连续作业与睡眠剥夺对认知功能的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今社会,越来越多的人不得不面对长时间连续作业,甚至牺牲自然睡眠(即睡眠剥夺)连续作业,如连续军事作业,连续机动车(船)驾驶等。长时间连续作业往往导致脑疲劳。已有证据表明,脑疲劳对作业者认知功能和行为反应能力有严重损害作用,而神经元活动代谢产物---腺苷对神经元活动的抑制在脑疲劳过程中,扮演着重要的角色。揭示连续作业与睡眠剥夺对认知功能影响的机制,将有助于对抗连续作业所致的疲劳,提高连续作业能力。
     本实验在观察连续作业和睡眠剥夺对人认知功能影响的基础上,首先使用脑功能核磁共振成像(functional magnetic resonance imaging,fMRI)技术分析了睡眠剥夺前后数字记忆编码、维持和提取过程的相关激活脑区出现的激活变化规律,然后运用离体脑片膜片钳全细胞记录技术,在可视条件下研究了活动依赖的细胞代谢产物腺苷对内嗅皮层II层星形神经元的兴奋性调节作用及其离子通道机制和突触机制。主要结果如下:
     1.连续体力作业和睡眠剥夺对人脑认知功能的影响
     通过数字划销测试、数字搜索测试和数字符号转换测试三个量表,检测连续体力作业3天,30名作业人员,以及睡眠剥夺48小时,6名受试人员注意力和记忆力等脑认知功能的变化。
     (1)连续体力作业对人脑认知功能的影响
     数字划销测试结果显示,连续作业第1天划对数为7.73±2.41,第3天下降至4.36±1.92,净分从第1天的4.99±2.03,降至第3天2.42±2.32,差异显著(n=30, P<0.05)。连续体力作业第1天划错数是0.13±1.17、失误率是32.43±15.65%,第3天划错数为0.33±1.06,失误率达60.73±25.67%。数字搜索测试结果显示,失误率在连续作业第1天为37.54±25.90%,低于第3天(48.91±30.40%),差异显著(n=30, P<0.05)。连续体力作业第1天划对数为8.23±3.42、漏划数为6.77±3.42,第3天划对数为8.47±2.91、漏划数是6.53±2.91。第1天净分为6.6±3.83,第3天分值下降至5.27±4.17。上述两项测试结果显示,随着连续体力作业时间延长,作业人员的注意力和短期记忆力等脑认知功能均呈现显著的降低。
     (2)睡眠剥夺对人脑认知功能的影响
     数字划销测试结果显示,睡眠剥夺8小时后,剥夺组划对数(18.33±1.37)和净分(17.50±2.05)都低于对照组划对数(18.60±2.61)和净分(17.90±3.91)。剥夺16小时后,剥夺组划对数和净分分别是17.43±2.30、16.14±3.45,对照组划对数是18.50±0.58,净分为17.75±0.87。剥夺组的失误率8.38±2.02%,对照组4.09±1.69%。数字符号转换测试结果显示,睡眠剥夺8小时后,得分24.67±1.51,剥夺至32小时后下降至22.71±1.80,睡眠剥夺48小时后,降至最低20.14±1.21。同一时间段比较,睡眠剥夺组得分均低于对照组,睡眠剥夺16小时后,剥夺组得分23.43±7.93,对照组得分为24.00±1.83;剥夺40小时后,剥夺组得分20.00±2.23,对照组得分为23.71±1.97。以上结果提示,睡眠剥夺使受试者的注意力和记忆力受损,且随着剥夺时间增加,这种认知功能下降程度增加。
     2.睡眠剥夺影响数字记忆编码、维持和提取的脑功能磁共振成像研究
     睡眠剥夺受试者数字记忆测试中,错误率从剥夺前8.2±5.4上升到剥夺后13.7±10.1(n=6),反应时间增加,剥夺前738.0±82.1ms,剥夺后824.3±52.3(n=6, P<0.05)。SD状态下记忆编码阶段在睡眠剥夺前后差异的激活区为灰质区,左侧边缘叶海马旁回Brodmann 30,左侧颞叶颞上回42,左侧岛叶41,额叶回6;SD前后维持阶段差异的激活区为灰质区,左侧颞上回Brodmann 38,左侧颞中回21,左侧海马旁回及杏仁,左侧额中回47,左侧豆状核及丘脑,右侧豆状核,左边缘叶扣带后回30,右边缘叶扣带后回30,双侧扣带回24,双侧额中回、额内侧回6;睡眠剥夺前后工作记忆提取阶段机体为了维持清醒状态,大脑双侧海马、右侧杏仁核、右侧顶小叶、左侧楔前叶丘脑出现了过度激活状态,表现为睡眠剥夺前后工作记忆提取阶段阴性激活;睡眠剥夺前后工作记忆提取阶段阳性激活,激活区为左侧颞中回Brodmann 21,双侧扣带回24,左侧额下回47,左顶下小叶19,左侧额中回9。
     3.稳态因子腺苷调节大鼠内嗅皮层II层星形神经元的离子通道机制和突触机制
     (1)腺苷抑制星形神经元Ih电流
     在电流钳模式下,给与100μM腺苷能够明显抑制跃阶超极化电流刺激(-350 ~ -150 pA,50 pA)诱发的电压sag值,给予腺苷,电压sag比值(电压峰改变值/电压稳定改变值)减小到对照时的66±9%(对照:13.0±5.9 mV;腺苷:8.8±4.2 mV;P < 0.001;n = 11)。加入腺苷后Ih电流幅度明显减小,差异显著。
     (2)腺苷减少自发性谷氨酸释放到星形神经元
     在灌流液中加入1μM河豚毒素阻断电压依赖的Na+通道和10μM荷包牡丹碱阻断离子通道型GABAA受体,分离出mEPSCs。给予100μM腺苷明显抑制mEPSCs频率(对照的55±9 %;n = 16;P < 0.001),却不影响mEPSCs的幅度(对照的98±6 %;n = 16;P = 0.33)。给予腺苷受体1拮抗剂DPCPX(3μM),腺苷对mEPSCs的抑制效应被阻断(n=10;P = 0.35),而腺苷受体2拮抗剂DMPX(10μM)无影响(n=6;P < 0.001)。提示,腺苷诱发的自发性谷氨酸释放减少是由突触前A1受体介导的。
     (3)腺苷抑制自发性GABA释放到星形神经元
     在灌流ACSF中加入1μM河豚毒素、10μM CNQX和50μM AP-V阻断离子通道型谷氨酸受体,分离出mIPSCs。100μM腺苷增加mIPSCs事件间的时间间隔,但不影响mIPSCs的幅度累积曲线,即频率降低到对照的51±6 % (n = 16;P < 0.001),平均幅度没有改变(对照的98±4 %,n = 16; P = 0.07)。给予3μM DPCPX,腺苷不影响mIPSCs活动(n = 6; P = 0.47)。但在10μM DMPX存在的情况下,腺苷降低mIPSCs的频率到53±11 % (n = 10; P < 0.001),提示,腺苷诱发的自发性GABA释放减少也是通过突触前A1受体介导的。
     (4)电压门控Ca2+通道和胞外Ca2+介导腺苷抑制突触传递的效应
     灌流液中加入电压门控钙通道(VDCCs)阻断剂Cd2+ (100μM),能明显降低所记录神经元的mEPSCs和mIPSCs的频率至对照的44±11 % (n = 8;P< 0.001)和56±11 % (n = 7;P < 0.001)。用Cd2+处理至少5 min后,给与100μM腺苷,不能降低mEPSCs (n = 8;P = 0.30)和mIPSCs (n = 7;P= 0.20)的频率。胞外无Ca2+也能明显降低基础mEPSCs和mIPSCs的频率至对照45±19 % (n = 8;P < 0.001)和51±15 % (n = 9;P < 0.001)。且,加入腺苷也不能明显改变mEPSCs (n = 8;P = 0.13)和mIPSCs (n = 9;P = 0.38)的频率。上述结果说明,腺苷A1受体介导的抑制自发性谷氨酸和GABA释放与胞外Ca2+通过VDCCs内流有关。
     综上所述,本研究结果表明,连续体力作业和睡眠剥夺可以使人脑认知功能下降。睡眠剥夺前后,数字记忆编码、维持和提取过程中脑区激活发生差异变化。内源性促睡眠因子--腺苷通过直接抑制HCN通道电流而降低内嗅皮层星形神经元兴奋性;或间接与突触前A1受体结合,抑制电压门控钙通道钙内流,降低兴奋性谷氨酸能和抑制性GABA能突触活动的传入。
In the modern society, more and more people have to face a long time continuous operation, even at the expense of natural sleep (ie, sleep deprivation) continuous operation, such as the continuous military operations, continuous vehicle driving. Working for long hours often leads to mental fatigue. There is evidence that mental fatigue is serious damage to cognitive function and behavior of the operator, and the metabolite of neuronal activity---adenosine inhibition of neuronal activity plays an important role during fatigue in the brain. Revealing the mechanism of continuous operation and sleep deprivation on cognitive function, will help combat the fatigue caused by continuous operation, continuous work and improve capacity of operators.
     In the present study, we firstly used a combined behavioral and functional magnetic resonance imaging (fMRI) design, allowing for a whole-brain, systems-level approach, to explore the ability of the human brain to form new digital memories in the absence of prior sleep. And then we investigated the electrophysiological effects of adenosine on stellate neurons in live brain slices of the EC using whole-cell patch-clamp recordings, observing the ionic and synaptic mechanisms involved in adenosine. The results show as follow: 1. Detrimental influence of continuous physical work and sleep deprivation on cognitive function in the human brain
     The cognitive function of 30 continuous physical working people (3 days) and 6 sleep deprivation (SD) subjects (48h) were evaluated with Number cancellation test (NCT), Number searching test (NST) and Digit symbol substitution (DSST). The results of NCT showed that scores on accurate cancellation and total score had significant difference in the 1st and 3rd continuous physical work of people (n=30, P<0.05), and scores on false cancellation and error rate in 1st work (0.13±1.17/32.43±15.65%) was lower than that in 3rd continuous physical work (0.33±1.06/60.73±25.67%). NST also demonstrated that scores on total score in 1st work (6.6±3.83) was higher than 3rd continuous physical work (5.27±4.17), while scores on error rate on people in 1st work (37.54±25.90%) was significant lower than that in 3rd continuous physical work (48.91±30.40%) (n=30, P<0.05). NCT presented that after SD for 8h, the scores on both accurate cancellation and total score in SD subjects was lower than that in controls The same as SD for 16h, the scores on accurate cancellation and total score in SD subjects were 17.43±2.30 and 17.50±2.05, lower than that in controls (18.50±0.58/17.75±0.87). Experiment on DSST showed that the scores after SD for 8h, 32h and 48h decreased gradually, 24.67±1.51, 22.71±1.80 and 20.14±1.21, respectively. And the scores on SD for 16h and 40h were 23.43±7.93, 20.00±2.23, lower than that in controls (24.00±1.83/23.71±1.97). These results suggest that continuous physical work and sleep deprivation have an obvious detrimental influence on the cognitive function in human brain.
     2. Impairment of digital memory retrieval after 48h sleep deprivation
     6 subjects were awake during day 1, night 1, day 2 and night 2, accumulating approximately 48h of total sleep deprivation before the encoding session. Subjects underwent a digital memory encoding, maintenance and retrieval session during fMRI scanning in which they viewed a series of number (0 ~ 9). The results showed that the error rate (13.7±10.1) after SD was higher than that before SD (8.2±5.4), while the response time increased from 738.0±82.1 ms to 824.3±52.3ms after SD. During encoding trials different fMRI regions of significant activation (relative to fixation baseline) between sleep control and sleep deprivation are left Brodmann 30, left Brodmann 42, left Brodmann 41 and left Brodmann 6. During maintenance trials different fMRI regions of significant activation are left Brodmann 38, left Brodmann 21, left parahippocampus and amygdala, left Brodmann 47, left lentiform nucleus and thalamus, right lentiform nucleus, left Brodmann 30, right Brodmann 30, bilateral Brodmann 24 and bilateral Brodmann 6. During retrieval trials different fMRI regions of significantly negative activation are bilateral hippocampus, right amygdale, left precuneus, left thalamus. During retrieval trials different fMRI regions of significantly positive activation are left inferior frontal gyrus, left middle frontal gyrus, left middle temporal gyrus, bilateral cingulate gyrus, left inferior parietal lobule, Brodmann 21, Brodmann 24, Brodmann 47, Brodmann 19 and Brodmann 9.
     3. Inhibitory effects of adenosine on stellate neurons in EC
     3.1 Adenosine inhibits Ih currents of stellate neurons
     Application of adenosine produced a reduction of voltage sag in recording neurons in response to hyperpolarizing current steps (from -350 to -150 pA, 50 pA, step), the voltage sag (peak voltage change-voltage change at steady state) decreased to 66±9% of control in the presence of adenosine (control, 13.0±5.9 mV; post-adenosine, 8.8±4.2 mV; n = 11; P < 0.001). In addition, adenosine produced a significant decrease in the amplitude of Ih currents evoked by the voltage step protocol (from -70 to -120 mV; -10 mV; step; 1000 ms). The suppression by adenosine on Ih currents was displayed in almost all hyperpolarized voltage steps except -70 mV. Together, these data indicate that adenosine inhibits the excitability of stellate neurons in the EC involved its inhibition on HCN channels.
     3.2 Adenosine activates presynaptic A1 receptors to decrease spontaneous glutamate release on to stellate neurons
     In the presence of bicuculline (10μM) and TTX (1μM) mEPSCs were recorded. Application of adenosine (100μM) significantly decreased the frequency (55±9 % of control; n = 16, p < 0.001), but not the amplitude (98±6 % of control; n = 16; p = 0.33) of mEPSCs. Application of adenosine A1 receptor antagonist DPCPX (3μM) completely blocked adenosine mediated decrease in mEPSCs frequency (n = 10; P = 0.35). The ability of adenosine A2 receptor antagonist DMPX (10μM) to block the effect of adenosine on mEPSCs was also tested. Application of adenosine A2 receptor antagonist DMPX (10μM) failed to change the adenosine-induced shift of the interevent interval distribution (n = 6; P < 0.001) excluding the involvement of adenosine A2 receptors. These results suggest that the adenosine-induced decrease in spontaneous glutamate release is mediated by presynaptic A1 receptors.
     3.3 Adenosine inhibits the GABAergic drive to stellate neurons by activating presynaptic A1 receptors
     In the presence of TTX (1μM), CNQX (10μM) and AP-V (50μM) mIPSCs were recorded. Application of adenosine (100μM) significantly decreased the frequency (51±6 % of control; n = 16, p < 0.001,), but not the amplitude (98±4 % of control; n = 16; p = 0.07) of mIPSCs. Application of adenosine A1 receptor antagonist DPCPX (3μM) completely blocked adenosine mediated decrease in mIPSCs frequency (n = 6; P = 0.47). Application of adenosine A2 receptor antagonist DMPX (10μM) failed to change the adenosine-induced shift of the interevent interval distribution (n = 10; P < 0.001) excluding the involvement of adenosine A2 receptors. These results suggest that the adenosine- induced decrease in spontaneous glutamate release is mediated by presynaptic A1 receptors.
     3.4 Inhibition of spontaneous glutamate and GABA release by adenosine A1 receptor
     activation is mediated by voltage-dependent Ca2+ channels and extracellular Ca2+ Bath application of voltage-dependent Ca2+ channel (VDCC) blocker Cd2+ (100μM) alone significantly decreased the baseline frequency of both mEPSCs and mIPSCs in all of the neurons tested to 44±11% (n = 8; P < 0.001) and 56±11% (n = 7; P < 0.001; K-S test) of the control, respectively. After at least 5 min pretreatment of Cd2+, adenosine (100μM) failed to decrease mEPSC (n = 8; P = 0.30) and mIPSC frequency (n = 7; P = 0.20). Ca2+-free external solution also markedly decreased basal mEPSC and mIPSC frequency to 45±19% (n = 8; P < 0.001) and 51±15% (n = 9; P < 0.001) of the baseline, respectively. Furthermore, the application of 100μM adenosine did not produce a significant change in the frequency of mEPSCs (n = 8; P = 0.13) and mIPSCs (n = 9; P = 0.38) in the Ca2+-free solution. These results suggest that the adenosine A1 receptor-mediated inhibition of spontaneous glutamate and GABA release is related to the Ca2+ influx passing through presynaptic VDCCs.
     In summary, our study has indicated that continuous physical work and sleep deprivation have deleterious effect on human cognitive function, and digital memory retrieval was impaired after 48 sleep deprivation. Adenosine inhibits the excitability of stellate neurons in the EC through inhibition on HCN channels. In addition, adenosine-induced decrease in spontaneous glutamate and GABA release is mediated by presynaptic A1 receptors. Furthermore, adenosine A1 receptor-mediated inhibition of spontaneous glutamate and GABA release is related to the Ca2+ influx passing through presynaptic VDCCs.
引文
1.张舒,吴兴裕.睡眠剥夺对工作能力影响的研究进展.中华航空航天医学杂志,1997, 8:186-9.
    2. Noakes TD and St-Clair Gibson A. Logical limitations to the“catastrophe”models of fatigue during exercise in humans. Br Sports Med, 2004, 38:648-9.
    3. Caldwell JA. The impact of fatigue in air medical and other types of operations: a review of fatigue facts and potential countermeasures. Air Med J, 2001,20:25-32.
    4. Allen TJ, Leung M and Proske U. The effect of fatigue from exercise on human limb position sense. J Physiol, 2010, 588:1369-77.
    5. Davis JM. Central and peripheral factors in fatigue. Sport Sci, 1995, 13: S49-53.
    6. Kwan BM and Bryan AD. Affective response to exercise as a component of exercise motivation: Attitudes, norms, self-efficacy, and temporal stability of intentions. Psychol Sport Exerc, 2010, 11: 71-9.
    7. Santhouse AM, Hotopf M and David AS. Chronic fatigue syndrome. BMJ, 2010, 340: c738.
    8. Diekelmann S and Born J. The memory function of sleep. Nat Rev Neurosci, 2010, 11:114-26.
    9.李洋,王得春和胡志安.睡眠的记忆巩固功能研究进展.生物化学与生物物理进展, 2008, 35:1219-24.
    10. Chee M and Choo W. Functional imaging of working memory after 24 hr of total sleep deprivation. J Neurosci, 2004, 24:4560-7.
    11. Seung-Schik Yoo, Peter T Hu, Ninad Gujar,et al. A deficit in the ability to form new human memories without sleep. Nature Neuroscience,2007,10:385-92.
    12. Sutcliffe JG and de Lecea L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci, 2002, 3: 339-49.
    13. Saper CB, Scammell Te and Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437: 1257-63.
    14. Xia J, Chen F, Yan J, et al. Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience, 2009,162:980-8.
    15. Benitez PL, Kamimori GH, Balkin TJ,et al.Modeling fatigue over sleep deprivation, circadian rhythm, and caffeine with a minimal performance inhibitor model. Methods Enzymol, 2009,454:405-21.
    16. Hou RH, Langley RW, Szabadi E, et al. Comparison of diphenhydramine and modafinil on arousal and autonomic functions in healthy volunteers. J Psychopharmacol, 2007,21:567-78.
    17. Insausti R, Herrero MT and Witter MP. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus, 1997, 7:146-83.
    18. Burwell RD. The parahippocampal region: corticocortical connectivity. Ann N Y Acad Sci, 2000, 911:25-42.
    19. Ribeiro JA, Sebastiao A M and de Mendonca A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol, 2002, 68:377-92.
    20.郝向阳,刘洪涛,杨邵勃,等.装甲车辆驾驶员在热环境下持续作业时机体生理及心理的变化趋势.中华劳动卫生职业病杂志, 2004,22: 257-60.
    21. Haslam DR. Sleep loss, recovery sleep, and military performance. Ergonomics, 1982, 25:163-78.
    22. Samkoff JS and Jacques CH. A review of studies concerning effects of sleep deprivation and fatigue on residents’performance. Acad Med, 1991, 66:687-93.
    23. Webb WB. A further analysis of age and sleep deprivation effects. Psychophysiology, 1985, 22: 156-61.
    24. Sarah O, Thierry P, Joceline R, et al. Effects of driving duration and partial sleep deprivation on subsequent alertness and performance of car drivers. Physiology & Behavior, 2005, 84:715-24.
    25. Eoh HJ, Chung MK and Kim SH. Electroencephalographic study of drowsiness in simulated driving with sleep deprivation. International Journal of Industrial Ergonomics, 2005, 35:307-20.
    26.李宁,汪嬿,刘锡禹,等.睡眠剥夺对认知功能影响的研究进展.生物医学工程学杂志,2008, 25:1197-200.
    27. Miyata S, Noda A, Ozadi N, et al. Insufficient sleep impairs driving performance and cognitive function. Neurosci Lett, 2010, 469:229-33.
    28. Caldwell JA and Gilreath SR. Work and sleep hours of U.S. Army aviation personnel working reverse cycle. Mil Med, 2001, 166: 159-66.
    29. Caldwell JA and Gilreath SR. A survey of aircrew fatigue in a sample of U.S.Army aviation personnel. Aviat Space Environ Med, 2002, 73:472-80.
    30. Legangneux E, Hindmarch I and Zobouyan I. Zolpide modified-release 6.25 mg and double dose 12.5 mg have no residual effects on central nervous system integrative capacity, sensorimotor and psychomotor performance, and immediate and delayed memory recall in healthy elderly subjects. Sleep, 2005, supplement abstract 0279.
    31.刘贤臣.心理卫生评定量表手册.北京:中国心理卫生杂志社,1999, 375-8
    32. Aukes AM, Wesel I and Dubois AM. Self-reported cognitive functioning in formerly eclamptic women. American J Obstetrics Gynecology, 2007, 197:365-6.
    33. Evans WJ and Lambert CP. Physiological basis of fatigue. Am J Phys Med Rehabil, 2007, 86:S29-46.
    34.许继民.长途汽车驾驶员身体健康的影响因素.职业与健康, 2006, 22:1547-8.
    35. Cabon P, Bourgeois-Bougrine S, Mollard R, et al. Electronic pilot activity monitor. A countermeasure against fatigue on long-Haul flights. Aviat space Environ Med, 2003, 74:679-82.
    36. Rabinowitz YG, Breitbach JE and Warner CH. Managing aviator fatigue in a deployed environment: the relationship between fatigue and neurocognitive functioning. Mil Med, 2009, 174: 358-62.
    37. Kecklund G and Akerstedt T. Sleepiness in long distance truck driving: an ambulatory EEG study of night driving. Ergonomics, 1993, 36: 1007-17.
    38. Dagan Y and Doljansky JT. Cognitive performance during sustained wakefulness: A low dose of caffeine is equally effective as modafinil in alleviating the nocturnal decline. Chronobiol Int, 2006, 23: 973-83.
    39. Eddy DR, Schiflett SG, Schlegel RE, et al. Cognitive performance aboard the life and microgravity spacelab. Acta Astronaut, 1998, 43: 193-210.
    40. Tucker AM, Whitney P, Belenky G, et al. Effects of sleep deprivation on dissociated components of executive functioning. Sleep, 2010, 33:47-57.
    41. Odle-Dusseau HN, Bradley JL, Pilcher JJ. Subjective perceptions of the effects of sustained performance under sleep-deprivation conditions. Chronobiol Int, 2010, 27:318-33.
    42. Gruber R, Laviolette R, Deluca P, et al. Short sleep duration is associated with poor performance on IQ measures in healthy school-age children. Sleep Med, 2010, 11: 289-94.
    43.宋国萍,苗丹民和皇甫恩.睡眠剥夺对工作记忆的影响.第四军医大学学报,2004, 25:1707-9.
    44. Lee HJ, Kim I, Suh KY. Cognitive deterioration and changes of P300 during total sleep deprivation. PsychiatryClin Neurosci, 2003, 57: 490-6.
    45.樊双义,谌小维,樊宏孝,等.长时连续作业对大鼠觉醒能力的损害作用.第三军医大学学报, 2005, 27: 2151-3.
    46.王臻,谌小维,张春青,等.长时连续作业对大鼠下丘脑及背缝核orexin-A和受体的影响.第三军医大学学报,2006, 28: 1046-8.
    47.詹皓.持续军事飞行任务时睡眠剥夺和疲劳对工作能力的影响及其综合对策.中华航空航天医学杂志,2002, 13:263-6.
    1. Diekelmann S and Born J The memory function of sleep. Nat Rev Neurosci, 2010, 11(2):114-26.
    2. Terney D, Beniczky S, Varga E T, et al. The effect of sleep deprivation on median nerve somatosensory evoked potentials. Neurosci Lett, 2005, 383(1-2):82-6.
    3.李洋,王得春和胡志安.睡眠的记忆巩固功能研究进展.生物化学与生物物理进展, 2008, 35(11):1219-24.
    4. Diekelmann S, Wilhelm I and Born J The whats and whens of sleep-dependent memory consolidation. Sleep Med Rev, 2009, 13(5):309-21.
    5. Holland P and Lewis P A Emotional memory: selective enhancement by sleep. Curr Biol, 2007, 17(5):R179-81.
    6. Karni A, Tanne D, Rubenstein B S, et al. Dependence on REM sleep of overnight improvement of a perceptual skill. Science, 1994, 265(5172):679-82.
    7. Tang Y, Zhang W, Chen K, et al. Arithmetic processing in the brain shaped by cultures. Proc Natl Acad Sci U S A, 2006, 103(28):10775-80.
    8. MacSweeney M, Capek C M, Campbell R, et al. The signing brain: the neurobiology of sign language. Trends Cogn Sci, 2008, 12(11):432-40.
    9. ZQ Z, SY S, SH L, et al. Activated brain area during simple and complex mental calculaton-A functional fMRI study. Acta Physiol.Sin, 2008, 60(4):504-10.
    10. Jun L, Zhi-Xin Y, Hua J, et al. Brain regions for number involved in the processing of vocabulary of months in Chinese. Acta Physiol.Sin, 2009, 61(3):230-8.
    11. Hanakawa T, Honda M, Okada T, et al. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. Neuroimage, 2003,19(2 Pt 1):296-307.
    12.王婷婷,雷莫和舒斯云.记忆编码与提取过程的脑机制-功能性核磁共振研究.生理学报, 2009, 61(5):395-403.
    13. NS N, V P, SA B, et al. The role of the prefrontal cortex in the maintenance of verbal working memory : an event related FMRI analysis. Neuropsychology, 2005, 19: 223-32.
    14. F S, N F and F Z. Using diagnostic radiology in human evolutionary studies. Anat, 2000, 197(1):61-76.
    15. DS M, DN G, KA L, et al. Identifying regional activity associated with temporally separated components of working memory using event related functional MRI. Neuroimage, 2003, 20:1670-84.
    16.吴明祥,徐坚民,张景忠,等.功能磁共振成像与扩散张量成像融合技术初探.中国医学影像技术, 2007, 23(5):777-80.
    17. B K, Tamml, Greicius, et al. Comparison of fMRI activation at 3 and 1.5Tduring perceptual,congnitive,and affective processing. Neuroimage, 2003, 18(4):813-26.
    18. Dietrich A Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn, 2003, 12(2):231.
    19. Li Z, Sun X and Zhang X Behavioral and functional MRI study of attention shift in human verbal working memory. Neuroimage, 2004, 21:181-91.
    20. Blumenfeld R S and Ranganath C Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J. Neurosci., 2006, 26:916-25.
    21. Soto D, Hodsoll J, Rotshtein P, et al. Automatic guidance of attention from working memory. Trends Cogn Sci, 2008, 12:342-8.
    22. Poldrack R, Clark J, Pare-Blagoev E, et al. Interactive memory systems in the human brain. Nature, 2001, 414(6863):546-50.
    23. Habeck C, Rakitin B, Moeller J, et al. An event related fMRI study of the neural networks underlying the encoding , maintenance , and retrieval phase in a delayed match to sample task. Brain Res, 2005, 23:207-20.
    24. Gazzaniga M, Ivey R and Mangun G. Cognitive Neuroscience: the Biology of the Minded. New York: Norton press, 2002, 301-51.
    25.舒斯云,张增强,包新民,等.皮层和皮层下结构共同参与脑的数字记忆——功能磁共振研究.生物物理学报, 2009, 25:263-4.
    26. DE L. The working memory networks of the human brain. Neuroscientist, 2007, 13:257-67.
    27. Esposito D M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci, 2007, 362:761-72.
    28. Habeck C, Rakitin B, Moeller J, et al. An event-related fMRI study of the neurobehavioral impact of sleep deprivation on performance of a delayed-match-to- sample task. Brain Res Cogn Brain Res, 2004, 18:306-21
    29. Chuah Y, Venkatraman V, Dinges D, et al. The neural basis of inter individual variability in inhibitory efficiency after sleep deprivation. J. Neurosci., 2006, 26:7156-62.
    30. Tomasi D, Wang R L, Telang F, et al. Impairment of Attentional Networks after 1 Night of Sleep Deprivation. Cerebral Cortex, 2009, 19:233-40.
    31. MW C and YM C. Functional neuroimaging and behavioral correlates of capacity decline in visual short-term memory following sleep deprivation. Proc Natl Acad Sci USA, 2007, 104:9487-92.
    32. Strangman G. Functional brain imaging of a complex navigation task following one night of total sleep deprivation: a preliminary study. J. Sleep Res, 2005, 14:369-75.
    33. Yoo S-S, Hu P T, Gujar N, et al. A deficit in the ability to form new human memories without sleep. Nature, 2007, 10(3):385-92.
    34.宋国萍,苗丹民,皇甫恩,等.睡眠剥夺对词汇背景记忆的影响.中国心理卫生杂志, 2006, 20(4):244.
    35. Sanders A. Towards a model of stress and human performance. Acta Psychol, 1983, 53(1):61-6.
    36. Seung-Schik Yoo, Peter T Hu, Ninad Gujar, et. al. A deficit in the ability to form new human memories without sleep.Nature Neuroscience,2007,10:385-392
    1. Feldberg W and Sherwood S L. Infections of drugs into the lateral ventricle of the cat. J Physiol, 1954, 123(1):148-67.
    2. Ticho S R and Radulovacki M. Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav, 1991, 40(1):33-40.
    3. Porkka-Heiskanen T, Strecker R E, Thakkar M, et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science, 1997, 276(5316):1265-8.
    4. Fredholm B B, Battig K., Holmen J., et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 1999, 51(1):83-133.
    5. Ribeiro J A, Sebastiao A M and de Mendonca A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol, 2002, 68(6):377-92.
    6. Curia G, Longo D, Biagini G, et al. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods, 2008, 172(2):143-57.
    7. Arrigoni E, Chamberlin N L, Saper C B, et al. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience, 2006, 140(2):403-13.
    8. Fontanez D E and Porter J T. Adenosine A1 receptors decrease thalamic excitation of inhibitory and excitatory neurons in the barrel cortex. Neuroscience, 2006, 137(4):1177-84.
    9. Jeong H J, Jang I S, Nabekura J, et al. Adenosine A1 receptor-mediated presynaptic inhibition of GABAergic transmission in immature rat hippocampal CA1 neurons. J Neurophysiol, 2003, 89(3):1214-22.
    10. Materi L M, Rasmusson D D and Semba K. Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat. Neuroscience, 2000, 97(2):219-26.
    11. Van Dort C J, Baghdoyan H A and Lydic R. Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci, 2009, 29(3):871-81.
    12. Yan Jie C F, Jia Xiao-jun, et al. Adenosine inhibits hyperpolarization-activated currentin the pyramid neurons of prefrontal cortex. Acta Academiae Medicinae Militaris Tertiae, 2008, 30(10):903-905.
    13. Boonstra T W, Stins J F, Daffertshofer A, et al. Effects of sleep deprivation on neural functioning: an integrative review. Cell Mol Life Sci, 2007, 64(7-8):934-46.
    14. Witter M P, Groenewegen H J, Lopes da Silva F H, et al. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol, 1989, 33(3):161-253.
    15. Lavenex P and Amaral D G. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus, 2000, 10(4):420-30.
    16. Barry C, Hayman R, Burgess N, et al. Experience-dependent rescaling of entorhinal grids. Nat Neurosci, 2007, 10(6):682-4.
    17. Insausti R, Herrero M T and Witter M P. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus, 1997, 7(2):146-83.
    18. Burwell R D. The parahippocampal region: corticocortical connectivity. Ann N Y Acad Sci, 2000, 911(25-42.
    19. Woodhall G L, Bailey S J, Thompson S E, et al. Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex. Hippocampus, 2005, 15(2):232-45.
    20. Deng P Y, Poudel S K, Rojanathammanee L, et al. Serotonin inhibits neuronal excitability by activating two-pore domain k+ channels in the entorhinal cortex. Mol Pharmacol, 2007, 72(1):208-18.
    21. Shalinsky M H, Magistretti J, Ma L, et al. Muscarinic activation of a cation current and associated current noise in entorhinal-cortex layer-II neurons. J Neurophysiol, 2002, 88(3):1197-211.
    22. Lei S, Deng P Y, Porter J E, et al. Adrenergic facilitation of GABAergic transmission in rat entorhinal cortex. J Neurophysiol, 2007, 98(5):2868-77.
    23. Arrang J M, Drutel G and Schwartz J C. Characterization of histamine H3 receptors regulating acetylcholine release in rat entorhinal cortex. Br J Pharmacol, 1995, 114(7):1518-22.
    24. Caruana D A, Sorge R E, Stewart J, et al. Dopamine has bidirectional effects on synaptic responses to cortical inputs in layer II of the lateral entorhinal cortex. J Neurophysiol, 2006, 96(6):3006-15.
    25. Lopes L V, Halldner L, Rebola N, et al. Binding of the prototypical adenosine A(2A) receptor agonist CGS 21680 to the cerebral cortex of adenosine A(1) and A(2A) receptor knockout mice. Br J Pharmacol, 2004, 141(6):1006-14.
    26. Rivkees S A, Price S L and Zhou F C. Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res, 1995, 677(2):193-203.
    27. Alonso A and Llinas R R. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature, 1989, 342(6246):175-7.
    28. Alonso A and Klink R. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol, 1993, 70(1):128-43.
    29. Deng P Y and Lei S. Long-term depression in identified stellate neurons of juvenile rat entorhinal cortex. J Neurophysiol, 2007, 97(1):727-37.
    30. Li Y, Fan S, Yan J, et al. Adenosine modulates the excitability of layer II stellate neurons in entorhinal cortex through A1 receptors. Hippocampus, 2010, on line.
    31. Nolan M F, Dudman J T, Dodson P D, et al. HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. J Neurosci, 2007, 27(46):12440-51.
    32. Robinson R B and Siegelbaum S A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol, 2003, 65(453-80.
    33. Dunwiddie T V and Masino S A. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci, 2001, 24(31-55.
    34. Berretta N and Jones R S. A comparison of spontaneous EPSCs in layer II and layer IV-V neurons of the rat entorhinal cortex in vitro. J Neurophysiol, 1996, 76(2):1089-100.
    35. Van der Kloot W. The regulation of quantal size. Prog Neurobiol, 1991, 36(2):93-130.
    36. Salin P A and Prince D A. Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol, 1996, 75(4):1573-88.
    37. Zhong P and Yan Z. Chronic antidepressant treatment alters serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons. Neuroscience, 2004, 129(1):65-73.
    38. Bramley J R, Sollars P J, Pickard G. E., et al. 5-HT1B receptor-mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus. J Neurophysiol, 2005, 93(6):3157-64.
    39. Wu L G. and Saggau P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci, 1997, 20(5):204-12.
    40. Lee J G, Choi I S, Park E J, et al. beta(2)-Adrenoceptor-mediated facilitation of glutamatergic transmission in rat ventromedial hypothalamic neurons. Neuroscience, 2007, 144(4):1255-65.
    41. Yum D S, Cho J H, Choi I S, et al. Adenosine A1 receptors inhibit GABAergic transmission in rat tuberomammillary nucleus neurons. J Neurochem, 2008, 106(1):361-71.
    42. Chen G and van den Pol A N. Adenosine modulation of calcium currents and presynaptic inhibition of GABA release in suprachiasmatic and arcuate nucleus neurons. J Neurophysiol, 1997, 77(6):3035-47.
    43. Liu Z W and Gao X B. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol, 2007, 97(1):837-48.
    44. Ponzio T A and Hatton G I. Adenosine postsynaptically modulates supraoptic neuronal excitability. J Neurophysiol, 2005, 93(1):535-47.
    45. Safiulina V F, Kasyanov A M, Giniatullin R, et al. Adenosine down-regulates giant depolarizing potentials in the developing rat hippocampus by exerting a negative control on glutamatergic inputs. J Neurophysiol, 2005, 94(4):2797-804.
    46. Thakkar M M, Delgiacco R A, Strecker R E, et al. Adenosinergic inhibition of basal forebrain wakefulness-active neurons: a simultaneous unit recording and microdialysis study in freely behaving cats. Neuroscience, 2003, 122(4):1107-13.
    47. Wetherington J P and Lambert N A. Differential desensitization of responses mediated by presynaptic and postsynaptic A1 adenosine receptors. J Neurosci, 2002,22(4):1248-55.
    48. Avsar E and Empson R M. Adenosine acting via A1 receptors, controls the transition to status epilepticus-like behaviour in an in vitro model of epilepsy. Neuropharmacology, 2004, 47(3):427-37.
    49. Hosseinmardi N, Mirnajafi-Zadeh J, Fathollahi Y, et al. The role of adenosine A1 and A2A receptors of entorhinal cortex on piriform cortex kindled seizures in rats. Pharmacol Res, 2007, 56(2):110-7.
    50. Mohammad-Zadeh M, Amini A, Mirnajafi-Zadeh J, et al. The role of adenosine A(1) receptors in the interaction between amygdala and entorhinal cortex of kindled rats. Epilepsy Res, 2005, 65(1-2):1-9.
    51. Sadja R, Alagem N and Reuveny E. Gating of GIRK channels: details of an intricate, membrane-delimited signaling complex. Neuron, 2003, 39(1):9-12.
    52. Garden D L, Dodson P D, O'Donnell C, et al. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron, 2008, 60(5):875-89.
    53. Bender R A, Kirschstein T, Kretz O, et al. Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation. J Neurosci, 2007, 27(17):4697-706.
    54. Xu C, Datta S, Wu M, et al. Hippocampal theta rhythm is reduced by suppression of the H-current in septohippocampal GABAergic neurons. Eur J Neurosci, 2004, 19(8):2299-309.
    55. Pape H C. Adenosine promotes burst activity in guinea-pig geniculocortical neurones through two different ionic mechanisms. J Physiol, 1992, 447(729-53.
    56. Rainnie D G, Grunze H C, McCarley R W, et al. Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science, 1994, 263(5147):689-92.
    57. Pan W J, Osmanovic S S and Shefner S A. Characterization of the adenosine A1 receptor-activated potassium current in rat locus ceruleus neurons. J Pharmacol Exp Ther, 1995, 273(1):537-44.
    58. Uchimura N and North R A. Baclofen and adenosine inhibit synaptic potentials mediated by gamma-aminobutyric acid and glutamate release in rat nucleus accumbens.J Pharmacol Exp Ther, 1991, 258(2):663-8.
    59. Bagley E E, Vaughan C W and Christie M J. Inhibition by adenosine receptor agonists of synaptic transmission in rat periaqueductal grey neurons. J Physiol, 1999, 516 ( Pt 1):219-25.
    60. Ulrich D and Huguenard J R. Purinergic inhibition of GABA and glutamate release in the thalamus: implications for thalamic network activity. Neuron, 1995, 15(4):909-18.
    61. Shen K Z and Johnson S W. Presynaptic inhibition of synaptic transmission by adenosine in rat subthalamic nucleus in vitro. Neuroscience, 2003, 116(1):99-106.
    62. Oliet S H and Poulain D A. Adenosine-induced presynaptic inhibition of IPSCs and EPSCs in rat hypothalamic supraoptic nucleus neurones. J Physiol, 1999, 520 Pt 3:815-25.
    63. Lao L J, Kumamoto E, Luo C, et al. Adenosine inhibits excitatory transmission to substantia gelatinosa neurons of the adult rat spinal cord through the activation of presynaptic A(1) adenosine receptor. Pain, 2001, 94(3):315-24.
    64. Yang K, Fujita T and Kumamoto E. Adenosine inhibits GABAergic and glycinergic transmission in adult rat substantia gelatinosa neurons. J Neurophysiol, 2004, 92(5):2867-77.
    65. Genlain M, Godaux E and Ris L. Involvement of hyperpolarization-activated cation channels in synaptic modulation. Neuroreport, 2007, 18(12):1231-5.
    66. Lupica C R, Bell J A, Hoffman A F, et al. Contribution of the hyperpolarization-activated current (I(h)) to membrane potential and GABA release in hippocampal interneurons. J Neurophysiol, 2001, 86(1):261-8.
    67. Ballarin M, Fredholm B B, Ambrosio S, et al. Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol Scand, 1991, 142(1):97-103.
    68. Pazzagli M, Corsi C, Fratti S, et al. Regulation of extracellular adenosine levels in the striatum of aging rats. Brain Res, 1995, 684(1):103-6.
    69. Pazzagli M, Corsi C, Latini S, et al. In vivo regulation of extracellular adenosine levels in the cerebral cortex by NMDA and muscarinic receptors. Eur J Pharmacol, 1994, 254(3):277-82.
    70. Porkka-Heiskanen T, Strecker R E and McCarley R W. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience, 2000, 99(3):507-17.
    71. Jones B E. Glia, adenosine, and sleep. Neuron, 2009, 61(2):156-7.
    72. Halassa M M, Florian C, Fellin T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 2009, 61(2):213-9.
    73. Bailey S J, Dhillon A, Woodhall G L, et al. Lamina-specific differences in GABA(B) autoreceptor-mediated regulation of spontaneous GABA release in rat entorhinal cortex. Neuropharmacology, 2004, 46(1):31-42.
    74. Fellous J M, Rudolph M, Destexhe A, et al. Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience, 2003, 122(3):811-29.
    1. Caldwell JA, Gilreath SR. A survey of aircrew fatigue in a sample of U.S.Army aviation personnel. Aviat Space Environ Med, 2002, 73:472-80
    2. Mahoney CR, Hirsch E, Hasselquist L, et al.The effects of movement and physical exertion on soldier vigilance.Aviat Space Environ Med, 2007, 78:B51-7.
    3. Lieberman HR, Niro P, Tharion WJ, et al.Cognition during sustained operations: comparison of a laboratory simulation to field studies.Aviat Space Environ Med, 2006, 77:929-35.
    4. Lieberman HR, Castellani JW, Young AJ.Cognitive function and mood during acute cold stress after extended military training and recovery.Aviat Space Environ Med, 2009, 80:629-36.
    5. Odle-Dusseau HN, Bradley JL, Pilcher JJ. Subjective perceptions of the effects ofsustained performance under sleep-deprivation conditions. Chronobiol Int, 2010, 27(2): 318-33.
    6. Gruber R, Laviolette R, Deluca P, et al. Short sleep duration is associated with poor performance on IQ measures in healthy school-age children. Sleep Med, 2010, 11: 289-94.
    7. Lorist MM.Impact of top-down control during mental fatigue. Brain Res, 2008, 1232:113-23.
    8. Lieberman HR, Bathalon GP, Falco CM, et al. The fog of war: decrements in cognitive performance and mood associated with combat-like stress. Aviat Space Environ Med, 2005, 76:C7-14.
    9. Westcott KJ, Modafinil. Sleep Deprivation and Cognitive Function in Military and Medical settings. Military Medicine, 2005, 170(4):333-5.
    10.李宁,汪嬿,刘锡禹,刘海婴.睡眠剥夺对认知功能影响的研究进展.生物医学工程学杂志, 2008, 25:1197-200.
    11.付勇,马瑞山.睡眠剥夺对工作绩效的影响.航空航天医学杂志, 2000, 13:240-3.
    12.张舒,吴兴浴,韩厉萍,等. 48h睡眠剥夺对追踪作业工效、双手协调能力的影响.中华航空航天医学杂志, 1997, 8:158-62 .
    13. Maddox WT, Glass BD, Wolosin SM, et al.The effects of sleep deprivation on information-integration categorization performance. Sleep, 2009, 32:1439-48.
    14. Lorist MM, Klein M, Nieuwenhuis S, et al.Mental fatigue and task control: planning and preparation.Psychophysiology, 2000, 37:614-25.
    15. Rosenthal TC, Majeroni BA, Pretorius R, et al.Fatigue: an overview.Am Fam Physician, 2008,78:1173-9.
    16. Lorist MM, Kernell D, Meijman TF, et al.Motor fatigue and cognitive task performance in humans.J Physiol, 2002, 545(Pt 1):313-9.
    17. Santhouse AM, Hotopf M, David AS. Chronic fatigue syndrome. BMJ, 2010, 340: c738
    18. Papadelis C, Kourtidou-Papadeli C, Bamidis PD, et al.Indicators of sleepiness in an ambulatory EEG study of night driving. Conf Proc IEEE Eng Med Biol Soc, 2006, 1:6201-4.
    19. Caldwell JA. The impact of fatigue in air medical and other types of operations: a review of fatigue facts and potential countermeasures. Air Med J, 2001, 20:25-32.
    20. Allen TJ, Leung M, Proske U. The effect of fatigue from exercise on human limb position sense. J Physiol, 2010, 588(Pt 8):1369-77.
    21. Kwan BM, Bryan AD. Affective response to exercise as a component of exercise motivation: Attitudes, norms, self-efficacy, and temporal stability of intentions. Psychol Sport Exerc, 2010, 11(1): 71-9.
    22. Jones BE. Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann N Y Acad Sci, 2008, 1129: 26-34.
    23. Sutcliffe JG, de Lecea L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci, 2002, 3(5): 339-49.
    24. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437(7063): 1257-63.
    25.宋承辉,胡志安.Orexin:觉醒通路中一种重要的下丘脑神经肽.第三军医大学学报, 2003, 25: 1207-9.
    26.樊双义,谌小维,樊宏孝,等.冰片对长时连续作业大鼠觉醒能力及认知功能的影响.药物不良反应杂志, 2006, 8:l0l-4.
    27.王臻,谌小维,张春青,等.长时连续作业对大鼠下丘脑及背缝核orexin-A和受体的影响.第三军医大学学报, 2006, 28:1046-8.
    28.薛丽,谌小维,樊宏孝,等.冰片对长时连续作业大鼠前额叶皮层单胺类递质水平的影响.第三军医大学学报, 2006, 28:1867-9.
    29.樊双义,谌小维,樊宏孝,等.长时连续作业对大鼠觉醒能力的损害作用.第三军医大学学报, 2005, 27: 2151-3.
    30. Ribeiro JA, Sebastiao AM and de Mendonca A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol, 2002, 68:377-92.
    31. Liu ZW and Gao XB. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol, 2007, 97(1):837-48.
    32. Ponzio TA and Hatton GI. Adenosine postsynaptically modulates supraoptic neuronal excitability. J Neurophysiol, 2005, 93:535-47.
    33. Safiulina VF, Kasyanov AM, Giniatullin R, et al. Adenosine down-regulates giant depolarizing potentials in the developing rat hippocampus by exerting a negative control on glutamatergic inputs. J Neurophysiol, 2005, 94:2797-804.
    34. Xia J, Chen F, Yan J, et al.Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/ orexin neurons. Neuroscience, 2009, 162:980-8.
    35. Lorist MM, Tops M.Caffeine, fatigue, and cognition.Brain Cogn, 2003, 53:82-94.
    36. Evans WJ, Lambert CP. Physiological basis of fatigue. Am J Phys Med Rehabil, 2007, 86(suppl):S29-46.
    37. Chee M, Choo W. Functional imaging of working memory after 24 hr of total sleep deprivation. J Neurosci, 2004, 24(19):4560-7.
    38. Seung-Schik Yoo, Peter T Hu, Ninad Gujar, et al. A deficit in the ability to form new human memories without sleep.Nature Neuroscience, 2007, 10:385-92.
    39.詹皓.飞行人员催眠与兴奋用药的评价方法和指标体系.中华航空航天医学杂志, 2001, 12: 59-63.
    40.彭军强,吴平东,殷罡.疲劳驾驶的脑电特性探索.北京理工大学学报, 2007, 27:585-9.
    41. Fell J , Elfadil H, Klaver P, et al . Covariation of spectral and nonlinear EEG measures with alpha biofeedback. International Journal of Neuroscience, 2002, 112:10472-1057.
    42. Noakes TD, St-Clair Gibson A. Logical limitations to the“catastrophe”models of fatigue during exercise in humans. Br Sports Med, 2004, 38:648-9.
    43.詹皓,吕晓东.活动监测仪在临床医学和航空航天医学的应用研究进展.中华航空航天医学杂志, 2005, 16:75-8.
    44. Lorist MM, Bezdan E, ten Caat M, et al.The influence of mental fatigue and motivation on neural network dynamics: an EEG coherence study.Brain Res, 2009, 1270:95-106.
    45. Lee HJ, Kim I, Suh KY. Cognitive deterioration and changes of P300 during total sleep deprivation. PsychiatryClin Neurosci, 2003, 57: 490-6.
    46.张崇,郑崇勋,裴晓梅,等.生理性精神疲劳的多参数脑电功率谱分析.生物医学工程学杂志, 2009, 26:162-72.
    47. Jung TP, Makeig S, Stensmo M. Estimating alertness from the EEG power spectrum . IEEE Transactions on Biomedical Engineering, 1997, 144:60–9.
    48.张崇,郑崇勋,欧阳轶,等.基于脑电功率谱特征的脑力疲劳分析.航天医学与医学工程, 2008, 21:35-9.
    49. Annas CL, Annas GJ.Enhancing the fighting force: medical research on Americansoldiers. J Contemp Health Law Policy, 2009, 25:283-308.
    50. Kenagy DN, Bird CT, Webber CM, et al.Dextroamphetamine use during B-2 combat missions.Aviat Space Environ Med, 2004, 75:381-6.
    51. de la Torre R, FarréM, Navarro M,et al.Clinical pharmacokinetics of amfetamine and related substances: monitoring in conventional and non-conventional matrices.Clin Pharmacokinet, 2004, 43:157-85.
    52. Chan-Ob T, Kuntawongse N, Boonyanaruthee V.Bupropion for amphetamine withdrawal syndrome.J Med Assoc Thai, 2001, 84:1763-5.
    53. Sigmon SC, Herning RI, Better W, et al.Caffeine withdrawal, acute effects, tolerance, and absence of net beneficial effects of chronic administration: cerebral blood flow velocity, quantitative EEG, and subjective effects. Psychopharmacology (Berl), 2009, 204:573-85.
    54. Dagan Y, Doljansky JT. Cognitive performance during sustained wakefulness: A low dose of caffeine is equally effective as modafinil in alleviating the nocturnal decline. Chronobiol Int, 2006, 23: 973-83.
    55. Benitez PL, Kamimori GH, Balkin TJ, et al.Modeling fatigue over sleep deprivation, circadian rhythm, and caffeine with a minimal performance inhibitor model.Methods Enzymol, 2009, 454:405-21.
    56. Hou RH, Langley RW, Szabadi E,et al.Comparison of diphenhydramine and modafinil on arousal and autonomic functions in healthy volunteers.J Psychopharmacol, 2007, 21:567-78.
    57. Dagan Y, Doljansky JT.Cognitive performance during sustained wakefulness: A low dose of caffeine is equally effective as modafinil in alleviating the nocturnal decline.Chronobiol Int, 2006, 23:973-83.
    58. Ramsey CS, Werchan PM, Isdahl WM, et al.Acceleration tolerance at night with acute fatigue and stimulants.Aviat Space Environ Med, 2008, 79:769-73.
    59.詹皓,景百胜,郭华,等.服用莫达非尼对雷达作业人员夜间作业能力的影响.中华航空航天医学杂志, 2008,19: 52-5 .
    60.詹皓,景百胜,辛益妹,等.莫达非尼对军事飞行学员飞行工作能力和情感状态的影响.中华航空航天医学杂志, 2005, 16: 90-4.
    61. Broberg BV, Glenth?j BY, Dias R, et al.Reversal of cognitive deficits by an ampakine(CX516) and sertindole in two animal models of schizophrenia--sub-chronic and early postnatal PCP treatment in attentional set-shifting.Psychopharmacology (Berl), 2009, 206:631-40.
    62. Hampson RE, Espa?a RA, Rogers GA, et al.Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717.Psychopharmacology (Berl), 2009, 202:355-69.
    63. Le S, Gruner JA, Mathiasen JR,et al.Correlation between ex vivo receptor occupancy and wake-promoting activity of selective H3 receptor antagonists.J Pharmacol Exp Ther, 2008, 325(3):902-9.
    64. Xia J, Chen X, Song C, et al. Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin-1/orexin a through the inhibition of potassium currents. J Neurosci Res, 2005, 82:621-9.
    65. Song CH, Xia JX, Ye JN, et al. Signaling pathways of hypocretin-1 actions on pyramidal neurons in the rat prefrontal cortex. Neuroreport, 2005, 16:1529-33.
    66. Chen XW, Mu Y, Huang HP, et al.Hypocretin-1 potentiates NMDA receptor-mediated somatodendritic secretion from locus ceruleus neurons. J Neurosci, 2008, 28:3202-8.
    67. Song CH, Chen XW, Xia JX, et al. Modulatory effects of hypocretin-1/orexin-A with glutamate and gamma-aminobutyric acid on freshly isolated pyramidal neurons from the rat prefrontal cortex. Neurosci Lett, 2006, 399:101-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700