海马电刺激对耐药性癫痫大鼠脑组织GABA受体表达及钠通道电流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立多药耐药性颞叶癫痫模型,以海马细胞外液GABA浓度、海马细胞GABA(A)和GABA(B)受体表达以及海马CA1区锥体细胞钠通道电流的变化为观察指标,探讨海马电刺激治疗耐药性颞叶癫痫的可能机制。
     方法:选用Wistar大鼠230只制作慢性杏仁核点燃癫痫模型,模型制作成功后用经典抗癫痫药苯妥英钠和苯巴比妥进行筛选,根据癫痫大鼠对药物的反应区别出耐药癫痫大鼠及药物敏感大鼠用于下列实验:1)用微透析方法收集脑组织细胞外液,采用高效液相色谱法检测海马电刺激后GABA含量的变化;2)用免疫组织化学方法观察海马电刺激后脑组织内GABA(A)和GABA(B)受体表达的变化;3)用荧光定量PCR方法观察海马电刺激后GABA(A)和GABA(B)受体mRNA表达的变化;4)用膜片钳全细胞记录模式观察海马电刺激后脑细胞钠通道电流的变化。
     结果:1)在全部大鼠中成功点燃120只(点燃成功率52%),其中112只大鼠完成筛选过程,筛选出耐药性癫痫大鼠30只(癫痫耐药率26.8%);2)脑细胞外液GABA浓度的变化:海马刺激组8-9AM和8-9PM两个时段的GABA浓度分别为32.69±7.80(μg/ml)和35.76±6.27(μg/ml),各时段的GABA浓度都明显高于对照组的26.58±6.87(μg/ml)和31.50±4.87 (μg/ml),差异具有显著性(P<0.05);3)GABA(A)和GABA(B)受体表达的变化:与耐药对照组比较,海马刺激组GABA(A)受体阳性细胞数无明显变化,但其表达的灰度值降低,提示GABA(A)受体表达增强,GABA(B)受体阳性细胞数增多、灰度值降低,表明GABA(B)受体表达增强,差异具有显著性(P<0.05);4)荧光定量PCR结果表明,海马刺激组GABA(A)和GABA(B)受体mRNA的ΔCt值和2(△△Ct)分别为4.180±0.386和1.120±0.324,与耐药对照组比较,其表达均明显增强(P<0.05);5)膜片钳全细胞记录观察结果表明,海马刺激组钠通道电流峰值及激活曲线向去极化方向偏移,失活曲线向超极化方向偏移,钠通道失活后恢复时间延长。
     结论:海马电刺激可以增加耐药性颞叶癫痫大鼠脑细胞外液GABA浓度,增加脑组织GABA(A)和GABA(B)受体的含量,增加GABA(A)和GABA(B)受体mRNA的表达,并可降低脑细胞兴奋性,减少癫痫性电活动的产生。
Objective:To establish a multi-drug resistant model of temporal lobe epilepsy, and the extracellular levels of GABA, the expression of GABA(A) and GABA(B) receptors, the mRNA expression of GABA(A) and GABA(B) receptors, the sodium current of pyramidal neurons in CA1 areas of the hippocampus were used as indexes to observe the effect of hippocampal stimulation on pharmacoresistant epileptic rats.
     Methods:Two hundreds and thirty Wistar rats were selected to prepare the amygdaloid kindled model of epilepsy by chronic stimulation of amygaloid basal lateral nucleus. After the kindled model of epilepsy was prepared successfully, pharmacoresistant epileptic rats were selected according their response to phenobabital and phenytoin. The selected pharmacoresistant epileptic rats were divided into a hippocampal stimulation group and a pharmacoresistant control group, and the following experiments were performed.1) Extracellular fluid were collected by microdialysis and the samples were used to determine the levels of GABA by HPHC method after hippocampal stimulation;2) Immunohistochemical method was used to detect the expression of GABA(A) and GABA(B) receptors; 3) Real-time PCR were used to detect and quantitate the expression of GABA(A) and GABA(B) mRNA; 4) The whole-cell recording technique by patch-clamp was used to observe the changes of sodium current of hippocampal pyramidal neurons.
     Results:A total of 120 rats were kindled successfully in all the 230 Wistar rats, the rate of kindling was 52%. Thirty pharmacoresistant epileptic rats were selected from the kindled model by their responses to phenobabital and phenytion. The pharmacoresistant epileptic rats in hippocampal stimulation group underwent stimulation with low frequency for two weeks and compared with the pharmacoresistant control group. The results were as follows:The extracellular level of GABA was increased in different stages as compared with the control group; The up-regulation of GABA(A) and GABA(B) receptors were observed, also the expression of GABA(A) and GABA(B) receptor mRNA, a significant difference was noted as compared with the pharmacoresistant control group; The sodium current of hippocampal pyramidal neurons in CA1 areas was inhibited by hippocampal stimulation.
     Conclusions:Hippocampal stimulation might up-regulate the expression of GABA(A) and GABA(B) receptors, increase the extracellular levels of GABA in brain tissues, and inhibit the sodium channel current of pyramidal neurons in CA1 areas of hippocampus. The mechanism of hippocampal stimulation in the treatment of pharmacoresistant epilepsy might be achieved partly by increasing the function of GABA-ergic system and inhibiting the sodium channel current so as to decrease the excitability of hippocampal neurons.
引文
[1]Zumsteg D, Andrade DM, Wennberg RA. Clinical electrophysiology factors indicative of intractability in patients with temporal lobe epilepsy[J]. Adv Neurol,2006; 97(45-62.
    [2]Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain,2006; 129(Pt 1):18-35.
    [3]Jeub M, Beck H, Siep E, et al. Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats[J]. Neuropharmacology, 2002;42(1):107-116.
    [4]Duncan JS, Sander JW, Sisodiya SM, et al. Adult epilepsy[J]. Lancet,2006; 367(9516):1087-1100.
    [5]Avoli M, Louvel J, Pumain R, et al. Cellular and molecular mechanisms of epilepsy in the human brain[J]. Prog Neurobiol,2005; 77(3):166-200.
    [6]Laschet J, Louvel J, Kurcewicz I, et al. [Cellular mechanisms of the epilepsies:In vitro studies on human tissue][J]. Neurochirurgie,2008; 54(3):141-147.
    [7]Stables JP, Bertram E, Dudek FE, et al. Therapy discovery for pharmacoresistant epilepsy and for disease-modifying therapeutics:summary of the NIH/NINDS/AES models Ⅱ workshop[J]. Epilepsia,2003; 44(12):1472-1478.
    [8]Bethmann K, Fritschy JM, Brandt C, et al. Antiepileptic drug resistant rats differ from drug responsive rats in GABA A receptor subunit expression in a model of temporal lobe epilepsy[J]. Neurobiol Dis,2008; 31(2):169-187.
    [9]Billinton A, Baird VH, Thom M, et al. GABA(B) receptor autoradiography in hippocampal sclerosis associated with human temporal lobe epilepsy [J]. Br J Pharmacol, 2001; 132(2):475-480.
    [10]Merlo D, Mollinari C, Inaba Y, et al. Reduced GABAB receptor subunit expression and paired-pulse depression in a genetic model of absence seizures[J]. Neurobiol Dis,2007; 25(3):631-641.
    [11]D'Antuono M, Louvel J, Kohling R, et al. GABAA receptor-dependent synchronization leads to ictogenesis in the human dysplastic cortex[J]. Brain,2004; 127(Pt 7):1626-1640.
    [12]Cuellar-Herrera M, Velasco M, Velasco F, et al. Evaluation of GABA system and cell damage in parahippocampus of patients with temporal lobe epilepsy showing antiepileptic effects after subacute electrical stimulation[J]. Epilepsia,2004; 45(5):459-466.
    [13]Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy[J]. J Neurosci,2006; 26(44):11342-11346.
    [14]Billinton A, Baird VH, Thom M, et al. GABA(B(1)) mRNA expression in hippocampal sclerosis associated with human temporal lobe epilepsy[J]. Brain Res Mol Brain Res, 2001; 86(1-2):84-89.
    [15]Kantrowitz JT, Francis NN, Salah A, et al. Synaptic depolarizing GABA Response in adults is excitatory and proconvulsive when GABAB receptors are blocked[J]. J Neurophysiol,2005; 93(5):2656-2667.
    [16]Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy[J]. Ann Neurol,2003; 53(4):469-479.
    [17]Jandova K, Pasler D, Antonio LL, et al. Carbamazepine-resistance in the epileptic dentate gyrus of human hippocampal slices[J]. Brain,2006; 129(Pt 12):3290-3306.
    [18]Schaub C, Uebachs M, Beck H. Diminished response of CA1 neurons to antiepileptic drugs in chronic epilepsy[J]. Epilepsia,2007; 48(7):1339-1350.
    [19]Freeman FG, Jarvis MF. The effect of interstimulation interval on the assessment and stability of kindled seizure thresholds[J]. Brain Res Bull,1981; 7(6):629-633.
    [20]Racine RJ. Modification of seizure activity by electrical stimulation. I. After-discharge threshold[J]. Electroencephalogr Clin Neurophysiol,1972; 32(3):269-279.
    [21]Brandt C, Bethmann K, Gastens AM, et al. The multidrug transporter hypothesis of drug resistance in epilepsy:Proof-of-principle in a rat model of temporal lobe epilepsy [J]. Neurobiol Dis,2006; 24(1):202-211.
    [22]Loscher W, Fassbender CP, Gram L, et al. Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method:correlation between clinical response to vigabatrin and increase in plasma GABA[J]. Epilepsy Res,1993; 14(3):245-255.
    [23]Hoffmann K, Loscher W. Upregulation of brain expression of P-glycoprotein in MRP2-deficient TR(-) rats resembles seizure-induced up-regulation of this drug efflux transporter in normal rats[J]. Epilepsia,2007; 48(4):631-645.
    [24]Kumar SS, Jin X, Buckmaster PS, et al. Recurrent circuits in layer Ⅱ of medial entorhinal cortex in a model of temporal lobe epilepsy[J]. J Neurosci,2007; 27(6):1239-1246.
    [25]Bethmann K, Brandt C, Loscher W. Resistance to phenobarbital extends to phenytoin in a rat model of temporal lobe epilepsy[J]. Epilepsia,2007; 48(4):816-826.
    [26]Volk HA, Loscher W. Multidrug resistance in epilepsy:rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures[J]. Brain,2005; 128(Pt6):1358-1368.
    [27]Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters[J]. Nat Rev Neurosci,2005; 6(8):591-602.
    [28]Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases[J]. Prog Neurobiol,2005; 76(1):22-76.
    [29]Schmidt D, Loscher W. New developments in antiepileptic drug resistance:an integrative view[J]. Epilepsy Curr,2009; 9(2):47-52.
    [30]Teichgraber LA, Lehmann TN, Meencke HJ, et al. Impaired function of GABA(B) receptors in tissues from pharmacoresistant epilepsy patients[J]. Epilepsia,2009.
    [31]Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development[J]. Neurotherapeutics,2007; 4(1):18-61.
    [32]Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs[J]. Nat Rev Neurosci, 2004; 5(7):553-564.
    [33]Rudolph U, Mohler H. GABA-based therapeutic approaches:GAB A A receptor subtype functions[J]. Curr Opin Pharmacol,2006; 6(1):18-23.
    [34]Rogawski MA, Bazil CW. New molecular targets for antiepileptic drugs:alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels[J]. Curr Neurol Neurosci Rep,2008; 8(4):345-352.
    [35]Volk HA, Arabadzisz D, Fritschy JM, et al. Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and GABA(A) receptor ligand binding in a model of temporal lobe epilepsy[J]. Neurobiol Dis,2006; 21(3):633-646.
    [1]Schmidt D, Loscher W. Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms[J]. Epilepsia,2005; 46(6):858-877.
    [2]Pollo C, Villemure JG. Rationale, mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy[J]. Acta Neurochir Suppl,2007; 97(Pt2):311-320.
    [3]Jeub M, Beck H, Siep E, et al. Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats[J]. Neuropharmacology,2002; 42(1):107-116.
    [4]Zentner J. Surgical treatment of epilepsies[J]. Acta Neurochir Suppl,2002; 84(27-35.
    [5]Velasco F, Velasco M, Jimenez F, et al. Predictors in the treatment of difficult-to-control seizures by electrical stimulation of the centromedian thalamic nucleus[J]. Neurosurgery,2000; 47(2):295-304; discussion 304-295.
    [6]Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions.1957[J]. J Neuropsychiatry Clin Neurosci,2000; 12(1):103-113.
    [7]Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions[J]. J Neurol Neurosurg Psychiatry,1957; 20(1):11-21.
    [8]Hodaie M, Wennberg RA, Dostrovsky JO, et al. Chronic anterior thalamus stimulation for intractable epilepsy[J]. Epilepsia,2002; 43(6):603-608.
    [9]Hamani C, Ewerton FI, Bonilha SM, et al. Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus[J]. Neurosurgery,2004; 54(1):191-195; discussion 195-197.
    [10]Fisher RS, Uematsu S, Krauss GL, et al. Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures[J]. Epilepsia,1992; 33(5):841-851.
    [11]Velasco F, Velasco M, Jimenez F, et al. Stimulation of the central median thalamic nucleus for epilepsy[J]. Stereotact Funct Neurosurg,2001; 77(1-4):228-232.
    [12]van Rijckevorsel K, Abu Serieh B, de Tourtchaninoff M, et al. Deep EEG recordings of the mammillary body in epilepsy patients[J]. Epilepsia,2005; 46(5):781-785.
    [13]Benabid AL, Minotti L, Koudsie A, et al. Antiepileptic effect of high-frequency stimulation of the subthalamic nucleus (corpus luysi) in a case of medically intractable epilepsy caused by focal dysplasia:a 30-month follow-up:technical case report[J]. Neurosurgery,2002; 50(6):1385-1391; discussion 1391-1382.
    [14]Shon YM, Lee KJ, Kim HJ, et al. Effect of chronic deep brain stimulation of the subthalamic nucleus for frontal lobe epilepsy:subtraction SPECT analysis[J]. Stereotact Funct Neurosurg, 2005; 83(2-3):84-90.
    [15]Velasco M, Velasco F, Velasco AL, et al. Acute and chronic electrical stimulation of the centromedian thalamic nucleus:modulation of reticulo-cortical systems and predictor factors for generalized seizure control[J]. Arch Med Res,2000; 31(3):304-315.
    [16]Hamani C, Andrade D, Hodaie M, et al. Deep brain stimulation for the treatment of epilepsy[J]. Int J Neural Syst,2009; 19(3):213-226.
    [17]Lega BC, Halpern CH, Jaggi JL, et al. Deep brain stimulation in the treatment of refractory epilepsy:Update on current data and future directions[J]. Neurobiol Dis,2009.
    [18]Schulze-Bonhage A. Deep brain stimulation:a new approach to the treatment of epilepsy[J]. Dtsch Arztebl Int,2009; 106(24):407-412.
    [19]Weiss SR, Eidsath A, Li XL, et al. Quenching revisited:low level direct current inhibits amygdala-kindled seizures[J]. Exp Neurol,1998; 154(1):185-192.
    [20]Weiss SR, Li XL, Rosen JB, et al. Quenching:inhibition of development and expression of amygdala kindled seizures with low frequency stimulation[J]. Neuroreport,1995; 6(16):2171-2176.
    [21]Wyckhuys T, De Smedt T, Claeys P, et al. High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats[J]. Epilepsia,2007; 48(8):1543-1550.
    [22]Wyckhuys T, Raedt R, Vonck K, et al. Comparison of hippocampal Deep Brain Stimulation with high (130Hz) and low frequency (5Hz) on afterdischarges in kindled rats[J]. Epilepsy Res; 88(2-3):239-246.
    [23]Tellez-Zenteno JF, McLachlan RS, Parrent A, et al. Hippocampal electrical stimulation in mesial temporal lobe epilepsy[J]. Neurology,2006; 66(10):1490-1494.
    [24]Yamamoto J, Ikeda A, Satow T, et al. Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy[J]. Epilepsia,2002; 43(5):491-495.
    [25]Yamamoto J, Ikeda A, Kinoshita M, et al. Low-frequency electric cortical stimulation decreases interictal and ictal activity in human epilepsy[J]. Seizure,2006; 15(7):520-527.
    [26]Velasco M, Velasco F, Velasco AL, et al. Subacute electrical stimulation of the hippocampus blocks intractable temporal lobe seizures and paroxysmal EEG activities[J]. Epilepsia,2000; 41(2):158-169.
    [27]Boon P, Vonck K, De Herdt V, et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy[J]. Epilepsia,2007; 48(8):1551-1560.
    [28]Van Roost D, Boon P, Vonck K, et al. Neurosurgical aspects of temporal deep brain stimulation for epilepsy[J]. Acta Neurochir Suppl,2007; 97(Pt 2):333-336.
    [29]Velasco AL, Velasco F, Velasco M, et al. The role of neuromodulation of the hippocampus in the treatment of intractable complex partial seizures of the temporal lobe[J]. Acta Neurochir Suppl,2007; 97(Pt 2):329-332.
    [30]Velasco AL, Velasco F, Velasco M, et al. Electrical stimulation of the hippocampal epileptic foci for seizure control:a double-blind, long-term follow-up study[J]. Epilepsia,2007; 48(10):1895-1903.
    [31]Velasco F, Velasco M, Velasco AL, et al. Electrical stimulation for epilepsy:stimulation of hippocampal foci[J]. Stereotact Funct Neurosurg,2001; 77(1-4):223-227.
    [32]Vonck K, Boon P, Achten E, et al. Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy[J]. Ann Neurol,2002; 52(5):556-565.
    [33]Vonck K, Boon P, Goossens L, et al. Neurostimulation for refractory epilepsy[J]. Acta Neurol Belg,2003; 103(4):213-217.
    [34]Vonck K, Boon P, Claeys P, et al. Long-term deep brain stimulation for refractory temporal lobe epilepsy[J]. Epilepsia,2005; 46 Suppl 5(98-99.
    [35]Vonck K, Boon P, Van Roost D. Anatomical and physiological basis and mechanism of action of neurostimulation for epilepsy[J]. Acta Neurochir Suppl,2007; 97(Pt 2):321-328.
    [36]Rogawski MA, Bazil CW. New molecular targets for antiepileptic drugs:alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels[J]. Curr Neurol Neurosci Rep,2008; 8(4):345-352.
    [37]Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs[J]. Nat Rev Neurosci, 2004; 5(7):553-564.
    [38]Rudolph U, Mohler H. GABA-based therapeutic approaches:GABAA receptor subtype functions[J]. Curr Opin Pharmacol,2006; 6(1):18-23.
    [39]Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development[J]. Neurotherapeutics,2007; 4(1):18-61.
    [40]Dudek FE, Sutula TP. Epileptogenesis in the dentate gyrus:a critical perspective[J]. Prog Brain Res,2007; 163(755-773.
    [41]Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy [J]. J Neurosci,2006; 26(44):11342-11346.
    [42]de Lanerolle NC, Kim JH, Robbins RJ, et al. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy[J]. Brain Res,1989; 495(2):387-395.
    [43]Cuellar-Herrera M, Velasco M, Velasco F, et al. Evaluation of GABA system and cell damage in parahippocampus of patients with temporal lobe epilepsy showing antiepileptic effects after subacute electrical stimulation[J]. Epilepsia,2004; 45(5):459-466.
    [44]Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain,2006; 129(Pt 1):18-35.
    [45]Bethmann K, Fritschy JM, Brandt C, et al. Antiepileptic drug resistant rats differ from drug responsive rats in GABA A receptor subunit expression in a model of temporal lobe epilepsy[J]. Neurobiol Dis,2008; 31(2):169-187.
    [46]Volk HA, Arabadzisz D, Fritschy JM, et al. Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and GABA(A) receptor ligand binding in a model of temporal lobe epilepsy[J]. Neurobiol Dis,2006; 21(3):633-646.
    [47]D'Antuono M, Louvel J, Kohling R, et al. GABAA receptor-dependent synchronization leads to ictogenesis in the human dysplastic cortex[J]. Brain,2004; 127(Pt 7):1626-1640.
    [48]Billinton A, Baird VH, Thom M, et al. GABA(B(1)) mRNA expression in hippocampal sclerosis associated with human temporal lobe epilepsy[J]. Brain Res Mol Brain Res,2001; 86(1-2):84-89.
    [49]Billinton A, Baird VH, Thom M, et al. GABA(B) receptor autoradiography in hippocampal sclerosis associated with human temporal lobe epilepsy [J]. Br J Pharmacol,2001; 132(2):475-480.
    [50]Kantrowitz JT, Francis NN, Salah A, et al. Synaptic depolarizing GABA Response in adults is excitatory and proconvulsive when GABAB receptors are blocked[J]. J Neurophysiol,2005; 93(5):2656-2667.
    [51]Teichgraber LA, Lehmann TN, Meencke HJ, et al. Impaired function of GABA(B) receptors in tissues from pharmacoresistant epilepsy patients[J]. Epilepsia.2009.
    [52]Merlo D, Mollinari C, Inaba Y, et al. Reduced GABAB receptor subunit expression and paired-pulse depression in a genetic model of absence seizures[J]. Neurobiol Dis,2007; 25(3):631-641.
    [53]Benito-Leon J, Louis ED. Essential tremor:emerging views of a common disorder[J]. Nat Clin Pract Neurol,2006; 2(12):666-678; quiz 662p following 691.
    [54]Windels F, Bruet N, Poupard A, et al. Influence of the frequency parameter on extracellular glutamate and gamma-aminobutyric acid in substantia nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats[J]. J Neurosci Res,2003; 72(2):259-267.
    [55]Singer HS, Minzer K. Neurobiology of Tourette's syndrome:concepts of neuroanatomic localization and neurochemical abnormalities[J]. Brain Dev,2003; 25 Suppl 1(S70-84.
    [56]Lee KH, Chang SY, Roberts DW, et al. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus[J]. J Neurosurg,2004; 101(3):511-517.
    [57]Velasco AL, Boleaga B, Brito F, et al. Absolute and relative predictor values of some non-invasive and invasive studies for the outcome of anterior temporal lobectomy[J]. Arch Med Res,2000;31(1):62-74.
    [58]Velasco M, Velasco F, Velasco AL. Centromedian-thalamic and hippocampal electrical stimulation for the control of intractable epileptic seizures[J]. J Clin Neurophysiol,2001; 18(6):495-513.
    [59]Wyckhuys T, Raedt R, Vonck K, et al. Comparison of hippocampal Deep Brain Stimulation with high (130Hz) and low frequency (5Hz) on afterdischarges in kindled rats[J]. Epilepsy Res,2009.
    [60]Chkhenkeli SA, Sramka M, Lortkipanidze GS, et al. Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy[J]. Clin Neurol Neurosurg,2004; 106(4):318-329.
    [61]Gangisetty O, Reddy DS. The optimization of TaqMan real-time RT-PCR assay for transcriptional profiling of GABA-A receptor subunit plasticity[J]. J Neurosci Methods,2009; 181(1):58-66.
    [62]Misgeld U, Bijak M, Jarolimek W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system[J]. Prog Neurobiol,1995; 46(4):423-462.
    [63]Cryan JF, Kelly PH, Chaperon F, et al. Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine):anxiolytic-like activity without side effects associated with baclofen or benzodiazepines[J]. J Pharmacol Exp Ther,2004; 310(3):952-963.
    [64]Furtinger S, Bettler B, Sperk G. Altered expression of GABAB receptors in the hippocampus after kainic-acid-induced seizures in rats[J]. Brain Res Mol Brain Res,2003; 113(1-2):107-115.
    [65]Princivalle AP, Duncan JS, Thom M, et al. Studies of GABA(B) receptors labelled with [(3)H]-CGP62349 in hippocampus resected from patients with temporal lobe epilepsy[J]. Br J Pharmacol,2002; 136(8):1099-1106.
    [1]Blumenfeld H, Lampert A, Klein JP, et al. Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis[J]. Epilepsia,2009; 50(1):44-55.
    [2]Rogawski MA, Bazil CW. New molecular targets for antiepileptic drugs:alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels[J]. Curr Neurol Neurosci Rep,2008; 8(4):345-352.
    [3]Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs[J]. Nat Rev Neurosci, 2004; 5(7):553-564.
    [4]Rudolph U, Mohler H. GABA-based therapeutic approaches:GABAA receptor subtype functions[J]. Curr Opin Pharmacol,2006; 6(1):18-23.
    [5]Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development[J]. Neurotherapeutics,2007; 4(1):18-61.
    [6]Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy[J]. Ann Neurol,2003; 53(4):469-479.
    [7]Jandova K, Pasler D, Antonio LL, et al. Carbamazepine-resistance in the epileptic dentate gyrus of human hippocampal slices[J]. Brain,2006; 129(Pt 12):3290-3306.
    [8]Jeub M, Beck H, Siep E, et al. Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats[J]. Neuropharmacology,2002; 42(1):107-116.
    [9]Schmidt D, Loscher W. Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms[J]. Epilepsia,2005; 46(6):858-877.
    [10]Pollo C, Villemure JG. Rationale, mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy[J]. Acta Neurochir Suppl,2007; 97(Pt2):311-320.
    [11]Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions.1957[J]. J Neuropsychiatry Clin Neurosci,2000; 12(1):103-113.
    [12]Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions[J]. J Neurol Neurosurg Psychiatry,1957; 20(1):11-21.
    [13]Weiss SR, Eidsath A, Li XL, et al. Quenching revisited:low level direct current inhibits amygdala-kindled seizures[J].Exp Neurol,1998; 154(1):185-192.
    [14]Weiss SR, Li XL, Rosen JB, et al. Quenching:inhibition of development and expression of amygdala kindled seizures with low frequency stimulation[J]. Neuroreport,1995; 6(16):2171-2176.
    [15]Wyckhuys T, De Smedt T, Claeys P, et al. High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats[J]. Epilepsia,2007; 48(8):1543-1550.
    [16]Wyckhuys T, Raedt R, Vonck K, et al. Comparison of hippocampal Deep Brain Stimulation with high (130Hz) and low frequency (5Hz) on afterdischarges in kindled rats[J]. Epilepsy Res; 88(2-3):239-246.
    [17]Tellez-Zenteno JF, McLachlan RS, Parrent A, et al. Hippocampal electrical stimulation in mesial temporal lobe epilepsy[J]. Neurology,2006; 66(10):1490-1494.
    [18]Yamamoto J, Ikeda A, Satow T, et al. Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy[J]. Epilepsia,2002; 43(5):491-495.
    [19]Yamamoto J, Ikeda A, Kinoshita M, et al. Low-frequency electric cortical stimulation decreases interictal and ictal activity in human epilepsy[J]. Seizure,2006; 15(7):520-527.
    [20]Velasco M, Velasco F, Velasco AL, et al. Subacute electrical stimulation of the hippocampus blocks intractable temporal lobe seizures and paroxysmal EEG activities[J]. Epilepsia,2000; 41(2):158-169.
    [21]Velasco F, Velasco M, Velasco AL, et al. Electrical stimulation for epilepsy:stimulation of hippocampal foci[J]. Stereotact Funct Neurosurg,2001; 77(1-4):223-227.
    [22]Vonck K, Boon P, Goossens L, et al. Neurostimulation for refractory epilepsy[J]. Acta Neurol Belg,2003; 103(4):213-217.
    [23]Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain,2006; 129(Pt1):18-35.
    [24]Schaub C, Uebachs M, Beck H. Diminished response of CA1 neurons to antiepileptic drugs in chronic epilepsy[J]. Epilepsia,2007; 48(7):1339-1350.
    [25]Horn EM, Waldrop TG. Hypoxic augmentation of fast-inactivating and persistent sodium currents in rat caudal hypothalamic neurons[J]. J Neurophysiol,2000; 84(5):2572-2581.
    [26]Carter AJ, Grauert M, Pschorn U, et al. Potent blockade of sodium channels and protection of brain tissue from ischemia by BⅢ 890 CL[J]. Proc Natl Acad Sci U S A,2000; 97(9):4944-4949.
    [27]Goldin AL. Diversity of mammalian voltage-gated sodium channels[J]. Ann N Y Acad Sci, 1999; 868(38-50.
    [28]Goldin AL, Barchi RL, Caldwell JH, et al. Nomenclature of voltage-gated sodium channels[J]. Neuron,2000; 28(2):365-368.
    [29]Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels[J]. Pharmacol Rev,2005; 57(4):397-409.
    [30]Remy S, Urban BW, Elger CE, et al. Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocampal neurons of control and chronically epileptic rats[J]. Eur J Neurosci, 2003; 17(12):2648-2658.
    [31]Ketelaars SO, Gorter JA, van Vliet EA, et al. Sodium currents in isolated rat CA1 pyramidal and dentate granule neurones in the post-status epilepticus model of epilepsy [J]. Neuroscience,2001; 105(1):109-120.
    [32]Ellerkmann RK, Remy S, Chen J, et al. Molecular and functional changes in voltage-dependent Na(+) channels following pilocarpine-induced status epilepticus in rat dentate granule cells[J]. Neuroscience,2003; 119(2):323-333.
    [33]Avanzini G, Franceschetti S. Cellular biology of epileptogenesis[J]. Lancet Neurol,2003; 2(1):33-42.
    [34]Agrawal N, Alonso A, Ragsdale DS. Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy[J]. Epilepsia,2003; 44(12):1601-1604.
    [1]Berg AT, Kelly MM. Defining intractability:comparisons among published definitions[J]. Epilepsia,2006; 47(2):431-436.
    [2]Berg AT. Defining intractable epilepsy[J]. Adv Neurol,2006; 97(5-10.
    [3]Brandt C, Bethmann K, Gastens AM, et al. The multidrug transporter hypothesis of drug resistance in epilepsy:Proof-of-principle in a rat model of temporal lobe epilepsy[J]. Neurobiol Dis,2006; 24(1):202-211.
    [4]Rivers F, O'Brien TJ, Callaghan R. Exploring the possible interaction between anti-epilepsy drugs and multidrug efflux pumps; in vitro observations[J]. Eur J Pharmacol,2008; 598(1-3):1-8.
    [5]Luna-Tortos C, Fedrowitz M, Loscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein[J]. Neuropharmacology,2008; 55(8):1364-1375.
    [6]Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy[J]. Epilepsia,2005; 46(2):224-235.
    [7]Loscher W. Drug transporters in the epileptic brain[J]. Epilepsia,2007; 48 Suppl 1 (8-13.
    [8]Sisodiya SM. Mechanisms of antiepileptic drug resistance[J]. Curr Opin Neurol,2003; 16(2):197-201.
    [9]Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters[J]. Nat Rev Neurosci,2005; 6(8):591-602.
    [10]Wen T, Liu YC, Yang HW, et al. Effect of 21-day exposure of phenobarbital, carbamazepine and phenytoin on P-glycoprotein expression and activity in the rat brain[J]. J Neurol Sci, 2008; 270(1-2):99-106.
    [11]Rizzi M, Caccia S, Guiso G, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance[J]. J Neurosci,2002; 22(14):5833-5839.
    [12]Dombrowski SM, Desai SY, Marroni M, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy [J]. Epilepsia,2001; 42(12):1501-1506.
    [13]van Vliet EA, van Schaik R, Edelbroek PM, et al. Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats[J]. Epilepsia,2006; 47(4):672-680.
    [14]Tishler DM, Weinberg KI, Hinton DR, et al. MDR1 gene expression in brain of patients with medically intractable epilepsy[J]. Epilepsia,1995; 36(1):1-6.
    [15]Ak H, Ay B, Tanriverdi T, et al. Expression and cellular distribution of multidrug resistance-related proteins in patients with focal cortical dysplasia[J]. Seizure,2007; 16(6):493-503.
    [16]Bialecka M, Hnatyszyn G, Bielicka-Cymerman J, et al. [The effect of MDR1 gene polymorphism in the pathogenesis and the treatment of drug-resistant epilepsy][J]. Neurol Neurochir Pol,2005; 39(6):476-481.
    [17]Jandova K, Pasler D, Antonio LL, et al. Carbamazepine-resistance in the epileptic dentate gyrus of human hippocampal slices[J]. Brain,2006; 129(Pt 12):3290-3306.
    [18]Robey RW, Lazarowski A, Bates SE. P-glycoprotein--a clinical target in drug-refractory epilepsy?[J]. Mol Pharmacol,2008; 73(5):1343-1346.
    [19]Cucullo L, Hossain M, Rapp E, et al. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs[J]. Epilepsia,2007; 48(3):505-516.
    [20]Blumenfeld H, Lampert A, Klein JP, et al. Role of hippocampal sodium channel Navl.6 in kindling epileptogenesis[J]. Epilepsia,2009; 50(1):44-55.
    [21]Rogawski MA, Bazil CW. New molecular targets for antiepileptic drugs:alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels[J]. Curr Neurol Neurosci Rep,2008; 8(4):345-352.
    [22]Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs[J]. Nat Rev Neurosci, 2004; 5(7):553-564.
    [23]Rudolph U, Mohler H. GABA-based therapeutic approaches:GABAA receptor subtype functions[J]. Curr Opin Pharmacol,2006; 6(1):18-23.
    [24]Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development[J]. Neurotherapeutics,2007; 4(1):18-61.
    [25]Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy[J]. Ann Neurol,2003; 53(4):469-479.
    [26]Jeub M, Beck H, Siep E, et al. Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats[J]. Neuropharmacology,2002; 42(1):107-116.
    [27]Dudek FE, Sutula TP. Epileptogenesis in the dentate gyrus:a critical perspective[J]. Prog Brain Res,2007; 163(755-773.
    [28]Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy[J]. J Neurosci,2006; 26(44):11342-11346.
    [29]de Lanerolle NC, Kim JH, Robbins RJ, et al. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy[J]. Brain Res,1989; 495(2):387-395.
    [30]Cuellar-Herrera M, Velasco M, Velasco F, et al. Evaluation of GABA system and cell damage in parahippocampus of patients with temporal lobe epilepsy showing antiepileptic effects after subacute electrical stimulation[J]. Epilepsia,2004; 45(5):459-466.
    [31]Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain,2006; 129(Pt 1):18-35.
    [32]Bethmann K, Fritschy JM, Brandt C, et al. Antiepileptic drug resistant rats differ from drug responsive rats in GABA A receptor subunit expression in a model of temporal lobe epilepsy[J]. Neurobiol Dis,2008; 31(2):169-187.
    [33]Volk HA, Arabadzisz D, Fritschy JM, et al. Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and GABA(A) receptor ligand binding in a model of temporal lobe epilepsy[J]. Neurobiol Dis,2006; 21(3):633-646.
    [34]D'Antuono M, Louvel J, Kohling R, et al. GABAA receptor-dependent synchronization leads to ictogenesis in the human dysplastic cortex[J]. Brain,2004; 127(Pt 7):1626-1640.
    [35]Billinton A, Baird VH, Thom M, et al. GABA(B(1)) mRNA expression in hippocampal sclerosis associated with human temporal lobe epilepsy [J]. Brain Res Mol Brain Res,2001; 86(1-2):84-89.
    [36]Billinton A, Baird VH, Thom M, et al. GABA(B) receptor autoradiography in hippocampal sclerosis associated with human temporal lobe epilepsy[J]. Br J Pharmacol,2001; 132(2):475-480.
    [37]Kantrowitz JT, Francis NN, Salah A, et al. Synaptic depolarizing GABA Response in adults is excitatory and proconvulsive when GABAB receptors are blocked[J]. J Neurophysiol, 2005; 93(5):2656-2667.
    [38]Teichgraber LA, Lehmann TN, Meencke HJ, et al. Impaired function of GABA(B) receptors in tissues from pharmacoresistant epilepsy patients[J]. Epilepsia,2009.
    [39]Merlo D, Mollinari C, Inaba Y, et al. Reduced GABAB receptor subunit expression and paired-pulse depression in a genetic model of absence seizures[J]. Neurobiol Dis,2007; 25(3):631-641.
    [40]Sillanpaa M, Schmidt D. Natural history of treated childhood-onset epilepsy:prospective, long-term population-based study[J]. Brain,2006; 129(Pt 3):617-624.
    [41]Sillanpaa M, Schmidt D. Early seizure frequency and aetiology predict long-term medical outcome in childhood-onset epilepsy[J]. Brain,2009; 132(Pt 4):989-998.
    [42]Hitiris N, Mohanraj R, Norrie J, et al. Predictors of pharmacoresistant epilepsy[J]. Epilepsy Res,2007; 75(2-3):192-196.
    [43]Schmidt D, Loscher W. New developments in antiepileptic drug resistance:an integrative view[J]. Epilepsy Curr,2009; 9(2):47-52.
    [44]Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions[J]. Nat Med,2004; 10(7):685-692.
    [45]Stafstrom CE. Mechanisms of action of antiepileptic drugs:the search for synergy[J]. Curr Opin Neurol;23(2):157-163.
    [46]Keranen T, Holopainen I. [Mechanisms of action and clinical use of antiepileptic drugs][J]. Duodecim,2009; 125(22):2533-2540.
    [47]Luszczki JJ. Third-generation antiepileptic drugs:mechanisms of action, pharmacokinetics and interactions[J]. Pharmacol Rep,2009; 61(2):197-216.
    [48]Johannessen Landmark C. Antiepileptic drugs in non-epilepsy disorders:relations between mechanisms of action and clinical efficacy[J]. CNS Drugs,2008; 22(l):27-47.
    [49]White HS, Smith MD, Wilcox KS. Mechanisms of action of antiepileptic drugs[J]. Int Rev Neurobiol,2007; 81(85-110.
    [50]Czapinski P, Blaszczyk B, Czuczwar SJ. Mechanisms of action of antiepileptic drugs[J]. Curr Top Med Chem,2005; 5(1):3-14.
    [51]Sankar R, Holmes GL. Mechanisms of action for the commonly used antiepileptic drugs: relevance to antiepileptic drug-associated neurobehavioral adverse effects[J]. J Child Neurol, 2004;19 Suppl1(S6-14.
    [52]Angehagen M, Ben-Menachem E, Ronnback L, et al. Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate[J]. Neurochem Res,2003; 28(2):333-340.
    [53]Schmidt D, Loscher W. Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms[J]. Epilepsia,2005; 46(6):858-877.
    [54]Luszczki JJ, Jankiewicz K, Jankiewicz M, et al. Pharmacokinetic and pharmacodynamic interactions of aminophylline and topiramate in the mouse maximal electroshock-induced seizure model[J]. Eur J Pharmacol,2007; 562(1-2):53-59.
    [55]Bialer M, Doose DR, Murthy B, et al. Pharmacokinetic interactions of topiramate[J]. Clin Pharmacokinet,2004; 43(12):763-780.
    [56]Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy:an unblinded randomised controlled trial[J]. Lancet,2007; 369(9566):1000-1015.
    [57]Clusmann H, Kral T, Schramm J. Present practice and perspective of evaluation and surgery for temporal lobe epilepsy[J]. Zentralbl Neurochir,2006; 67(4):165-182.
    [58]Jenssen S, Sperling MR, Tracy JI, et al. Corpus callosotomy in refractory idiopathic generalized epilepsy[J]. Seizure,2006; 15(8):621-629.
    [59]Spencer SS, Schramm J, Wyler A, et al. Multiple subpial transection for intractable partial epilepsy:an international meta-analysis[J]. Epilepsia,2002; 43(2):141-145.
    [60]Pollo C, Villemure JG. Rationale, mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy[J]. Acta Neurochir Suppl,2007; 97(Pt2):311-320.
    [61]Velasco AL, Velasco F, Velasco M, et al. The role of neuromodulation of the hippocampus in the treatment of intractable complex partial seizures of the temporal lobe[J]. Acta Neurochir Suppl,2007; 97(Pt 2):329-332.
    [62]Zentner J. Surgical treatment of epilepsies [J]. Acta Neurochir Suppl,2002; 84(27-35.
    [63]Velasco F, Velasco M, Jimenez F, et al. Predictors in the treatment of difficult-to-control seizures by electrical stimulation of the centromedian thalamic nucleus[J]. Neurosurgery, 2000; 47(2):295-304; discussion 304-295.
    [64]Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions.1957[J]. J Neuropsychiatry Clin Neurosci,2000; 12(1):103-113.
    [65]Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions[J]. J Neurol Neurosurg Psychiatry,1957; 20(1):11-21.
    [66]Hodaie M, Wennberg RA, Dostrovsky JO, et al. Chronic anterior thalamus stimulation for intractable epilepsy[J]. Epilepsia,2002; 43(6):603-608.
    [67]Hamani C, Ewerton Fl, Bonilha SM, et al. Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus[J]. Neurosurgery,2004; 54(1):191-195; discussion 195-197.
    [68]Fisher RS, Uematsu S, Krauss GL, et al. Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures[J]. Epilepsia,1992; 33(5):841-851.
    [69]Velasco F, Velasco M, Jimenez F, et al. Stimulation of the central median thalamic nucleus for epilepsy[J]. Stereotact Funct Neurosurg,2001; 77(1-4):228-232.
    [70]van Rijckevorsel K, Abu Serieh B, de Tourtchaninoff M, et al. Deep EEG recordings of the mammillary body in epilepsy patients[J]. Epilepsia,2005; 46(5):781-785.
    [71]Benabid AL, Minotti L, Koudsie A, et al. Antiepileptic effect of high-frequency stimulation of the subthalamic nucleus (corpus luysi) in a case of medically intractable epilepsy caused by focal dysplasia:a 30-month follow-up:technical case report[J]. Neurosurgery,2002; 50(6):1385-1391; discussion 1391-1382.
    [72]Shon YM, Lee KJ, Kim HJ, et al. Effect of chronic deep brain stimulation of the subthalamic nucleus for frontal lobe epilepsy:subtraction SPECT analysis[J]. Stereotact Funct Neurosurg,2005; 83(2-3):84-90.
    [73]Velasco M, Velasco F, Velasco AL, et al. Acute and chronic electrical stimulation of the centromedian thalamic nucleus:modulation of reticulo-cortical systems and predictor factors for generalized seizure control[J]. Arch Med Res,2000; 31(3):304-315.
    [74]Bressand K, Dematteis M, Ming Gao D, et al. Superior colliculus firing changes after lesion or electrical stimulation of the subthalamic nucleus in the rat[J]. Brain Res,2002; 943(1):93-100.
    [75]Bragin A, Wilson CL, Engel J, Jr. Rate of interictal events and spontaneous seizures in epileptic rats after electrical stimulation of hippocampus and its afferents[J]. Epilepsia,2002; 43 Suppl 5(81-85.
    [76]Hamani C, Andrade D, Hodaie M, et al. Deep brain stimulation for the treatment of epilepsy[J]. Int J Neural Syst,2009; 19(3):213-226.
    [77]Lega BC, Halpern CH, Jaggi JL, et al. Deep brain stimulation in the treatment of refractory epilepsy:Update on current data and future directions[J]. Neurobiol Dis,2009.
    [78]Schulze-Bonhage A. Deep brain stimulation:a new approach to the treatment of epilepsy[J]. Dtsch Arztebl Int,2009; 106(24):407-412.
    [79]Weiss SR, Eidsath A, Li XL, et al. Quenching revisited:low level direct current inhibits amygdala-kindled seizures[J]. Exp Neurol,1998; 154(1):185-192.
    [80]Weiss SR, Li XL, Rosen JB, et al. Quenching:inhibition of development and expression of amygdala kindled seizures with low frequency stimulation[J]. Neuroreport,1995; 6(16):2171-2176.
    [81]Wyckhuys T, De Smedt T, Claeys P, et al. High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats[J]. Epilepsia,2007; 48(8):1543-1550.
    [82]Wyckhuys T, Raedt R, Vonck K, et al. Comparison of hippocampal Deep Brain Stimulation with high (130Hz) and low frequency (5Hz) on afterdischarges in kindled rats[J]. Epilepsy Res; 88(2-3):239-246.
    [83]Tellez-Zenteno JF, McLachlan RS, Parrent A, et al. Hippocampal electrical stimulation in mesial temporal lobe epilepsy[J]. Neurology,2006; 66(10):1490-1494.
    [84]Yamamoto J, Ikeda A, Satow T, et al. Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy[J]. Epilepsia,2002; 43(5):491-495.
    [85]Yamamoto J, Ikeda A, Kinoshita M, et al. Low-frequency electric cortical stimulation decreases interictal and ictal activity in human epilepsy[J]. Seizure,2006; 15(7):520-527.
    [86]Velasco M, Velasco F, Velasco AL, et al. Subacute electrical stimulation of the hippocampus blocks intractable temporal lobe seizures and paroxysmal EEG activities[J]. Epilepsia,2000; 41(2):158-169.
    [87]Velasco AL, Velasco M, Velasco F, et al. Subacute and chronic electrical stimulation of the hippocampus on intractable temporal lobe seizures:preliminary report[J]. Arch Med Res, 2000; 31(3):316-328.
    [88]Vonck K, Boon P, Achten E, et al. Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy[J]. Ann Neurol,2002; 52(5):556-565.
    [89]Albensi BC, Ata G, Schmidt E, et al. Activation of long-term synaptic plasticity causes suppression of epileptiform activity in rat hippocampal slices[J]. Brain Res,2004; 998(1):56-64.
    [90]Benito-Leon J, Louis ED. Essential tremor:emerging views of a common disorder[J]. Nat Clin Pract Neurol,2006; 2(12):666-678; quiz 662p following 691.
    [91]Windels F, Bruet N, Poupard A, et al. Influence of the frequency parameter on extracellular glutamate and gamma-aminobutyric acid in substantia nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats[J]. J Neurosci Res,2003; 72(2):259-267.
    [92]Singer HS, Minzer K. Neurobiology of Tourette's syndrome:concepts of neuroanatomic localization and neurochemical abnormalities[J]. Brain Dev,2003; 25 Suppl 1(S70-84.
    [93]Lee KH, Chang SY, Roberts DW, et al. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus[J]. J Neurosurg,2004; 101(3):511-517.
    [94]Velasco AL, Boleaga B, Brito F, et al. Absolute and relative predictor values of some non-invasive and invasive studies for the outcome of anterior temporal lobectomy[J]. Arch Med Res,2000;31(1):62-74.
    [95]Velasco M, Velasco F, Velasco AL. Centromedian-thalamic and hippocampal electrical stimulation for the control of intractable epileptic seizures[J]. J Clin Neurophysiol,2001; 18(6):495-513.
    [96]Boon P, Vonck K, De Herdt V, et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy[J]. Epilepsia,2007; 48(8):1551-1560.
    [97]You SJ, Kang HC, Kim HD, et al. Vagus nerve stimulation in intractable childhood epilepsy: a Korean multicenter experience[J]. J Korean Med Sci,2007; 22(3):442-445.
    [98]Kawai K. [Less invasive treatment of intractable epilepsy-vagus nerve stimulation and stereotactic radiosurgery][J]. Brain Nerve,2007; 59(4):299-311.
    [99]Thompson K. Transplantation of GABA-producing cells for seizure control in models of temporal lobe epilepsy[J]. Neurotherapeutics,2009; 6(2):284-294.
    [100]Nolte MW, Loscher W, Herden C, et al. Benefits and risks of intranigral transplantation of GABA-producing cells subsequent to the establishment of kindling-induced seizures[J]. Neurobiol Dis,2008; 31(3):342-354.
    [101]Thompson KW, Suchomelova LM. Transplants of cells engineered to produce GABA suppress spontaneous seizures[J]. Epilepsia,2004; 45(1):4-12.
    [102]Schauble B, Cascino GD, Pollock BE, et al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations[J]. Neurology,2004; 63(4):683-687.
    [103]Huh SK, Lee KC, Lee KS, et al. Selection of treatment modalities for cerebral arteriovenous malformations:a retrospective analysis of 348 consecutive cases[J]. J Clin Neurosci,2000; 7(5):429-433.
    [104]Pollock BE, Lunsford LD, Kondziolka D, et al. Patient outcomes after stereotactic radiosurgery for "operable" arteriovenous malformations[J]. Neurosurgery,1994; 35(1):1-7; discussion 7-8.
    [105]Barbaro NM, Quigg M, Broshek DK, et al. A multicenter, prospective pilot study of gamma knife radiosurgery for mesial temporal lobe epilepsy:seizure response, adverse events, and verbal memory[J]. Ann Neurol,2009; 65(2):167-175.
    [106]Regis J, Rey M, Bartolomei F, et al. Gamma knife surgery in mesial temporal lobe epilepsy:a prospective multicenter study[J]. Epilepsia,2004; 45(5):504-515.
    [107]Hayashi M, Regis J, Hori T. [Current treatment strategy with gamma knife surgery for
    mesial temporal lobe epilepsy][J]. No Shinkei Geka,2003; 31(2):141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700