E. Hypothalamic paraventricular nucleus is critical for renal vasoconstriction elicited by elevations in body temperature. Am J Physiol Renal Physiol. 2008;294:F309-F315.
    
    4. Jaimes-Hoy L, Joseph-Bravo P, de GP. Differential response of TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in female animals submitted to food-restriction or dehydration-induced anorexia and cold exposure. Horm Behav. 2008;53:366-377.
    
    5. Tiesjema B, la Fleur SE, Luijendijk MC, Brans MA, Lin EJ, During MJ, Adan RA. Viral mediated neuropeptide Y expression in the rat paraventricular nucleus results in obesity. Obesity (Silver Spring). 2007;15:2424-2435.
    
    6. Fernandes KB, Tavares RF, Pelosi GG, Correa FM. The paraventricular nucleus of hypothalamus mediates the pressor response to noradrenergic stimulation of the medial prefrontal cortex in unanesthetized rats. Neurosci Lett.2007;426:101-105.
    
    7. Bosch OJ, Sartori SB, Singewald N, Neumann ID. Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: regulation by oxytocin.Stress. 2007;10:261-270.
    8. Wang C, Bomberg E, Billington C, Levine A, Kotz CM. Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reduces energy intake. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1003-R1012.
    
    9. Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W, Zhu GQ.Paraventricular Nucleus Is Involved in the Central Pathway of Cardiac Sympathetic Afferent Reflex in Rats. Exp Physiol. 2008;93:746-753.
    
    10. Rafols JA, Aronin N, Difiglia M. A Golgi study of the monkey paraventricular nucleus: neuronal types, afferent and efferent fibers. J Comp Neurol.1987;257:595-613.
    
    11. Morin LP, Blanchard J. Organization of the hamster paraventricular hypothalamic nucleus. J Comp Neurol 1993;332:341-357.
    
    12. Korf HW. Neuronal organization of the avian paraventricular nucleus:intrinsic, afferent, and efferent connections. J Exp Zool. 1984;232:387-395.
    
    13. Swanson LW, Sawchenko PE. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms.Neuroendocrinology. 1980;31:410-417.
    
    14. Liposits Z. Ultrastructure of hypothalamic paraventricular neurons. Crit Rev Neurobiol. 1993;7:89-162.
    
    15. Tasker JG, Dudek FE. Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus. J Physiol (Lond). 1991;434:271-293.
    
    16. Silverman AJ, Hoffman DL, Zimmerman EA. The descending afferent connections of the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull. 1981;6:47-61.
    
    17. Weiss ML, Hatton GI. Collateral input to the paraventricular and supraoptic nuclei in rat. I. Afferents from the subfornical organ and the anteroventral third ventricle region. Brain Res Bull. 1990;24:231-238.
    
    18. Benarroch EE. Paraventncular nucleus, stress response, and cardiovascular disease. Clin Auton Res. 2005;15:254-263.
    
    19. Sawchenko PE, Li HY, Ericsson A. Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res.2000;122:61-78.
    
    20. McKinley MJ, Allen AM, Mathai ML, May C, McAllen RM, Oldfield BJ,Weisinger RS. Brain angiotensin and body fluid homeostasis. Jpn J Physiol.2001;51:281-289.
    
    21. Quan N, He L, Lai W. Endothelial activation is an intermediate step for peripheral lipopolysaccharide induced activation of paraventncular nucleus.Brain Res Bull. 2003;59:447-452.
    
    22. Zhang ZH, Wei SG, Francis J, Felder RB. Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol. 2003;284:R916-R927.
    
    23. Mastorakos G, Zapanti E. The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: the role of corticotropin releasing hormone. Nutr Neurosci. 2004;7:271-280.
    
    24. Malpas SC, Coote JH. Role of vasopressin in sympathetic response to paraventricular nucleus stimulation in anesthetized rats. Am J Physiol.1994;266:R228-R236.
    
    25. Pyner S, Coote JH. Identification of an efferent projection from the paraventricular nucleus of the hypothalamus terminating close to spinally projecting rostral ventrolateral medullary neurons. Neuroscience. 1999;88:949-957.
    
    26. Coote JH. A role for the paraventricular nucleus(PVN) of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol. 2004.
    
    27. Yang Z, Coote JH. Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat. J Physiol. 1998;513 (Pt 2):521-530.
    
    28. Yang Z, Bertram D, Coote JH. The role of glutamate and vasopressin in the excitation of RVL neurones by paraventricular neurones. Brain Res.2001;908:99-103.
    
    29. Hardy SG. Hypothalamic projections to cardiovascular centers of the medulla.Brain Res. 2001;894:233-240.
    
    30. Lind RW, Swanson LW, Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system.Neuroendocrinology. 1985;40:2-24.
    
    31. Li Z, Bains JS, Ferguson AV. Functional evidence that the angiotensin antagonist losartan crosses the blood-brain barrier in the rat. Brain Res Bull.1993;30:33-39.
    
    32. Li Z, Ferguson AV. Subfornical organ efferents to the paraventricular nucleus utilize angiotensin as a neurotransmitter. Am J Physiol. 1993;265:R302-R309.
    
    33. Zhu GQ, Patel KP, Zucker IH, Wang W. Microinjection of ANG II into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats.Am J Physiol Heart Circ Physiol. 2002;282:H2039-H2045.
    
    34. Bains JS, Potyok A, Ferguson AV. Angiotensin II actions in paraventricular nucleus: functional evidence for a neurotransmitter role in efferents originating in subfornical organ. Brain Res. 1992;599:223-229.
    35. Latchford KJ, Ferguson AV. ANG II-induced excitation of paraventricular nucleus magnocellular neurons: a role for glutamate interneurons. Am J Physiol Regul Integr Comp Physiol. 2004;286:R894-R902.
    
    36. Latchford KJ, Ferguson AV. Angiotensin depolarizes parvocellular neurons in paraventricular nucleus through modulation of putative nonselective cationic and potassium conductances. Am J Physiol Regulatory Integrative Comp Physiol. 2005;289:R52-R58.
    
    37. Caldwell HK, Lee HJ, Macbeth AH, Young WS, III. Vasopressin: behavioral roles of an "original" neuropeptide. Prog Neurobiol. 2008;84:l-24.
    
    38. Gardiner SM, Bennett T. Endogenous vasopressin and baroreflex mechanisms. Brain Res. 1986;396:317-334.
    
    39. Leng G, Brown CH, Russell JA. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog Neurobiol.1999;57:625-655.
    
    40. Hussy N, Deleuze C, Desarmenien MG, Moos FC. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog Neurobiol. 2000;62:l 13-134.
    
    41. McKinley MJ, Allen AM, May CN, McAllen RM, Oldfield BJ, Sly D,Mendelsohn FA. Neural pathways from the lamina terminalis influencing cardiovascular and body fluid homeostasis. Clin Exp Pharmacol Physiol.2001;28:990-992.
    
    42. Potts PD, Ludbrook J, Gillman-Gaspari TA, Horiuchi J, Dampney RA.Activation of brain neurons following central hypervolaemia and hypovolaemia: contribution of baroreceptor and non-baroreceptor inputs.Neuroscience. 2000;95:499-511.
    
    43. Engelmann M, Landgraf R, Wotjak CT. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol. 2004;25:132-149.
    
    44. Pacak K. Stressor-specific activation of the hypothalamic-pituitary-adrenocortical axis. Physiol Res. 2000;49 Suppl 1:S11-S17.
    
    45. Kawata M, Nakao K, Morii N, Kiso Y, Yamashita H, Imura H, Sano Y. Atrial natriuretic polypeptide: topographical distribution in the rat brain by radioimmunoassay and immunohistochemistry. Neuroscience. 1985; 16:521-546.
    
    46. Standaert DG, Cechetto DF, Needleman P, Saper CB. Inhibition of the firing of vasopressin neurons by atriopeptin. Nature. 1987;329:151-153.
    
    47. Wong M, Samson WK, Dudley CA, Moss RL. Direct, neuronal action of atrial natriuretic factor in the rat brain. Neuroendocrinology. 1986;44:49-53.
    
    48. Yoshibayashi M, Saito Y, Nakao K. Brain natriuretic peptide versus atrial natriuretic peptide—physiological and pathophysiological significance in children and adults: a review. Eur J Endocrinol. 1996;135:265-268.
    
    49. Shirasaka T, Takasaki M, Kannan H. Cardiovascular effects of leptin and orexins. Am J Physiol Regul Integr Comp Physiol. 2003;284:R639-R651.
    
    50. Rowe W, Viau V, Meaney MJ, Quirion R. Central administration of neurotensin stimulates hypothalamic-pituitary-adrenal activity. The paraventricular CRF neuron as a critical site of action. Ann N Y Acad Sci.1992;668:365-367.
    
    51. Lu Y, Zou CJ, Huang DW, Tang CS. Cardiovascular effects of urotensin II in different brain areas. Peptides. 2002;23:1631-1635.
    
    52. Woo ND, Ganguly PK. Altered neuropeptide Y effects on noradrenaline levels in the paraventricular nucleus of rats following aortic constriction. Can J Cardiol. 1994;10:471-476.
    53. Toni R, Mosca S, Ruggeri F, Valmori A, Orlandi G, Toni G, Lechan RM,Vezzadini P. Effect of hypothyroidism on vasoactive intestinal polypeptide-immunoreactive neurons in forebrain-neurohypophysial nuclei of the rat brain. Brain Res. 1995;682:101-115.
    
    54. Blottner D, Grozdanovic Z, Gossrau R. Histochemistry of nitric oxide synthase in the nervous system. Histochem J. 1995;27:785-811.
    
    55. Stern JE, Li Y, Zhang W. Nitric oxide: a local signalling molecule controlling the activity of pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Acta Physiol Scand. 2003;177:37-42.
    
    56. Stern JE. Nitric oxide and homeostatic control: an intercellular signalling molecule contributing to autonomic and neuroendocrine integration? Prog Biophys Mol Biol. 2004;84:197-215.
    
    57. Boudaba C, Tasker JG. Intranuclear coupling of hypothalamic magnocellular nuclei by glutamate synaptic circuits. Am J Physiol Regul Integr Comp Physiol.2006;291:R102-R111.
    
    58. Daftary SS, Boudaba C, Szabo K, Tasker JG. Noradrenergic excitation of magnocellular neurons in the rat hypothalamic paraventricular nucleus via intranuclear glutamatergic circuits. J Neurosci. 1998;18:10619-10628.
    
    59. Boudaba C, Di S, Tasker JG. Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurones. J Neuroendocrinol.2003;15:803-810.
    
    60. Li DP, Atnip LM, Chen SR, Pan HL. Regulation of synaptic inputs to paraventricular-spinal output neurons by alpha2 adrenergic receptors. J Neurophysiol. 2005;93:393-402.
    
    61. Petersen SL, Hartman RD, Barraclough CA. An analysis of serotonin secretion in hypothalamic regions based on 5-hydroxytryptophan accumulation or push-pull perfusion. Effects of mesencephalic raphe or locus coeruleus stimulation and correlated changes in plasma luteinizing hormone.Brain Res. 1989;495:9-19.
    
    62. Bell AA, Butz BL, Alper RH. Cardiovascular responses produced by microinjection of serotonin-receptor agonists into the paraventricular nucleus in conscious rats. J Cardiovasc Pharmacol. 1999;33:175-180.
    
    63. Ho SS, Chow BK, Yung WH. Serotonin increases the excitability of the hypothalamic paraventricular nucleus magnocellular neurons. Eur J Neurosci.2007;25:2991-3000.
    
    64. Boudaba C, Tasker JG. Intranuclear coupling of hypothalamic magnocellular nuclei by glutamate synaptic circuits. Am J Physiol Regul Integr Comp Physiol.2006;291:R102-R111.
    
    65. Li DP, Chen SR, Pan HL. VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus. J Neurophysiol.2004;92:1807-1816.
    
    66. Chen QH, Haywood JR, Toney GM. Sympathoexcitation by PVN-injected bicuculline requires activation of excitatory amino acid receptors.Hypertension. 2003;42:725-731.
    
    67. van den Pol AN, Hermans-Borgmeyer I, Hofer M, Ghosh P, Heinemann S.Ionotropic glutamate-receptor gene expression in hypothalamus: localization of AMPA, kainate, and NMDA receptor RNA with in situ hybridization. J Comp Neurol. 1994;343:428-444.
    
    68. Decavel C, van den Pol AN. Converging GABA- and glutamate-immunoreactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol. 1992;316:104-116.
    
    69. Van den Pol AN. Metabotropic glutamate receptor mGluR1 distribution and ultrastructural localization in hypothalamus. J Comp Neurol.1994;349:615-632.
    
    70. Herman JP, Eyigor O, Ziegler DR, Jennes L. Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. J Comp Neurol. 2000;422:352-362.
    
    71. Khan AM, Stanley BG, Bozzetti L, Chin C, Stivers C, Curras-Collazo MC.N-methyl-D-aspartate receptor subunit NR2B is widely expressed throughout the rat diencephalon: an immunohistochemical study. J Comp Neurol.2000;428:428-449.
    
    72. Daftary SS, Boudaba C, Szabo K, Tasker JG. Noradrenergic excitation of magnocellular neurons in the rat hypothalamic paraventricular nucleus via intranuclear glutamatergic circuits. J Neurosci. 1998;18:10619-10628.
    
    73. Boudaba C, Tasker JG. Intranuclear coupling of hypothalamic magnocellular nuclei by glutamate synaptic circuits. Am J Physiol Regul Integr Comp Physiol.2006;291:R102-R111.
    
    74. Csaki A, Kocsis K, Halasz B, Kiss J. Localization of glutamatergic/aspartatergic neurons projecting to the hypothalamic paraventricular nucleus studied by retrograde transport of [3H]D-aspartate autoradiography. Neuroscience. 2000;101:637-655.
    
    75. Kannan H, Hayashida Y, Yamashita H. Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats. Am J Physiol.1989;256:R1325-R1330.
    
    76. Katafuchi T, Oomura Y, Kurosawa M. Effects of chemical stimulation of paraventricular nucleus on adrenal and renal nerve activity in rats. Neurosci Lett. 1988,86:195-200.
    
    77. Kenney MJ, Weiss ML, Haywood JR. The paraventricular nucleus: an important component of the central neurocircuitry regulating sympathetic nerve outflow. Acta Physiol Scand. 2003;177:7-15.
    
    78. Li DP, Chen SR, Pan HL. VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus. J Neurophysiol.2004;92:1807-1816.
    
    79. Cui LN, Coderre E, Renaud LP. Glutamate and GABA mediate suprachiasmatic nucleus inputs to spinal-projecting paraventricular neurons.Am J Physiol Regul Integr Comp Physiol. 2001 ;281 :R1283-R1289.
    
    80. Decavel C, Van den Pol AN. GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol. 1990;302:1019-1037.
    
    81. Zhang K, Patel KP. Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA. Am J Physiol.1998;275:R728-R734.
    
    82. Zhang K, Li YF, Patel KP. Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1006-R1015.
    
    83. Martin DS, Rodrigo MC, Egland MC, Barnes LU. Disinhibition of the hypothalamic paraventricular nucleus increases mean circulatory filling pressure in conscious rats. Brain Res. 1997;756:106-113.
    
    84. Du YH, Chen AF. A "love triangle" elicited by electrochemistry: complex interactions among cardiac sympathetic afferent, chemo-, and baroreflexes. J Appl Physiol. 2007;102:9-10.
    
    85. Guo ZL, Moazzami AR. Involvement of nuclei in the hypothalamus in cardiac sympathoexcitatory reflexes in cats. Brain Res. 2004;1006:36-48.
    
    86. Zhu GQ, Patel KP, Zucker IH, Wang W. Microinjection of ANG II into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats. Am J Physiol Heart Circ Physiol. 2002;282:H2039-H2045.
    
    87. Han Y, Zhang Y, Wang HJ, Gao XY, Wang W, Zhu GQ. Reactive oxygen species in paraventncular nucleus modulates cardiac sympathetic afferent reflex in rats. Brain Res. 2005;1058:82-90.
    88. Zhang Y, Yu Y, Zhang F, Zhong MK, Shi Z, Gao XY, Wang W, Zhu GQ.NAD(P)H oxidase in paraventncular nucleus contributes to the effect of angiotensin II on cardiac sympathetic afferent reflex. Brain Res.2006;1082:132-141.
    
    89. Yu Y, Zhong MK, Li J, Sun XL, Xie GQ, Wang W, Zhu GQ. Endogenous hydrogen peroxide in paraventricular nucleus mediating cardiac sympathetic afferent reflex and regulating sympathetic activity. Pflugers Arch.2007;454:551-557.
    
    90. Zahner MR, Pan HL. Role of paraventricular nucleus in the cardiogenic sympathetic reflex in rats. Am J Physiol Regul Integr Comp Physiol.2005;288:R420-R426.
    
    91. Zhong MK, Shi Z, Zhou LM, Gao J, Liao ZH, Wang W, Gao XY, Zhu GQ.Regulation of Cardiac Sympathetic Afferent Reflex by GABAA and GABAB Receptors in Paraventricular Nucleus in Rats. Eur J Neurosci. 2008.
    
    92. Chen YL, Chan SH, Chan JY. Participation of galanin in baroreflex inhibition of heart rate by hypothalamic PVN in rat. Am J Physiol.1996;271:H1823-H1828.
    
    93. Ciriello J, Calaresu FR. Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat. Am J Physiol.1980;239:R137-R142.
    
    94. Duan YF, Kopin IJ, Goldstein DS. Stimulation of the paraventricular nucleus modulates firing of neurons in the nucleus of the solitary tract. Am J Physiol. 1999;277:R403-R411.
    
    95. Shih CD, Chan SH, Chan JY. Participation of hypothalamic paraventricular nucleus in locus ceruleus-induced baroreflex suppression in rats. Am J Physiol.1995;269:H46-H52.
    
    96. Hwang KR, Chan SH, Chan JY. Noradrenergic neurotransmission at PVN in locus ceruleus-induced baroreflex suppression in rats. Am J Physiol.1998;274:H1284-H1292.
    
    97. Berquin P, Bodineau L, Gros F, Larnicol N. Brainstem and hypothalamic areas involved in respiratory chemoreflexes: a Fos study in adult rats. Brain Res. 2000;857:30-40.
    
    98. Olivan MV, Bonagamba LG, Machado BH. Involvement of the paraventricular nucleus of the hypothalamus in the pressor response to chemoreflex activation in awake rats. Brain Res. 2001 ;895:167-172.
    
    99. Kubo T, Yanagihara Y, Yamaguchi H, Fukumori R. Excitatory amino acid receptors in the paraventricular hypothalamic nucleus mediate pressor response induced by carotid body chemoreceptor stimulation in rats. Clin Exp Hypertens. 1997;19:1117-1134.
    
    100. Reddy MK, Patel KP, Schultz HD. Differential role of the paraventricular nucleus of the hypothalamus in modulating the sympathoexcitatory component of peripheral and central chemoreflexes. Am J Physiol Regul Integr Comp Physiol. 2005;289:R789-R797.
    
    101. Herzig TC, Buchholz RA, Haywood JR. Effects of paraventricular nucleus lesions on chronic renal hypertension. Am J Physiol. 1991;261:H860-H867.
    
    102. Nakata T, Takeda K, Itho H, Hirata M, Kawasaki S, Hayashi J, Oguro M,Sasaki S, Nakagawa M. Paraventricular nucleus lesions attenuate the development of hypertension in DOCA/salt-treated rats. Am J Hypertens. 1989;2:625-630.
    
    103. Ciriello J, Kline RL, Zhang TX, Caverson MM. Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Res. 1984;310:355-359.
    
    104. Li DP, Pan HL. Plasticity of GABAergic control of hypothalamic presympathetic neurons in hypertension. Am J Physiol Heart Circ Physiol.2006;290:H1110-H1119.
    
    105. Li DP, Pan HL. Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension.2007;49:916-925.
    
    106. Li DP, Pan HL. Role of gamma-aminobutyric acid (GABA)A and GABAB receptors in paraventricular nucleus in control of sympathetic vasomotor tone in hypertension. J Pharmacol Exp Ther. 2007;320:615-626.
    
    107. Kunkler PE, Hwang BH. Lower GABAA receptor binding in the amygdala and hypothalamus of spontaneously hypertensive rats. Brain Res Bull.1995;36:57-61.
    
    108. Meyer JM, Felten DL, Weyhenmeyer JA. Measurement of immunoreactive angiotensin II levels in microdissected brain nuclei from developing spontaneously hypertensive and Wistar Kyoto rats. Exp Neurol.1990;107:164-169.
    
    109. Gutkind JS, Kurihara M, Castren E, Saavedra JM. Increased concentration of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats. JHypertens. 1988;6:79-84.
    
    110. Patel KP, Zhang K. Neurohumoral activation in heart failure: role of paraventricular nucleus. Clin Exp Pharmacol Physiol. 1996;23:722-726.
    
    111. Zhu GQ, Gao L, Patel KP, Zucker IH, Wang W. ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol. 2004;97:1746-1754.
    
    112. Zucker IH, Liu JL. Angiotensin II—nitric oxide interactions in the control of sympathetic outflow in heart failure. Heart Fail Rev. 2000;5:27-43.
    
    113. Zhu GQ, Zucker IH, Wang W. Central ATI receptors are involved in the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure.Basic Res Cardiol. 2002;97:320-326.
    
    114. Zhu GQ, Gao L, Patel KP, Zucker IH, Wang W. ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol. 2004;97:1746-1754.
    
    115. Zhu GQ, Gao L, Li Y, Patel KP, Zucker IH, Wang W. AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol.2004;287:H1828-H1835.
    
    116. Ma R, Zucker IH, Wang W. Central gain of the cardiac sympathetic afferent reflex in dogs with heart failure. Am J Physiol. 1997;273:H2664-H2671.
    
    117. Wang HJ, Zhang F, Zhang Y, Gao XY, Wang W, Zhu GQ. AT1 receptor in paraventricular nucleus mediates the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Auton Neurosci. 2005; 121:56-63.
    
    118. Han Y, Shi Z, Zhang F, Yu Y, Zhong MK, Gao XY, Wang W, Zhu GQ.Reactive oxygen species in the paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats. Eur J Heart Fail.2007;9:967-973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700