低氧胁迫下γ-氨基丁酸对甜瓜种子萌发及幼苗氨基酸代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在无土栽培中,营养液供养不足或基质根垫的形成均会造成低氧胁迫,影响植株正常生长发育,成为困扰无土栽培技术大规模应用于生产的限制因子,提高作物在低氧胁迫下的耐性和抗性对无土栽培生产具有重大意义。γ-氨基丁酸(GABA)是一种四碳非蛋白质氨基酸,广泛存在于细菌、植物和脊椎动物中。在植物生理代谢过程中,GABA能够调节细胞质pH值,氧化胁迫下抑制活性氧中间产物的积累,通过干扰害虫的正常发育来防御害虫,起信号转导和渗透调节作用,并能诱导乙烯合成。
     在低氧胁迫条件下,研究了外源GABA对甜瓜种子萌发、种子萌发后生长和活性氧代谢的影响。结果表明:低氧胁迫下,甜瓜种子的发芽率、发芽势和发芽后种子的胚根长、胚轴长、抗氧化酶活性显著低,MDA含量显著升高;而外源GABA能显著提高甜瓜种子的发芽率、发芽势和芽苗的胚根长、胚轴长、抗氧化酶活性, MDA含量显著降低。表明外源GABA通过促进抗氧化酶活性的提高,降低了低氧胁迫下植株体内ROS含量,增强植株的耐低氧的能力。
     本试验采用营养液水培方法,研究了低氧胁迫下外源GABA对甜瓜幼苗内源氨基酸含量、GABA支路中代谢酶活性和幼苗生长、光合作用、叶绿素荧光参数的影响,探讨了根际低氧胁迫下外源GABA对甜瓜幼苗氨基酸代谢途径和光合作用的影响机理,为寻找缓解作物无土栽培中低氧胁迫伤害的有效措施提供理论依据。
     结果表明:低氧胁迫能显著提高甜瓜幼苗体内GABA、谷氨酸含量和GAD活性;外源GABA能显著提高正常通气条件下和低氧胁迫下甜瓜幼苗体内GABA含量,降低谷氨酸含量和GAD活性;而VGB能显著降低低氧胁迫下添加外源GABA条件下甜瓜幼苗体内GABA、谷氨酸含量和GAD活性。
     低氧胁迫导致甜瓜幼苗体内α-酮戊二酸含量下降,GDH、GOGAT和GS活性升高;而外源GABA能显著降低正常通气条件下甜瓜幼苗体内α-酮戊二酸含量和GS活性,提高GDH活性,显著提高低氧胁迫下幼苗体内α-酮戊二酸含量和GDH活性,降低GOGAT和GS活性;VGB能显著降低低氧胁迫下添加外源GABA条件下甜瓜幼苗体内GDH活性,提高α-酮戊二酸含量及GOGAT和GS活性。
     低氧胁迫能显著提高甜瓜幼苗体内丙酮酸、丙氨酸、天冬氨酸含量和ALT、ASP活性;外源GABA能显著提高正常通气条件下甜瓜幼苗体内丙酮酸、丙氨酸、天冬氨酸含量,而降低ALT和ASP活性;显著降低低氧胁迫下丙酮酸含量和ALT、ASP活性,提高丙氨酸和天冬氨酸含量;VGB能显著提高丙酮酸含量和ALT、ASP活性,降低丙氨酸和天冬氨酸含量。
     低氧胁迫显著提高脯氨酸含量,降低精氨酸、组氨酸等其他12种氨基酸含量;外源GABA能显著提高正常通气条件下甜瓜幼苗体内脯氨酸、精氨酸、组氨酸等其他13种氨基酸含量和低氧胁迫下脯氨酸、精氨酸、丝氨酸等11种氨基酸含量,降低低氧胁迫下组氨酸含量;而VGB能显著降低外源GABA对低氧胁迫下幼苗体内氨基酸含量的提高效果。
     低氧胁迫导致甜瓜幼苗植株的生长受到抑制,光合色素含量显著下降,光合作用降低;外源GABA能显著促进幼苗生长,提高正常通气和低氧胁迫下甜瓜幼苗的光合色素含量、净光合速率(Pn)、气孔导度(Gs)、胞间CO_2浓度(Ci)、CO_2羧化效率(CE)、最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)、表观光合电子传递速率(ETR)和PSⅡ光合电子传递量子效率(ΦPSⅡ),而气孔限制值(Ls)、初始荧光(Fo)和非光化学猝灭系数(NPQ)显著降低,GABA在低氧胁迫下的提高效果更明显;同时添加GABA和GABA转氨酶抑制剂γ-乙烯基-γ-氨基丁酸(VGB)处理显著降低了低氧胁迫下GABA对甜瓜幼苗生长和光合特性的缓解效果。
In soilless culture, hypoxia stress come into appearance as a result of insufficient oxygen supply or root-cushion formation, which influences the normal growth and development of melon seedling. Now hypoxia stress has become a bottle neck of soilless culture application to large area production. Therefore, inproving the hypoxia tolerance of crops plays a vital role in soilless culture.γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid conserved from bacteria to plants and vertebrates. In plant physiological metabolism process , GABA can regulate cytosolic pH, limit the accumulation of reactive oxygen intermediates under oxidative stress conditions, deter insect feeding by means of interferes with the normal development of insects, have the role of signal transduction and osmotic adjustment, and induce synthesis of ethylene.
     The effects of exogenous GABA on the seed germination and growth active oxygen metabolism after seed germination were studied under hypoxia stress.The results show that germination and radicle length, hypoxotyl length, activity of antioxidant enzymes after seed germination significant decreased, and content of MDA increased under hypoxia. Applying GABA could significantly increase the ermination rate, germination and radicle length, hypoxotyl length, activity of antioxidant enzymes after seed germination, and decrease the content of MDA. It indicted that GABA treatment of exogenous spraying to leaves can increased the activities of antioxidant enzyme under hypoxia stress, which played an important role in enhancing the resistance to hypoxia stress of melon seedlings through keeping low ROS contents.
     By the method of hydroponic culture, this paper studied the effects of exogenous GABA on the endogenous amino acids content, enzyme activity in GABA shunt, growth, photosynthesis, and chlorophyll fluorescence parameters of melon seedlings under hypoxia stress. Impact mechanism of growth , photosynthesis and path of amino acid metabolism under hypoxia were preliminarily elucidated. Soilless culture of plants in search of relief of hypoxia stress injury and effective measures to provide a theoretical basis.
     The results show that there is a significant increase the content of GABA, glutamic acid and activity of GAD under hypoxia stress. Applying GABA could significantly increase GABA content, decrease glutamic acid content and the activity of GAD under control and hypoxia. GABA and glutamic acid content and activity of GAD decreased under application of GABA and VGB simultaneously.
     Hypoxia stress induced a significant decrease the content ofα-ketoglutarate, the activity of GDH, GOGAT and GS increased. Applying GABA could significantly decreaseα-ketoglutarate content and the activity of GS, increase the activity of GDH, and increaseα-ketoglutarate content, the activity of GDH, and decrease activity of GOGAT and GS. The activity of GDH increased,α-ketoglutarate content and the activity of GOGAT and GS under application of GABA and VGB simultaneously under hypoxia stress.
     There is a significant increase content of pyruvate, alanine, aspartate and the activity of ALT and ASP under hypoxia. Applying GABA could significantly increase pyruvate, alanine, aspartate content, the activity of ALT and ASP decreased under control, and decrease pyruvate content, the activity of ALT and ASP, increase content of alanine and aspartate under hypoxia stress. Content of pyruvate and the activity of ALT and ASP increased, decrease alanine and aspartate content under application of GABA and VGB simultaneously under hypoxia stress.
     Hypoxia stress could increase Proline content, decrease Arginine, Histidine etal other 12 kinds of amino acid content of seedlings significantly. Applying GABA could significantly increase Proline, Arginine, Histidine etal other 13 kind of amino acid content of seedlings under control, Proline, Arginine, Serine etal other 11 kinds of amino acid content of seedlings, and decrease Histidine content under hypoxia stress. However, simultaneously applying GABA and VGB could significantly decrease the alleviation effect of amino acid content of GABA under hypoxia stress.
     Hypoxia stress induced inhibition of the growth of plants, and a significant decrease of photosynthetic pigment contents, resulting in the decrease of photosynthesis. Applying GABA could significantly promote seedlings growth and increase the photosynthetic pigment contents, net photosynthetic rate (Pn) , stomatal conductance (Gs), intercellular CO_2 concentration (Ci), carboxylation efficiency (CE), maximal photochemical efficiency of PSⅡ(Fv/Fm), photochemical quenching (qP), apparent photosynthetic electron transfer rate (ETR), and quantum yield of PSⅡelectron transport (ΦPSⅡ), and decrease the stomatal limitation value (Ls), minimal fluorescence (Fo), and non-photochemical quenching (NPQ), under both hypoxic and normal conditions. The alleviation effect of GABA on photosynthetic characteristics was more obvious under hypoxia stress. However, simultaneously applying GABA and VGB could significantly decrease the alleviation effect of GABA under hypoxia stress.
引文
[1] Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: Areview[J]. Annals of Botany, 2002, 91: 179-194.
    [2]郭世荣.无土栽培学[M].北京:中国农业出版社, 2003.
    [3] Bouche N and Fromm H. GABA in plants: just a metabolite?[J] Trends Plant Science, 2004, 9: 110-115.
    [4] Kimmersley A M, Turano F J. Gamma aminobutyric acid (GABA) and plant responses to stress[J]. Critical Reviews Plant Sciences, 2000, 19: 479-509.
    [5] Breitkreuz KE, Allan WL, Van Cauwenberghe OR, et al. A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency[J]. Journal of Biological Chemistry, 2003, 278: 41552-41556.
    [6] Alan W B, Kennaway B M, Barry J S. Gamma-hydroxybutyrate: defense against invertebrate pests?[J] Trends Plant Science, 2006, 11(9): 424-427.
    [7] Bragina T V, I.S Drozdova, V Z Alekhin, et al. The rate of photosynthesis, respiration, and transpiration in young Maize lant under hypoxia[J]. Doklady Chemistry and Biology Science, 2001, 380: 482-485.
    [8]许大全.光合作用效率[M].上海:上海科学技术出版社, 2002.
    [9] Bragina, TV, Drozdova, IS, Ponomareva, YV, et al. Photosynthesis, respiration, and transpiration in maize seedlings under hypoxia induced by complete flooding[J]. Doklady Chemistry and Biology Science, 2002, 384: 274-277.
    [10]王文泉,张福锁.高等植物厌氧适应的生理及分子机制[J],植物生理学通讯, 2001, 37(1): 63-70.
    [11] Gibbs J, Tumer DW, Armstrong W, et al. Response to oxygen deficiency in primary maize roots. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem[J]. Australian Journal of Plant Physiology, 1998, 25(6): 745-758.
    [12] Angelika M, Albrecht G. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia[J]. Physiol Plant, 2003, 117: 508-520.
    [13] Subbaish C, Sachs MM. Molecular and cellular adaptations maize to flooding stress[J]. Ann Bot, 2003, 91:119-127.
    [14] Chang WWP, Huang L, Shen M, et al. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry[J]. Plant Physiol, 2000, 122: 295-317.
    [15] Ahsan N, Lee D G, Lee S H, et al. A comparative proteomic analysis of tomato leaves in response to waterlogging stress[J]. Physiol Plant, 2007, 131(4): 555-570.
    [16] Ahsan N, Lee D G, Lee S H, et al. A protemic screen and identification of waterlogging-regulatedproteins in tomato roots[J]. Plant and Soil, 2004, 295: 37-51.
    [17] Pandey OP, Asha K, Haque H. NAD-alcohol dehydrogenase and superoxide dismutase activity in Zea mays under hypoxic and post-hypoxic stress regime[J]. Journal of Plant Biology, 2000, 27: 71-73.
    [18]高洪波.根际低氧胁迫下甜瓜幼苗生理代谢的特征及Ca2+、GABA生理调节功能[J].南京农业大学博士学位论文. 2005.
    [19]廖红,严小龙.高级植物营养学[M].北京:科学技术出版社, 2003: 270-273.
    [20]陆景陵.植物营养学[M].北京:中国农业大学出版社, 2003: 268-271.
    [21]蒋振晖,顾振新.高等植物体内γ-氨基丁酸合成、代谢及其生理作用.植物生理学通讯[J], 2003, 39(3), 249-254.
    [22] Chung I, Bown A W, Shelp B J. The production and efflux of 4-aminobutyrate in solated mesophyll cells[J]. Plant Physiology, 1992, 99: 659-664.
    [23] Tuinl G, Shelp B J. In situ[14C] glutamate metabolism by developing soybean cotyledons.I.Metabolic routes [J]. Plant Physiology, 1994, 143: 1-7.
    [24]何生根,黄学林,傅家瑞.植物中的多胺氧化酶[J].植物生理学通讯, 1998, 34(3): 213-218.
    [25] Alan W B, Barry J S. The metabolism and function ofγ-Aminobutyric acid[J]. Plant Physiology, 1997, 115: 1-5.
    [26] Shelp B J, Waiton C S, Snedden W A. Gaba shunt in developing soybean seeds is associated with hypoxia[J]. Physiology Plant, 1995, 94: 219-228
    [27] Busch K B, Fromm H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides[J]. Plant Physiology, 1999, 121: 589-597.
    [28] Fait A, Yellin A, Fromm H. GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insightfrom Arabidopsis mutants[J]. FEBS Letters, 2005, 579: 415-420.
    [29] Ellsabetta M, Alfredo T, Luigi C, et al. Metabolism ofγ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat[J]. Journal of Experimental Botany, 2006, 57(14): 3755-3766.
    [30] Alan M K, Frank J T. Gamma Aminobutyric (GABA) and plant responses to stress[J]. Critical Reviews in Plant Sciences, 2000, 19(4): 479-509.
    [31] Marta P, Olgai I, Juan M R, et al. Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in sediments: An experimental assessment[J]. Environmental and Experimental Botany, 2007, 60(2): 193-201.
    [32] Bouche N, Fromm H. GABA in plants: just a metabolite?[J] Trends Plant Science, 2004, 9: 110-115.
    [33] Schwackea R, Grallatha S, Breitkreuza K E, et al. LeProT1, a transporter for proline, glycine betaine, and gamma-aminobutyric acid in tomato pollen[J]. Plant Cell, 1999, 11:377-392.
    [34] Bouche N, Fait A, Moller S G, et al. Mitochondrial succinic-semialdehyde dehydrogenase of the caminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants[J].Proceedings National Academy of Scencesi USA, 2003, 100: 6843-6848.
    [35]田小磊,吴晓岚,李云,等.盐胁迫条件下γ-氨基丁酸对玉米幼苗SOD、POD及CAT活性的影响[J].实验生物学报, 2005, 38: 75-79.
    [36] Gao Hongbo, Guo Shirong. Calcium Influence on Antioxidant Enzyme and Nitrogen Metabolism of Muskmelon Seedlings under Hypoxia Stress[J]. Acta Horiculturat, 2005, 691: 321-327.
    [37] Scott-Taggart P C, Cauwenberghe O R V, Mclean M D. Regulation ofγ-aminobutyric acid synthesis in situ by glutamate availability[J]. Physiology Plantarum, 1999, 106: 363-369.
    [38] Tuin J G, Shelp B J. In situ[14C]glutamate metabolism by developing soybean cotyledons. III. Utilization[J]. Plant Physiology, 1989, 91: 170-174.
    [39]施征,史胜青,钟传飞,等.γ-氨基丁酸在植物抗逆生理及调控中的作用[J].生命科学研究, 2007, 11(4): 57-61.
    [40] Wang Y H, Garvin D F, Kochian L V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium and iron deficiencies in tomato roots: evidence for cross talk and root/rhizosphere-mediated signals[J]. Plant Physiology, 2002, 130: 1361-1370.
    [41] Raevskii V, Stevenson J D. Endogenous dopamine modulates corticopallidal influences via GABA[J]. Neuroscience and Behavioral Physiology, 2003, 33(8): 839-844.
    [42] Alan W B, Kennaway B, Barry J S, et al. Gamma-aminobutyrate: defense against invertebrate pests?[J] Trends in Plant Science, 2006, 11(9): 424-427.
    [43] Arumugam K, Jacintha M, Chinnappa D M R.γ-aminobutyric acid promotes stem elongation in Stellarialongipes: the role of ethylene[J]. Plant Growth Regulation, 1998, 26: 131-137.
    [44] Alan M K, Fang L. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants[J]. Plant Growth Regulation, 2000, 32: 65-76.
    [45] Palanivelu R, Brass L, Edlund A F, et al. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell, 2003, 32: 65-76.
    [46] Bouche N, Fait A, Mollero S G, et al. Mitochondrial succinic-semialdehyde dehydrogense of theγ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants[J]. Proceedings of the National Academy of Sciences, 2003, 100: 6843-6848.
    [47] Ravishankar P, Laura B, Daphne P. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell, 2003, 114: 47-59.
    [48] Palanivelu R, Preuss D. Pollen tube targeting and axon guidance: parallels in tip growth mechanisms[J]. Trends Cell Biology, 2000, 10: 517-524.
    [49] Huck N, Moore J M, Federer M, et al. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception[J]. Development, 2003, 130: 2149-2159.
    [50] Lancien M, Roberts M R. Regulation of Arabidopsis thaliana 14-3-3 gene expression byγ-aminobutyric acid[J]. Plant Cell and Environment, 2006, 29: 1430-1436.
    [51] Mohammad I A, Rurhua L, SHU C. An novel senescence associated gene encodingγ-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence[J]. Physiologia Plantarum, 2005, 123: 1-8.
    [52] Beuve N, Rispail N, Line P, et al. Putative role ofγ-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassicanapus L[J]. Plant, Cell and Environment, 2004, 27: 1035-1046.
    [53]毕辛华,戴心维.种子学[M].北京:农业出版社, 1993.
    [54] GIiannopolitis C N , Ries S K. Purification and quantitative relationship with water-soluble protein in seedling[J]. Plant Physiology, 1977, 59: 315-318.
    [55]曾韶西,王以柔,刘鸿先.不同胁迫预处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报, 1997, 39(4): 308-314.
    [56] Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels dismutase and catalase[J]. Journal of Experimental Botany, 1982, 32: 91-101.
    [57] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Arch Biochem Biophys, 1986, 125: 189-198.
    [58]叶利民,徐芬芬,周琴.外源GA3对盐胁迫下水稻种子萌发的影响[J].湖北农业科学, 2009, 49(9): 2065-2067.
    [59]李杰,窦晓月,车永梅. NO参与γ-氨基丁酸促进白三叶种子的萌发过程[J].植物生理学通讯, 2008, 44(6): 1071-1074.
    [60]高洪波,郭世荣,刘艳红,等.低氧胁迫下Ca2+、La+和EGTA对网纹网纹甜瓜幼苗活性氧代谢的影响[J].南京农业大学学报, 2005, 28(2): 17-21.
    [61] Ushinaru T, Kanematsu S, Katayama M. Antioxidative enzymes in seedlings of N elumbo nucifera geminated under water[J]. Physiology Plantarum, 2001, 112: 39-46.
    [62]高洪波,郭世荣.外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响[J].植物生理与分子生物学学报, 2004, 30(6): 651-659.
    [63]孟祥勇,张晖,陶冠军.反相高效液相色潽法测定发芽糙米中γ-氨基丁酸的含量[J].粮食与饲料工业, 2008, 12: 41-42.
    [64] Oaks A, Stulen J, Jones K, et al. Enzymes of nitrogen assimilation in maize roots[J]. Planta, 1980, 148: 477-484.
    [65] Singh RD, Srivastava HS. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen[J]. Physion Plant, 1986, 66:413-416.
    [66] Kanamori T, Konishi S, Takahashi E. Inducible formation of glutamate dehydrogenase in rice plant roots by the addition of ammonia to the media[J]. Physiol Plant, 1972, 26: 1-6.
    [67] David R, Murray. Changes in Activities of Enzymes of Nitrogen Metabolism in Seedcoats and Cotyledons during Embryo Development in Pea Seeds[J]. Plant Physiol, 1980, 66, 782-786.
    [68]高洪波,郭世荣,汪天.根际低氧胁迫对网纹甜瓜硝态氮、铵态氮和蛋白质含量的影响[J].园艺学报, 2004, 31(2): 236-238.
    [69] Breitkreuz KE, Allan WL, Van Cauwenberghe OR, et al. A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency[J]. Journal of Biochemistry, 2003, 278: 41552-41556.
    [70]高洪波,李敬蕊,章铁军,等.甘氨酸和谷氨酸与钼配施对生菜品质的影响[J].西北植物学报, 2010, 30(5): 0968-0973.
    [71]高洪波,郭世荣,章铁军,等.营养液低氧胁迫对网纹甜瓜幼苗生长和生理代谢影响[J].沈阳农业大学学报, 2006, 37(3): 368-372.
    [72] Marta P, Olga I, Juan M R, et al. Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in sediments: An experimental assessment[J]. Environmental and Experimental Botany, 2007, 60(2): 193-201.
    [73] Lea P J, Miflin B J. Alternative route for nitrogen assimilation in higher plants[J]. Nature, 1974, 251: 614-616.
    [74] Melo-Oliveira R. Cunha-Oliveira I. Coruzzi G M. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation[J]. Proceedings of the National Academy of Sciences, 1996, 93: 4718-4723.
    [75]刘义玲,李天来,孙周平,等.根际CO2浓度对网纹甜瓜生长和根系氮代谢的影响[J].中国农业科学, 2010, 43(11): 2315-2324.
    [76] Janzen DJ, Allen LJ, Magregor KB. Cytosolic acidification and gamma-aminobutyric acid synthesis during the oxidative burst in isolanted Asparagus sprengeri mesophyll cells[J]. Canadian Journal of Botany-revue Canadienne de Botanique 2001, 79(4): 438-443.
    [77]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社, 2000: 134-137.
    [78]高洪波,郭世荣.低氧胁迫对无土栽培网纹网纹甜瓜幼苗多胺含量的影响[J].园艺学报, 2005, 32(1): 121-123.
    [79]胡晓辉,李璟,郭世荣,等. Ca2+对低氧胁迫下黄瓜幼苗生长和根系无氧呼吸酶的影响[J].西北植物学报, 2005, 25(10): 1997-2002.
    [80] Huang ZA, Jiang DA, Yang Y, et al. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants[J]. Photosynthetica, 2004, 42(3): 357-364.
    [81] Drew M C. Oxygen defieieney and root metabolism: injury and acclimation under hypoxia and anoxia[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223-250.
    [82] Kinnersley AM, Lin F. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants[J]. Plant Growth Regultion, 2000, 32: 65-76.
    [83]吴韩英,寿森炎,朱祝军.高温胁迫对甜椒光合作用和叶绿素荧光的影响[J].园艺学报, 2001, 28(6): 517-521.
    [84] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345.
    [85] Mielke MS, Almeida AF, Gomes FP, et al. Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding[J]. Environmental and Experimental Botany, 2003, 50: 221-231.
    [86]王文泉,张福锁,郑永战,等.厌氧胁迫下芝麻不同耐渍基因型形态、生理及矿质元素变化的比较研究[J].应用生态学报, 2002, 13(4): 421-424.
    [87]郭文琦,陈兵林,刘瑞显,等.施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响[J].应用生态学报, 2010, 21(1): 53-60.
    [88] Ahmed S, Nawata E, Sakuratani T. Changes of endogenous ABA and ACC, and their correlations to phtotsynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging[J]. Environmental and Expermental Botany, 2006, 57: 278-284.
    [89] Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51: 659-668.
    [90] Shangguan ZP, Shao MA, Dyckmans. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. Journal of Plant Physiology, 2000, 56: 46-51.
    [91]王闯,李中勇,刘敏,等.不同浓度的硝酸盐对淹水条件下甜樱桃叶绿素荧光的影响[J].中国农学通报, 2009, 25(19): 142-146.
    [92]云菲,刘国顺,史宏志,等.光氮互作对烤烟光合作用及叶绿素荧光特性的影响[J].中国农业科学, 2010, 43(5): 932-941.
    [93] Evans JR, Terashima I. Effects of nitrogen nutrition on electron transport component sand photosynthesis in spinach[J]. Australian Journal of Plant Physiology, 1987, 14: 281-292.
    [94] Cimopi S, Gentili E, Guidi L. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower[J]. Plant Science, 1996, 118: 177-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700