产γ-氨基丁酸的乳酸菌菌株选育及其发酵条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氨基丁酸(γ-amino butyric acid, 简称GABA, 也称氨酪酸)是中枢神经系统一种重要的抑制性神经递质,本文对产GABA的菌种选育和发酵过程进行了初步研究。
     从鲜奶中分离得到一株产GABA的乳酸菌株hjxi-01,经初步鉴定为短乳杆菌。实验结果表明,此乳酸菌细胞具有合成GABA的能力。在此基础上,先后使用了紫外线和γ射线对出发菌株进行了诱变处理。最终得到一株高产突变株hixi-08119,经连续传代12次,遗传性状稳定,GABA平均产量达到17g/L,较出发菌株hjxj-01提高142.9%。
     运用神经网络结合粒子群算法,对乳酸菌产GABA的摇瓶发酵培养条件进行了优化。以Plackett-Burman设计对15个相关影响因素进行评价,并从中筛选出具有显著正效应的葡萄糖、L-谷氨酸钠(L-glutamic acid sodium,简称为L-MSG)和四水硫酸锰等三个因素,并通过逐一单因素实验确定这三个因素的合适取值区域。按照Hybrid设计,选取11组训练样本来建立人工神经网络(Artificial neural
     network,简称ANN)模型,结果表明,Hybrid设计选取样本比随意取样更合理,所建立的模型准确可靠,预测的平均误差为2.37%。最后依赖于模型由粒子群算法(Particle swarm optimization,简称PSO)进行全局搜索寻优得到最优培养条件。在优化后的条件下,GABA积累浓度达到33.4g/L,较优化前提高96.5%,同网络模型预测相比,误差仅为1.49%。
     优化了乳酸菌hixi-08119产GABA的间歇发酵培养条件。首先对谷氨酸代谢流量分布进行估算,用来决定理论上控制哪几步局部代谢反应步骤对优化是有利的。研究发现,从谷氨酸转化为GABA和GABA转化琥珀酸这两步局部途径对GABA的摩尔得率和积累速率有重要影响。接着对可能影响途径相关酶(谷氨酸脱羧酶、GABA转氨酶和琥珀酸半醛脱氢酶)活性的23个因素做了进一步优化研究。通过Packett-Burman设计、Hybrid designs、人工神经网络和PSO等优化方法分析得知,FeCl_3和磷酸吡哆醛(pyridoxal phosphate,简称PLP)浓度,以及pH值对GABA的摩尔得率有重大影响,当间歇发酵20h时控制这三个变量水平为:
γ-amino butyric acid(GABA) is a major inhibitory neurotransmitter in the central nervous system. In this paper, GABA-producing strain breeding and fermentationg process were studied.A GABA-yielding strain hjxj-01 was isolated from the milk samples and identified as Lactobacillus brevis. It was shown that Lactobacillus brevis hjxj-Ol had the ablity of producing GABA. Then, UV and ~(60)Co y-rays were used to treat the original strain. After several times of mutagenesis, a mutant strain hjxj-08119 was bred by GABA resistance selection. Moreover, the GABA-producing capacity could be maintained stably after 12 generations. The fermentation results indicated that the average yield of GABA was 17 g/L, which was increased 142.9% compared with that of the origin strain hjxj-Ol.Artificial neural network (ANN) and particle swarm optimization (PSO) were applied to optimize GABA production by Lactobacillus brevis in shake flask cultures. Firstly, glucose, sodium glutamate and MnSO_4H_2O, which influenced GABA production positively were screened from 15 related factors by using Plackett-Burman design. The reasonable ranges of these three factors were determined by single factors experiment. Then according to hybrid design, 11 samples were selected for training network, and ANN was modeled. The results indicated that hybrid design was more rational than random design, and the model built by hybrid design shown good performance. The average error between the experimental value and predictive values was 2.37%. Finally, based on the model, the optimized condition was predicted by particle swarm optimization. Verification experiment showed that the optimized condition leaded the average yield of GABA to be increased from 17.06g/L to 33.4g/L, and in the optimized condition, the relative discrepancy was only 1.49% between the experimental value and the predictive value of GABA yield.The effects of culture condition on GABA yield of Lactobacillus hjxj-08119 in
    batch fermentation was investigated. Evaluation of flux distribution for glutamate metabolism was used first to determine which metabolic pathways, significant for optimization in theory, should be controlled. More specifically, control for the local pathways from glutamate to GABA and from GABA to succinate were very important with regard to the GABA molar yield and GABA production rate. Subsequently, twenty three factors, including pH, temperature, pyridoxal phosphate(PLP), 2-ketoglutarate, etc, which might influence the activity of glutamate decarboxylase, 4-aminobutyrate aminotransferase and succinate semialdehyde dehydrogenase were investigated employing Plackett-Burman designs (PBD), hybrid designs (HD), artificial neural networks (ANN) and particle swarm optimization (PSO). According to the PBD analysis, FeCl_3, PLP and pH were proved to be significant parameters for the GABA molar yield. When the condition was controlled as pH=5.08, c(FeCl3)=5.1 mmol/L and c(PLP)=0.71 mmol/L after 20h cluture in batch fermentation, the GABA molar yield and GABA production rate between 20h and 40h were to be increased by 13.1% and 45.9% (from 71% to 80.27% and from 8.25 mmol/(L·h) to 12.04 mmol/(L-h) respectively compared with those obtained in the original condition. Based on the optimal condition in batch fermentation, the fed- batch fermentation was investigated too. The addition of glucose and L-MSG could result in accumulation of GABA to reach as high as 107.5g/L after fermentation culture of 91.5 h.A non-structured model was proposed to simulate the growth of Lactobacillus hjxj-08119, the consumption of glucose, the consumption of L-MSG and the accumulation of GABA in batch fermentation. The parameters of fermentation kinetics (μ_(max)、α 、 β 、 m_1 、 m_2、 Y_(x/s_1) 、 Y_(p/s_2) and Y_(s_1/s_2)) was estimated usingPSO.
引文
[1] Barrett G. C., Elmore D.T.,Amino acid and peptide[M],1998,Cambridge University Press
    [2] 许建军,Lactococcus lactis生物合成γ-氨基丁酸及谷氨酸脱羧酶的性质研究,江南大学博士学位论文,2004,中国无锡
    [3] 叶惟泠,γ-氨基丁酸的发现史,生理科学进展,1986,17(2):187-189
    [4] 郭晓娜,朱永义,朱科学,生物体内γ-氨基丁酸的研究,氨基酸和生物资源,2003,25(2):70-72
    [5] 茅原紘,杉浦友美.近年GABA生理机能研究—脑机能改善作用、高血压作用中心食品开发,2001,36(6):4-6
    [6] 杨立川,高γ-氨基丁酸与癫痫,国内外医学神经病学科科学分册,1993,16(3):19-20
    [7] Robent E.,γ-aminobutyric acid in brain:Its formation from glutamic. J. Biol. Chem,1950,187:55-63
    [8] Awapara J. Free γ-aminobutyric acid in brain. J. Biol. Chem.,1950,187:35-39
    [9] 边淑玲,张玮,γ-氨基丁酸对抗精子抗体阳性患者精子顶体反应的影响及机制探讨,中国男科学杂志,2002,16(5):355-357
    [10] 徐项桂,朱剑琴,脑室注射γ-氨基丁酸(GABA)对大鼠垂体—甲状腺分泌功能的抑制效应,南京大学学报,1991,27:137-142
    [11] 徐传伟,夏应和,γ-氨基丁酸控制哮喘急性发作临床疗效观察,滨洲医学院学报,1999,22(2):181
    [12] 孙百申,红曲霉发酵及某些生理活性物质的研究,浙江工业大学硕士学位论文,2004,浙江杭州
    [13] 徐叔云,临床用药指南(修订版),安徽科学技术出版社,1997,中国安徽
    [14] Tadashi O.,Tomoko S., Effect of the Defatted Rice Germ Enriched with GABA for Sleepness, Depression,Autonomic Discorder by Oral Administration. Nippon Shokuhin Kagaku Kogaku Kaishi,2000,47(8):596-603
    [15] Audie G L, Yongchang W, Mingliang P, Yifeng Z, Yuanye M., Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat.Science, 2003,30:812-815
    [16] Bouche N., Fromm H., GABA in plants: just a metabolite. Trends in Plant Science, 2004, 9 (3) :110-115
    [17] 顾振新,蒋振晖.食品原料中γ-氨基丁酸形成机理及富集技术.食品与发酵工业,2002,(10):65-69
    [18] Martin D.L., Rimvall K.Regulation of gamma-aminobutyric acid synthesis in brain. J Neurochem, 1993, 60:395-407
    [19] Streeter J. G., Thomson J. F. In Vivo and In Vitro Studies on γ-Aminobutyric Acid Metabolism with the Radish Plant (Raphanus sativus, L.).Plant Physiol, 1972, 49:579-584
    [20] Callewaert D.M.,Rosemblatt M.S.,Suzuki K.,Tchen T.T., Succinic semialdehyde dehydrogenase from a Pseudomonas species. Ⅱ. Purification and chemical properties.J. Biol. Chem., 1973, 248:6014-6018
    [21] 许建军,γ-氨基丁酸(GABA)——一种新型的功能性食品因子,食品工业科技,2003,24:109-110
    [22] Barrett G. C., Elmore D.T., Amino acid and peptide[M],1998,Cambridge University Press
    [23] Takayo S., Toshiroh H., Distribution of free amino acids in the rice kernel and kernel fractions and the effect of water soaking in the distribution, Agric.Food Chem,1994, 42:1122-1125
    [24] William W., Rapid accumulation of γ-amimobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature,darkness,or mechanical manipulation, Plant Physical, 1984, 170-175
    [25] 万选才,杨天祝,徐承焘,现代神经生物学,北京医科大学,中国协和医科大学联合出版社,1999,158-162
    [26] 高桥敬一,宗田奈保子,内藤成弘等.食品综合研究报告(日),2001,3:33-37
    [27] 顾振新,蒋振晖,食品原料中γ-氨基丁酸(GABA)形成机理及富集技术,食品与发酵工业,2002,28(10):65-69
    [28] 杨昌军,宛晓春,黄继轸,γ-氨基丁酸茶(Gabaron Tea)的研究现状,茶叶通报,2004,26(1):13-158
    [29] Ysawai Y.,Yamaguchi D.M,Yoshitomi H., Cycling treatment of anaerobic and aerobic incubition increase the content ofγ-aminobutyric acid in tea shoots.Amino Acids,2001,20:331-334
    [30] 张晖 等,大米胚芽中γ-氨基丁酸的富集,食品工业科技,2003,24(11):42-44
    [31] 松本恭郎,大野一仁,别所康守等.爱爰工技研究报告(日),1998,36:73-77
    [32] 章思规,精细有机化学品技术手册,1992,科学出版社
    [33] 赵景联,固定化大肠杆菌细胞生γ-氨基丁酸的研究,生物工程,1989,5:124-128
    [34] Method for producing γ-aminobutyric acid (patant of Japan ),专利号:2004-159612
    [35] Yokoyama S., Hiramatsu J. I., Hayakawa K., Production of γ-Aminobutyric Acid from Alcohol Distillery Lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering, 2002, 93 (1) : 95-97
    [36] 上野羲栄,乳酸菌生理活性作用利用(日),2003
    [37] 江波,许时婴,许建军,专利号:02113140.6
    [38] 钟环宇,许建军,江波,利用响应面分析法优化γ-氨基丁酸发酵培养基,无锡轻工业大学学报,2004,23,(3):19-22
    [39] 刘清等,生产γ-氨基丁酸乳酸菌的选育及发酵条件优化,氨基酸和生物资源,2004,26(1):40-43
    [40] Wigge B., Kore S., Gardestroem P. The redox levels and subcellular distribution of pyridine nucleotides in illuminated barley leaf protoplasts studied by rapid fractionation. Physiol. Plant, 1993, 88:10-18
    [41] Kinnersley A.M., Turano F.J. Gamma aminobutyric acid (GABA) and plant responses to stress.Critical Reviews in Plant Science, 2000, 19:479-509
    [42] Stojanov T., O'neill C., Biol Repord,1999, 60(3): 674-682
    [43] Shelp B. J., Walton C. S, Snedden W. A., GABA shunt in developing soybean seeds is associated with hypoxia.Physiol Plant, 1995, 94:219-228
    [44] 安藤干夫,食科学,2001,4:66-73
    [45] Shlomo W., Mona C., et al. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicty. Nature, 1997,387(5): 598-603
    [46] Stanton H.C. Mode of action of gamma aminobutyric acid on the cardiovascular system. Arch. Int. Pharmacodyn, 1963, 143:195-200
    [47] Julianna K.,Recent advances in GABA research. Neurochemistry International,1999, 34 : 353-358
    [48] 凌代文,乳酸细菌分类鉴定及实验方法,中国轻工业出版社,1999
    [49] Yokoyama S., Hiramatsu J. I., Hayakawa K., Production of γ-Aminobutyric Acid from Alcohol Distillery Lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering, 2002, 93 (1) : 95-97
    [50] 陈希贤,李东,吕建新,方芳.高效液相色谱法测定人脑脊液中γ—氨基丁酸和谷氨酸.色谱,1997,15(3):237~239
    [51] Peter H. A,, Sneath N., et al., Bergey's Manual of Systematic Bacteriology, 2nd ed. Beijing: Science Press, 1984
    [52] 马燕,黄春萍,黄敏,用亮氨酸抗性法选育L2甲硫氨酸高产突变株,四川师范大学学报,2004,27(3):303-306.
    [53] 李卫旗,何国庆,~(60)Co Y射线诱变选育热凝胶多糖高产菌株的研究,核农学报,2003,17(5):343-346.
    [54] 周毅,徐柏龄,正交设计训练神经网络.南京大学学报,2001,37(1):72~78
    [55] Omori M., Yano T., et al. Effect anaerobically treated tea (gabaron tea) on blood pressure of spontaneously hypertensive rats. Nippon Nogeikagaku Kaishi,1987, 61:1449~1451
    [56] Ralph B., Dirk R., Reinhard G., Data and knowledge based experimental design for fermentation process optimization. Enzyme and Microbial Technology,2000, 27:784~788
    [57] Choueiki M.H.,Mount-Campbell C.A., Training data development with the D-optimality criterion. IEEE Transactions on Neural Networks. 1999,10: 56-63.
    [58] Cohn D.A, Neural-networks exploration using optimal experimental design. Neural networks, 1996,9:1071-1083
    [59] Kennedy J., Eberhart R., Particle swarm optimization [A]. In: IEEE intl conf. on Neural networks[C], Perth Australia, 1995: 1942-1948
    [60] Eberhart R., Kennedy J., A new optimizer using particle swarm theory [A]. In: Proc of the Sixth International Symposium on Micro Machine and Human Science [C], Nagoya,Japan,1995:39-43
    [61] Salman A., Ahmad I., Madani S.A., Particle swarm optimization for task assignment problem. Microprocessors and Microsystems,2002, 26:363 371
    [62] Cockshott A.R., Hartman B.E., Improving the fermentation medium for Echinocandin B production part Ⅱ: Particle swarm optimization. Process Biochemistry, 2001, 36:661 669
    [63] Shi Y., Eberhart R., A modified particle swarm optimizer. In: IEEE World Congress on Computational Intelligence, 1998, 69-73
    [64] Plackett R. L., Burman J. P., The design of optimum multifactorial experiments. Biometrika, 1946, 37:305-325
    [65] Ralph B., Dirk R., Reinhard G., Data and knowledge based experimental design for fermentation process optimization [J]. Enzyme and Microbial Technology, 2000, 27 : 784~788
    [66] Roquemore K. G.. Hybrid designs for quadratic response surfaces [J]. Technometrics, 1976, 18(4): 419~423
    [67] Sun X., Wang Q., Zhu D., Function approximation and prediction: a comparative study with neural networks and regression models. In: Proceedings of Intelligent Engineering Systems Through Artificial Neural Networks, ANNIE, 1997:70 84
    [68] Basheer I. A., Hajmeer M.,. Artificial neural networks: fundamentals, computing, design, andapplication. Journal of Microbiological Methods. 2000, 43:3 31
    [69] Jain A. K., Mao J., Mohiuddin K. M., Artificial neural work approach. In: Dagli, C.H. et al. (Eds.), Proceedings networks: a tutorial. Comput. IEEE March, 1996:31 44.
    [70] Birge B., PSOt -a Particle Swarm Optimization Toolbox for use with Matlab. IEEE, 2003:182-186.
    [71] Stephanopoulus G., Vallino J. J., Network rigidity and metabolic engineering in metabolite overproduction. Science, 1991, 252:1675 1681.
    [72] Ruijter G. J. G., Visser J., In: Kristiansen, B., Mattey, M., Linden, J., editors. Citric acid Biotechnology. London: Taylor and Francis,1999:55 68.
    [73] Kumar S., Punekar N. S., SatyaNarayan V., Venkatesh K.V., Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger. Biotechnology and Bioengineering, 2000, 67:574-584.
    [74] Yang Y., Li Q., Chen Y., Gu G. X., Determination of organic acids in beer and wort by RP-HPLC. Food and Fermentation Industries, 2004, 29:6-12.
    [75] Westerhoffh. v., TIB Tech, 1995,13 (17): 245
    [76] Fonda M. L., L-Glutamate decarboxylase from bacteria. Methods Enzymol. 1985, 113:11-16
    [77] Prabhakaran K., Harris E.B., Kirchheime W. F., Glutamic acid decarboxylase in Mycobacterium leprae. Arch. Microbiol, 1983, 134:320-323
    [78] Schousboe A., Wu J. Y., Roberts E., Subunit structure and kinetic properties of 4-aminobutyrate-2-ketoglutarate transaminase purified from mouse brain. J. Neurochem, 1974, 23: 1189-1195
    [79] Tamaki N., Kubo K., Aoyama H., Funatsuka A., Inhibitory effect of 6-azauracil on purified rabbit liver 4-aminobutyrate aminotransferase. J. Biochem, 1983, 93: 955-959
    [80] Satya Narayan V., Madhusudanan Nair P., Potato tuber succinate semialdehyde dehydrogenase: purification and characterization. Arch. Biochem. Biophys, 1989, 275:469-477
    [81] Yamaura I., Matsumoto T., Funatsu M., Shinohara T., Purification and some properties of succinic semialdehyde dehydrogenase from barley seeds. Agric. Biol. Chem, 1988, 52:2929-2930
    [82] Rivett A. J., Tipton K. F., Kinetic studies with rat-brain succinic-semialdehyde dehydrogenase. Eur. J. Biochem., 1981,117:187-193
    [83] Busch K. B., Fromm H., Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol., 1999,121: 589-597
    [84] Inatomi K., Slaughter J. C., Glutamate decarboxylase from barley embryos and roots. Biochem. J.,1975, 147:479-484
    [85] Wu J. Y., Matsuda T., Roberts E., Purification and characterization of glutamate decarboxylase from mouse brain. J. Biol. Chem., 1973, 248:3029-3034
    [86] Roberts E., Frankel S., Further studies of glutamic acid decarboxylase in brain. J. Biol. Chem., 1951, 190:505-512
    [87] Johnson B. S., Singh N. K., Cherry J. H, Locy R. D., Purification and characterization of glutamate decarboxylase from cowpea. Phytochemistry, 1997, 46:39-44
    [88] Yun S. J., Oh S. H., Cloning and characterization of a tobacco cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase. Mol. Cells, 1998, 8: 125-129
    [89] Albers R. W., Koval G. J., Succinic semialdehyde dehydrogenase: purification and properties of the enzyme from monkey brain. B iochim. Biophys. Acta, 1961, 52:29-35
    [90] Galleschi L., Tozzi M. G., Cozzani I., Floris C., Succinic semialdehyde dehydrogenase of wheat grain. Planta, 1978, 142:175-180
    [91] Yonaha K., Toyama S., Gamma-Aminobutyrate:alpha-ketoglutarate aminotransferase from Pseudomonas sp. F-126: purification, crystallization, and enzymologic properties. Arch. Biochem. Biophys, 1980, 200:156-164
    [92] Yonaha K., Suzuki K., Toyama S., 4-Aminobutyrate:2-oxoglutarate aminotransferase of Streptomyces griseus: purification and properties. Eur. J. Biochem., 1985,146:101-106
    [93] Ueno Y., Hayakawa K., Takahashi S., Oda K., Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO-12005. Biosci. Biotech. Biothem., 1997, 61:1168-1171.
    [94] Vlassides S., Ferrier J. G., Block D. E., Using historical data for bioprocess optimization: modeling wine characteristics using artificial neural networks and archived process information. Biotechnology and Bioengineering, 2001, 73: 55-68
    [95] Fang B. S., Chen H. W., Xie X. L., Wan N., Hu Z. D., Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimization. Process Biochemistry, 2003, 38:979-985
    [96] Zhu Y., Yang S. T., Effect of pH on metabolic pathway shift in fermentationof xylose by Clostridium tyrobutyricum. J. B iochem, 2004, 110, 143-157
    [97] 李信,许雷,蔡昭铃,蛹虫草茵胞外多糖发酵及其发酵动力学,生物工程学报,1999,15:507-511
    [98] Luedeking R., Piret E. L., Transient and steady, states in continuous fermentation. Theory and. Experiment. J. Biochm. Microbiol. Tech. Eng., 1959, (1): 431-459
    [99] 陈宏文,方柏山,万宁,胡宗定,无锡轻工大学学报,,2002,21(6):579-582
    [100] Pinchuk R. J., Brown W.A., Hughes S. M., et al, Modelling of biological processes using the SCF and genetic algorithms. Biotech. Bioeng., 2000,67(1): 19-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700