二化螟对三唑磷的靶标抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟Chilo suppressalis是水稻的重要害虫之一,由于它钻蛀危害水稻茎秆,因而给化学防治带来一定的难度。采用的杀虫剂通常是渗透性强、具有一定的内吸作用、可传导,而且环境相容性好,价格合理农民可以承受的药剂品种。三唑磷最初以其优异的防治效果以及合理的价格成为继六六六、杀虫脒、杀虫单之后防治二化螟的主要替代药剂。但最近频频出现三唑磷对二化螟防治效果下降的报道,而且本实验室的前期工作也证实田间二化螟对三唑磷产生了显著的抗药性,并分析了抗药性的生化机理,发现三唑磷抗性二化螟除解毒酶活力加强外,其乙酰胆碱酯酶的敏感性也显著降低。在此基础上,本研究阐明了二化螟对三唑磷靶标抗性的分子机理,确定了靶标的抗性突变位点,进而建立了抗药性分子监测技术,为抗性二化螟治理和新药剂开发提供了新技术和新思路。
     1.二化螟乙酰胆碱酯酶基因的克隆和序列分析
     利用cDNA末端快速扩增技术(RACE)获取了二化螟AChE1基因全长,共2521 bp,其中5’-UTR为235 bp,3’-UTR为204 bp。由cDNA序列推导出来的氨基酸序列包括17个氨基酸的信号肽和677个氨基酸的成熟蛋白,与二化螟AChE2的相似性仅为47%,但与GenBank中其它鳞翅目昆虫的AChE1氨基酸序列的相似性较高,在75%~90%之间;而二化螟AChE2氨基酸序列与小菜蛾、苹果蠹蛾、棉铃虫、烟夜蛾以及家蚕的AChE2序列也具有很高的相似性,均大于90%以上。
     所推导的二化螟AChE1氨基酸序列具有AChE基因的特征性氨基酸残基,其中包括:(1)形成催化三联体的三个氨基酸残基Ser313、Glu439. His553;(2)活性部位的Ser313存在于所有胆碱酯酶中均存在的FGESAG序列中;(3)形成亚基内二硫键的6个保守氨基酸Cys181-Cys208,Cys 367-Cys 380,Cys515-Cys637,以及亚基间的保守氨基酸Cys660;(4)胆碱结合亚部位W198;(5)酰基口袋W346、F402、F443;(6)氧负离子孔G232、G233、A314。因此推断所获得的cDNA序列为二化螟AChEl的cDNA序列。
     2.二化螟抗三唑磷品系乙酰胆碱酯酶的点突变分析
     在室内用三唑磷对2003年采自浙江省苍南县的二化螟进行连续6代筛选,与2006年6月采自江苏连云港的赣榆地区的二化螟敏感品系比较,抗性水平达到1172倍。对敏感和抗性个体的AChE1、AChE2全长序列分别进行克隆和对比分析,结果发现所有三唑磷抗性二化螟个体的AChE1,在对应于电鳐Torpedocalifornica的AChE氧负离子孔A201这一功能位点上,发生了固定的点突变(A314S)。Ala与Ser的侧链分别是-CH3和-CH2OH,因此我们推测可能是该侧链的变化改变了相邻的催化三亚基中Ser的构象,最终影响了AChE1与抑制剂间的相互作用。另外,在抗性棉蚜和小菜蛾体内也发现了同样的点突变。由此分析认为AChE1的A314S突变很可能是导致二化螟靶标敏感性下降的功能突变位点。
     3.不同二化螟地理种群对三唑磷靶标抗性的分子检测
     通过抗性和敏感品系的二化螟AChE1的核酸序列比较发现,抗性相关突变A314S中从鸟嘌呤到胸腺嘧啶的碱基颠换(G/T),导致突变型基因组上的MspA1Ⅰ酶切位点发生变化。根据这个特点,本研究设计了基于RFLP-PCR的分子检测技术进行突变型等位基因的快速检测。结果显示,敏感纯合子SS基因组DNA的PCR产物被MspA1Ⅰ酶切为534bp和224bp两个片段;杂合子RS基因组DNA的PCR产物被MspA1Ⅰ酶切处理后,电泳检测到758bp、534bp和224bp三个片段;而抗性纯合子RR基因组DNA的PCR产物不能被MspA1Ⅰ酶切,电泳检测只有758bp一个片段。2007年、2008年利用该技术分别检测了7个不同田间地理种群的抗性水平,结果发现检测的抗性等位基因频率与已报道的有机磷杀虫剂抗性相符。该结果不仅创建了灵敏准确的二化螟靶标抗性分子检测技术,同时反证了该突变位点就是抗性功能突变位点。
     4.二化螟两个乙酰胆碱酯酶基因的相对表达量及体外真核表达
     利用实时定量PCR技术比较了野生型AChE1和AChE2两个基因在二化螟中的mRNA表达水平,发现在四龄幼虫中AChE1基因的表达量是AChE2的4.8倍。进一步构建了野生型AChE1和AChE2基因的供体质粒pFastBacl-AChE1和pFastBacl-AChE2;利用定点突变技术将突变A314S引入pFastBacl-AChE1构建成pFastBacl-AChE1Mu;将构建好的质粒pFastBacl-AChE1、pFastBacl-AChE2以及pFastBacl-AChE1Mu转到DH10BAC中,利用昆虫杆状病毒表达体系用重组病毒感染Tn细胞进行体外酶蛋白表达,收集细胞进行SDS-PAGE检测和蛋白杂交实验以及酶活测定。结果发现,虽然SDS-PAGE结果和蛋白杂交实验均证实目标蛋白在Tn细胞中正确表达,但酶活测定结果显示,体外表达的二化螟AChE1、AChElMu没有活性,AChE2的活性仅为1.954OD/min/mg。其原因可能是目前采用的系统不适宜表达二化螟AChE,二化螟
     2个AChE的生理毒理学特性尚有待利用其他表达体系进行进一步研究。
     综上所述,本研究的创新点包括以下三点:
     1.确定了二化螟有两个乙酰胆碱酯酶基因,为以后的AChEs的功能研究以及毒理学研究奠定了基础。
     2.发现了二化螟对三唑磷的靶标抗性突变位点,从分子水平上解释二化螟抗性表型产生的分子机理。
     3.建立了二化螟对三唑磷靶标抗性分子检测技术,为抗性二化螟治理和新药剂开发提供了新技术和新思路。
Rice stem borer, Chilo suppressalis (Walker), is one of the most important insect pests in Asia. Because most of its life-cycle is spent inside rice stems, this pest is difficult to control. Only insecticides that combine good penetration or systemicity, low toxicity to fish, and affordability to farmers are appropriate for stem borer control. In the past, hexachlorocyolohexane (BHC), chlordimeform and monosultap were used extensively in China. However, the first two have been banned for ecotoxicological reasons, and monosultap has lost its effectiveness due to resistance. The organophosphate triazophos initially proved an excellent replacement for monosultap, but recently its effectiveness has declined. A previous publication confirmed resistance to triazophos in C. suppressalis from some locations in China, and suggested reduced sensitivity of acetylcholinesterase-the target site of organophosphates-to be the primary resistance mechanism. In this paper, we reported a mutation in Ch-AChEl consistently associated with resistance, and an assay based on restriction fragment length polymorphism (RFLP) analysis was developed to diagnose A314S genotypes in field populations. The results were summarized as follows:
     1. Cloning and sequence analysis of AChEl from C. suppressalis
     The Rapid Amplification of cDNA Ends (RACE) procedure was employed to obtain full-length sequence of AChEl from C. suppressalis. The result showed that it is 2521 bp in full-length. The 5'and 3'untranslated regions (UTR) were 235 bp and 204 bp, respectively. The complete amino acid sequence deduced from the cDNA consisted of 17 residues for the putative signal peptide and 677 residues for the mature protein. The sequence of this gene has the features shared by members of AChE family. Compared with AChE in Torpedo californica, the functional motifs were highly conserved:the catalytic triads (S313, E439 and H553 in Ch-AChE1, and S266, E395 and H509 in Ch-AChE2), the characteristic'FGESAG' motif surrounding the active serine,3 intra-chain disulfide bridges (C181-C208, C367-380 and C515-C637 in Ch-AChEl, and C115-C143, C320-C335 and C471-C590 in Ch-AChE2), a anionic choline-binding site (W198 in Ch-AChE1 and W133 in Ch-AChE2), acyl pocket residues (W346, F402 and F443 in Ch-AChE1, and W299, F358 and F399 in Ch-AChE2) that accommodate the acyl moiety of the active site, and the oxyanion hole (G232, G233 and A314 in Ch-AChEl, and G179, G180 and A267 in Ch-AChE2) that helps to stabilize the tetrahedral molecule during catalysis. The C-termimal Cys residues that contributed to an intermolecular dimerization were Cys660 and Cys608, respectively. Following these Cys residues, the protein has amino acid tails enriched in hydrophobic residues as predicted using ProtScale. Thus, it is proved to be the AChE gene. Otherwise, this gene shares only 47%similarity with previously reported AChE2 in this pest, but has a high degree of homology to AChEls from other Lepidopetra species. All these results firmly established that the amplified cDNA fragment is the sequence of AChE 1 gene in rice stem borer. 2. Mutation in AChEl associated with triazophos resistance in the rice stem borer
     One strain of the rice stem borer was selected in the lab by exposure to increasing concentrations of triazophos. Insecticide bioassays showed that the resistant strain (Tp-R) exhibited a 1172-fold resistance ratio to the insecticide, compared to a susceptible strain (Gy-S). Previous work suggested that insensitive AChE may also involved in triazophos resistance mechanism of rice stem borer. To verify the hypothesis, we compared the full-length AChEs cDNA sequences from five monocrotophos-resistant and five susceptible rice stem borer individuals. Sequence analysis found an amino acid mutation A314S in Ch-AChEl (corresponding to A201 in Torpedo californica AChE) that was consistently associated with the occurrence of resistance. This alanine residue is located in the characteristic'FGESAG'motif surrounding the active serine, and lies in the oxyanion hole that contributes to stabilizing the tetrahedral molecule during catatysis. The alanine to serine substitution changes the side group from-CH3 to-CH2OH, which is believed to alter the conformation of the adjacent serine of the catalytic triad and to affect the interaction between AChE and both substrates and inhibitors. The mutation A314S in Ch-AChEl is likely to be responsible for the AChE insensitivity to triazophos.
     3. Frequency of the mutation in field populations with different resistance
     The mutation GCG to TCG in Ch-acel removes an MspAl I restriction site from the wild type allele. An RFLP-PCR assay was therefore designed using primers able to amplify specifically a 758-bp fragment encompassing the mutation site in Ch-ace1 from genomic DNA, and by checking the digestion of the resulting fragment with MspAl I. The PCR product amplified from the wild type allele was completely cut into two pieces (534 bp and 224 bp long). That amplified from the heterozygote was partially cut and presented as three bands (758 bp,534 bp and 224 bp long), whereas that amplified from the mutated allele remained intact.
     With this method, individual larvae of C. suppressalis collected from different field sites were analysed, and results showed a strong correlation between mutation frequencies and levels of triazophos resistance. The RFLP-PCR assay developed to diagnose the A314S mutation in field populations provides a potentially valuable way of monitoring resistance and investigating the relative frequencies of resistance genotypes. It overcomes many of the difficulties encountered with time-consuming bioassays against C. suppressalis, and offers the prospect of a rapid and high throughput kit to assist with choosing insecticides and combating resistance in this species.
     4. Eukaryotic expression and transcript comparison in vivo of AChEs from rice stem borer
     Real-time PCR was performed to compare the transcript levels of Ch-AChEl and Ch-AChE2 from individual fourth-instar larva. The results showed that the transcript level of Ch-AChE1 was higher than Ch-AChE2's.
     Based on cloned AChEs from rice stem borer, the insect Bac-to-Bac expression system was selected to construct the eukaryotic expression plasmids of wild AChEl and AChE2. Meanwhile, plasmids of wild AChEl was changed into plasmids of mutant AChE1 by site-directed mutagenesis. The constructed donor plasmids of pFastBac1-AChE1、pFastBac 1-AChE2 and pFastBac 1-AChE 1 Mu were transfected into the DH10BAC, and then select the positive clone and extract the Bacmid, using Bacmid to transfect the Tn cells obtain the recombine virus, then amplificate the first generation virus and infect the Tn cells to express the target protein.
     All of the three recombinant proteins showed the obvious band through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. But the wild recombinant AChE1 and mutant showed no enzyme activity, the recombinant AChE2 showed enzyme activity.
引文
1.曹明章,沈晋良,张金振,吕梅,刘晓宇,周威君,2004.二化螟抗药性监测和对三唑磷抗性的遗传分析.中国水稻科学,18(1):73-79.
    2.曹明章,沈晋良,张绍明,周威君,张金振,吕梅,2003.2002年江苏省二化螟抗药性检测及治理.植物保护,29(5):34-37.
    3.曹明章,沈晋良,2005.二化螟对杀虫单抗性现实遗传力与遗传方式.中国水稻科学,19(5):447-452.
    4.曹明章,2004.二化螟抗药性监测、对三唑磷和杀虫单抗性遗传分析及对氟虫腈抗性风险评估.南京农业大学博士论文.
    5.陈振宇,关瑞峰,2004. 莆田县三化螟发生特点及相关因素分析.农业出版社:200-203.
    6.陈之浩,裴桦,刘小涛,李风良,1990.水稻二化螟抗药性研究初报.西南农业报,3(2):100-102.
    7.董双林,韩召军,Williamson, M.S.,2006.利用Bac-to-Bac系统表达棉蚜的乙酰胆碱酯酶.动物学研究,27(1):75-80.
    8.方继朝,杜正文,程遐年等,1998.水稻螟害上升态势与控害减灾对策分析.昆虫知识,35(4):193-197.
    9.关瑞峰,孔丽萍,2004.福建省水稻螟虫发生的演变及其原因分析.农业出版社:43-46.
    10.关瑞峰,姚文辉,王茂明,孔丽萍等,2008.福建省水稻螟虫种群发生变化及原因初探.华东昆虫学报,17(1):63-70.
    11.韩招久,2002.二化螟对杀虫单和甲胺磷的抗性机理及神经靶标乙酰胆碱受体的基因克隆.南京农业大学博士论文.
    12.黄绍华,刘琴乐,1997.湘北三代二化螟对杂交晚稻危害特点的研究.昆虫知识,34(6):321-323.
    13.胡仕孟,谢士杰,徐善刚,毛国孟,2001.浙江慈溪水稻二化螟抗药性研究初报.浙江农业学报,13(1):38-41.
    14.姜卫华,韩召军,张国华,2004. 氟虫腈对二化螟抗、感种群的亚致死效应.南京农业大学学报,27(2):51-54.
    15.蒋学辉,章强华,胡仕孟,谢士杰,徐喜刚,2001. 浙江省水稻二化螟抗药性现状与治理对策.植保技术与推广,21(3):27-29.
    16.蒋耀培,郭玉人,谭秀芳,龚才根,2003.上海地区水稻螟虫暴发原因和综合治理措施.植保技术与推广,23(2):6-8.
    17.江水明,潘战胜,刘火祥,2004.2003年余干县晚稻二化螟大发生原因及防治建议.江 西植保,27(2):82-83.
    18.昆虫知识编委会,2004.湖北省水稻1代二化螟发生严重.昆虫知识,4](4):8.
    19.梁沛,2001.小菜蛾对阿维菌素抗性的分子机制研究. 中国农业大学博士学位论文.
    20.陆玉荣,徐广和,苏建坤,刘琴等,2003.扬州地区二化螟抗性监测.安徽农业科学,31(1):123-124.
    21.吕亮,陈其志,张舒,杨小林,2007.湖北省水稻螟虫抗药性水平测定与分析.湖北农业科学,46(1):71-73.
    22.彭宇,陈长琨,韩召军,王荫长,2001.江苏省水稻二化螟的抗药性测定及对甲胺磷的抗性机制.植物保护学报,28(2):173-177.
    23.曲明静,韩召军,许新军,邵晓玲,田学志,符明龙,2005.二化螟对三唑磷的抗性发生动态与风险评估.南京农业大学学报,28(3):38-42.
    24.曲明静,许新军,韩召军,姜晓静,2006.二化螟抗药性研究现状.江西农业学报,18(6):109-111.
    25.尚稚珍,王银淑,邹永华,1979.二化螟饲养方法的研究.昆虫学报,22(2):164-167.
    26.盛承发,宣维健,焦晓国,苏建伟,邵庆春,宋凤斌,2002.我国稻螟暴发成灾的原因、趋势及对策.自然灾害学报,11(3):200-205.
    27.盛承发,2005. 我国稻螟灾害:暴发及对策.科技与社会,20(3):200-204.
    28.盛承发,王红托,盛世余等,2003.我国稻螟灾害的现状及损失估计.昆虫知识,40(4):289-294.
    29.石谋军,2005. 湖南省水稻二化螟抗药性监测及对三唑磷抗性机理初探:湖南农业大学博士论文..
    30.舒相石,肖欣,2005.水稻螟虫防治技术探讨.作物研究,19(1):30-32.
    31.唐振华,1993.昆虫抗药性及其治理.农业出版社,72-79.
    32.唐振华,吴士雄,2000.昆虫抗药性的遗传与进化,上海科学技术文献出版社,113-123.
    33.陶黎明,2005.昆虫抗药性及其治理对策的研究.中国科学院上海生命科学研究院植物生理生态研究所博士论文.
    34.田学志,高保宗,石家胜,尤子平等,1991.安庆地区水稻二化螟抗药性研究.安徽农业科学,1:61-66.
    35.王建强,汤金仪,张跃进,2004.我国水稻螟虫发生现状原因分析与治理对策.北京.农业出版社:3-8.
    36.王秋芽,廖标龙,2000.莱阳市水稻二化螟发生、演变及其防治措施.湖南农业科学,(3):36-35
    37.吴青君,张文吉,张友军等,2002.表皮穿透和GABAA受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报,45(3):336-340.
    38.伍一军,冷欣夫,2003.杀虫药剂的神经毒理学研究进展:昆虫学报,46(3):382-389.
    39.熊件妹,朱杏芬,肖海军,2006.南昌地区二化螟抗药性监测与治理.江西农业大学学报,28(6):877-880.
    40.徐心植,邓小强,1992. 江西省二化螟抗药性及其防治对策.江西农业学报,4(1):42-50.
    41.杨荣明,方继朝,朱叶芹,刁春友,2004.江苏省水稻螟虫发生的新特点及治理措施.江苏农业科学,1:52-54.
    42.杨亦桦,2005.棉铃虫对拟除虫菊酯氧化代谢抗性的生化与分子机理.南京农业大学博士学位论文.
    43.章士美,赵泳祥,1996.中国农林昆虫地理分布,208.
    44.赵学平,王强,吴长兴,戴芬,冯克强,2000.二化螟对杀虫剂的敏感性及抗药性研究.浙江农业学报,12(6):382-386.
    45.钟宝玉,邹寿发,张扬,李建丰等,2007.广东省水稻螟虫种群结构及其主要影响因素.广东农业科学,6:51-53.
    46.周圻,1990.防治稻螟四十年.昆虫知识,27(3):178-181.
    47.周小毛,2006.小菜蛾抗阿维菌素抗性的分子机理研究.华南农业大学博士学位论文.
    48.朱祚亮,曹诗红,蔡世凤,2008.宜都市水稻二化螟大发生的原因分析及防治对策.湖北植保,5:18-19.
    49. Adams, M. D., Celniker, S. E., Holt, R. A., Ibegwam, C., et al.2000. The genome sequence of Drosophila melanogaster. Science 287,2185-2195.
    50. Aldunate, R., Casar, J. C., Brandan, E., and Inestrosa, N. C.2004. Structural and functional organization of synaptic acetylcholinesterase. Brain Res Brain Res Rev 47,96-104.
    51. Alout, H., Berthomieu, A., Hadjivassilis, A., and Weill, M.2007. A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. Insect Biochem Mol Biol 37,41-47.
    52. Alout, H., and Weill, M.2008. Amino-acid substitutions in acetylcholinesterase 1 involved in insecticide resistance in mosquitoes. Chem Biol Interact 175,138-141.
    53. Amichot, M., Brun, A., Cuany, A., Helvig, C., Salaun, J. P., Durst, F., and Berge, J. B.1994. Expression study of cyp genes in drosophila strains rsistant or sensitive to insecticides. In: Lechner MC(Eds), Cytochrome P450. Paris:John Libbey Eurotext,689-692.
    54. Andrews, M. C., Callaghan, A., Field, L. M., Williamson, M. S., and Moores, G. D.2004. Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover. Insect Mol Biol 13,555-561.
    55. Anthony, N., Rocheleau, T., Mocelin, G., Lee, H. J., and ffrench-Constant, R.1995. Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti. FEBS Lett 368,461-465.
    56. Anthony, N., Unruh, T., Ganser, D., and Ffrench-Constant, R.1998. Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae. Mol Gen Genet 260,165-175.
    57. Ariel, N., Ordentlich, A., Barak, D., Bino, T., Velan, B., and Shafferman, A.1998. The 'aromatic patch' of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem J 335,95-102.
    58. Ashani, Y., Grunwald, J., Kronman, C., Velan, B., and Shafferman, A.1994. Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase. Mol Pharmacol 45,555-560.
    59. Axelsen, P. H., Harel, M., Silman, I., and Sussman, J. L.1994. Structure and dynamics of the active site gorge of acetylcholinesterase:synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Sci 3,188-197.
    60. Baek, J. H., Kim, J. I., Lee, D. W., Chung, B. K., Miyata, T., and Lee, S. H.2005. Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pestic Biochem Physiol 81,164-175.
    61. Barak, D., Kronman, C., Ordentlich, A., Ariel, N., Bromberg, A., Marcus, D., Lazar, A., Velan, B., and Shafferman, A.1994. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J Biol Chem 269,6296-6305.
    62. Bautisa, M. A. M., Tanaka, T., and Miyata, T.2007. Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella(L.) and the possibility of involvement in permethrin resistance. Pestic Biochem Physiol 87,85-93.
    63. Bautista, M. A., Miyata, T., Miura, K., and Tanaka, T.2009. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39,38-46.
    64. Benting, J., and Nauen, R.2004. Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypii mediates resistance to pirimicarb and omethoate. Pest Manag Sci 60,1051-1055.
    65. Bossy, B., Ballivet, M., and Spierer, P.1988. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J 7,611-618.
    66. Brandt, A., Scharf, M., Pedra, J. H., Holmes, G, Dean, A., Kreitman, M., and Pittendrigh, B. R.2002. Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Mol Biol 11,337-341.
    67. Brun, A., Cuany, A., Le Mouel, T, Berge, J., and Amichot, M.1996. Inducibility of the Drosophila melanogaster cytochrome P450-gene, CYP6A2,by phenobarbital in insecticide susceptible or resistant strains. Insect Biochem Mol Biol 26,697-703.
    68. Campbell, C. S.1998. Resistance and meaning:religious communities and human cloning. Valparaiso Univ Law Rev 32,607-631.
    69. Cassanelli, S., Reyes, M., Rault, M., Carlo Manicardi, G, and Sauphanor, B.2006. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.). Insect Biochem Mol Biol 36,642-653.
    70. Catterall, W. A.1986. Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55,953-985.
    71. Catterall, W. A.2000. From ionic currents to molecular mechanisms:the structure and function of voltage-gated sodium channels. Neuron 26,13-25.
    72. Chen, M. H., Han, Z. J., Qiao, X. F., and Qu, M. J.2007a. Mutations in acetylcholinesterase genes of Rhopalosiphum padi resistant to organophosphate and carbamate insecticides. Genome 50,172-179.
    73. Chen, M. H., Han, Z. J., Qiao, X. F., and Qu, M. J.2007b. Resistance mechanisms and associated mutations in acetylcholinesterase genes in Sitobion avenae(Fabricius). Pestic Biochem Physiol 87,189-195.
    74. Claudianos, C., Russell, R. J., and Oakeshott, J. G.1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol 29,675-686.
    75. Daborn, P. J., Yen, J. L., Bogwitz, M. R., Le Goff, G, Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., Batterham, P., Feyereisen, R., Wilson, T. G., and ffrench-Constant, R. H.2002. A single p450 allele associated with insecticide resistance in Drosophila. Science 297, 2253-2256.
    76. Enayati, A. A., Ranson, H.; and Hemingway, J.2005. Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14,3-8.
    77. Feyereisen, R., and Andersen, J. F.1995. Cytochrome P450 in the house fly:structure, catalytic activity and regulation of expression of CYP6A1 in an insecticide-resistant strain. Pestic Sci 43,233-239.
    78. Ffrench-Constant, R. H., Rocheleau, T. A., Steichen, J. C., and Chalmers, A. E.1993. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363,449-451.
    79. Field, L. M., Blackman, R. L., Tyler-Smith, C., and Devonshire, A. L.1999. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem J 339,737-742.
    80. Fournier, D., Berge, J. B., Cardoso de Almeida, M. L., and Bordier, C.1988. Acetylcholinesterases from Musca domestica and Drosophila melanogaster brain are linked to membranes by a glycophospholipid anchor sensitive to an endogenous phospholipase. J Neurochem 50,1158-1163.
    81. Fournier, D., Bride, J. M., Hoffmann, F., and Karch, F.1992. Acetylcholinesterase:Two types of modifications confer resistance to insecticide. J Biol Chem 267,14270-14274.
    82. Grant, D. F., Dietze, E. C., and Hammock, B. D.1991. Glutathione S-transferase isozymes in Aedes aegypti:purification, characterization, and isozyme specific regulation. Insect Biochem 4,421-433.
    83. Grant, D. F., and Hammock, B. D.1992. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti. Mol Gen Genet 234,169-176.
    84. Grauso, M., Reenan, R. A., Culetto, E., and Sattelle, D. B.2002. Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-Ⅰ pre-mRNA editing. Genetics 160,1519-1533.
    85. Guerrero, F. D., Jamroz, R. C., Kammlah, D., and Kunz, S. E.1997. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: identification of kdr and super-kdr point mutations. Insect Biochem Mol Biol 27,745-755.
    86. Guillemaud, T., Lenormand, T., Bourguet, D., Chevillon, C.,Pasteur, N., Raymond, M.,1998. Evolution of resistance in Culex pipiens:allele replacement and changing environment. Evolution. Evolution 52,443-453.
    87. Guzove, V. M., Unnithan, G. C., and Chernogolov, A. A.1998. A mitochondrial Cyto-chrome P450 from.the house fly. Arch Biochem Biophys 359,231-240.
    88. Hall, L. M., and Spierer, P.1986. The Ace locus of Drosophila melanogaster:structural gene for acetylcholinesterase with an unusual 5' leader. EMBO J 5,2949-2954.
    89. Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P. H., Silman, I., and Sussman, J. L.1993. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A 90,9031-9035.
    90. Harel, M., Sussman, J. L., Krejci, E., Bon, S., Chanal, P., Massoulie, J., and Silman, I.1992. Conversion of acetylcholinesterase to butyrylcholinesterase:modeling and mutagenesis. Proc Natl Acad Sci U S A 89,10827-10831.
    91. Hawkes, N. J., and Hemingway, J.2002. Analysis of the promoters for the beta-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus. Biochim Biophys Acta 1574,51-62.
    92. Hawkes, N. J., Janes, R. W., Hemingway, J., and Vontas, J.2005. Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin). Pestic Biochem Physiol 81,154-163.
    93. He, H., Chen, A. C., Davey, R. B., Ivie, G. W., and George, J. E.1999. Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle tick. Biochem Biophys Res Commun 261,558-561.
    94. Head, D. J., McCaffery, A. R., and Callaghan, A.1998. Novel mutations in the para-homologous sodium channel gene associated with phenotypic expression of nerve insensitivity resistance to pyrethroids in Heliothine lepidoptera. Insect Mol Biol 7,191-196.
    95. Heidari, R., Devonshire, A. L., Campbell, B. E., Bell, K. L., Dorrian, S. J., Oakeshott, J. G., and Russell, R. J.2004. Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochem Mol Biol 34,353-363.
    96. Heidari, R., Devonshire, A. L., Campbell, B. E., Dorrian, S. J., Oakeshott, J. G., and Russell, R. J.2005. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochem Mol Biol 35,597-609.
    97. Hemingway, J., Hawkes, N. J., McCarroll, L., and Ranson, H.2004a. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34,653-665.
    98. Hemingway, J.2004b. Taking aim at mosquitoes. Nature 430(7002),936.
    99. Huang, H. S., Hu, N. T., Yao, Y. E., Wu, C. Y, Chiang, S. W., and Sun, C. N.1998. Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem Mol Biol 28, 651-658.
    100. Huang, Y, Qiao, C., Williamson, M. S., and Devonshire, A. L.1997. Characterization of the acetylcholinesterase gene from insecticide-resistant houseflies(Musca domestica). Chin J Biotechnol 13,177-183.
    101. Jiang, X., Qu, M., Denholm, I., Fang, J., Jiang, W., and Han, Z.2009. Mutation in acetylcholinesterasel associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera:Pyralidae). Biochem Biophys Res Commun 378,269-272.
    102. Jones, A. K., Grauso, M., and Sattelle, D. B.2005a. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85,176-187.
    103. Jones, A. K., Marshall, J., Blake, A. D., Buckingham, S. D., Darlison, M. G., and Sattelle, D. B.2005b. Sgbetal, a novel locust(Schistocerca gregaria) non-alpha nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster Dbetal subunit. Invert Neurosci 5,147-155.
    104. Kakani, E. G., Ioannides, I. M., Margaritopoulos, J. T., Seraphides, N. A., Skouras, P. J., Tsitsipis, J. A., and Mathiopoulos, K. D.2008. A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance. Insect Biochem Mol Biol 38,781-787.
    105. Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., and Morin, S.2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochem Mol Biol 38,634-644.
    106. Kasai, S., and Scott, J. G. 2000. Over expression of cytochrome P450 CYP6D1 is associated with monooxygenase-mediated pyrethroid resistance in housflies from Geogia. Pestic Biochem Physiol 68,34-41.
    107. Kasai, S., Weerashinghe, I. S., Shono, T., and Yamakawa, M.2000. Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefasciatus Say. Insect Biochem Mol Biol 30, 163-171.
    108. Kim, H. J., Yoon, K. S., and Clark, J. M.2007. Functional analysis of mutations in expressed acetylcholinesterase that result in azinphosmethyl and carbofuran resistance in Colorado potato beetle. Pestic Biochem Physiol 88,181-190.
    109. Kim, J. I., Jung, C. S., Koh, Y. H., and Lee, S. H.2006. Molecular, biochemical and histochemical characterization of two acetylcholinesterase cDNAs from the German cockroach Blattella germanica. Insect Mol Biol 15,513-522.
    110. Kono, Y, and Tomita, T.2006. Amino acid substitutions conferring insecticide insensitivity in Ace-paralogous acetylcholinesterase. Pestic Biochem Physiol 85,123-132.
    111.Kozaki, T., Shono, T., Tomita, T., and Kono, Y.2001. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem Mol Biol 31,991-997.
    112. Kulkarni, A. P., and Hodgson, E.1980. Metabolism of insecticides by mixed function oxidase systems. Pharmacol Ther 8,379-475.
    113.Kwon, D. H., Choi B. R., Lee S. W., Clark J. M., and H., L. S.2009. Characterization of carboxylesterase-mediated pirimicarb resistance in Myzus persicae. Pesticide Biochemistry and Physiology 93,120-126.
    114. Le Goff, G, Boundy, S., Daborn, P. J., Yen, J. L., Sofer, L., Lind, R., Sabourault, C., Madi-Ravazzi, L., and ffrench-Constant, R. H.2003. Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem Mol Biol 33,701-708.
    115. Le Goff, G., Hamon, A., Berge, J., and Amichot, M.2005. Resistance to fipronil in Drosophila simulans:influence of two point mutations in the RDL GABA receptor subunit. J Neurochem 92,1295-1305.
    116. Lee, D. W., Choi, J. Y., Kim, W. T., Je, Y. H., Song, J. T., Chung, B. K., Boo, K. S., and Koh, Y. H.2007. Mutations of acetylcholinesterasel contribute to prothiofos-resistance in Plutella xylostella (L.). Biochem Biophys Res Commun 353,591-597.
    117. Lee, D. W., Kim, S. S., Shin, S. W., Kim, W. T., and Boo, K. S.2006. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenee). Biochim Biophys Acta 1760,125-133.
    118. Lee, H. J., Rocheleau, T., Zhang, H. G., Jackson, M. B., and ffrench-Constant, R. H.1993. Expression of a Drosophila GABA receptor in a baculovirus insect cell system. Functional expression of insecticide susceptible and resistant GABA receptors from the cyclodiene resistance gene Rdl. FEBS Lett 335,315-318.
    119. Lee, R. M., and Batham, P.1966. The activity and organophosphate inhibition of cholinesterases from susceptible and resistant ticks (Acari). Ent Exp Appl 9,13-24.
    120. Lee, S. H., Dunn, J. B., M., C. J., and Soderlund, D. M.1999. Molecular analysis of kdr-like resistance to pyrethroids in permethrin-resistant strain of Colorado potato beetle. Pestic Biochem Physiol 63,63-75.
    121. Lee, S. H., and Soderlund, D. M.2001. The V410M mutation associated with pyrethroid resistance in Heliothis virescens reduces the pyrethroid sensitivity of house fly sodium channels expressed in Xenopus oocytes. Insect Biochem Mol Biol 31,19-29.
    122. Lee, S. H., Yoon, K. S., Williamson, M. S., Goodson, S. J., Takano-Lee, M., Edman, J. D., Devonshire, A. L., and M., C. J.2000. Molecular Analysis of kdr-like Resistance in Permethrin-Resistant Strains of Head Lice, Pediculus capitis. Pestic Biochem Physiol 66, 130-143.
    123. Legay, C.2000. Why so many forms of acetylcholinesterase? Microsc Res Tech 49,56-72.
    124. Li, A., Yang, Y, Wu, S., Li, C., and Wu, Y.2006. Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera:Plutellidae). J Econ Entomol 99,914-919.
    125. Li, F., and Han, Z.2004. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochem Mol Biol 34,397-405.
    126. Liu, N., and Scott, J. G 1996. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochem Genet 34,133-148.
    127. Liu, Z., Valles, S. M., and Dong, K.2000. Novel point mutations in the German cockroach para sodium channel gene are associated with knockdown resistance (kdr) to pyrethroid insecticides. Insect Biochem Mol Biol 30,991-997.
    128. Liu, Z., Williamson, M. S., Lansdell, S. J., Denholm, I., Han, Z., and Millar, N. S.2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci U S A 102,8420-8425.
    129. Mansuy, D.1998. The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121,5-14.
    130. Martinez-Torres, D., Chandre, F., Williamson, M. S., Darriet, F., Berge, J. B., Devonshire, A. L., Guillet, P., Pasteur, N., and Pauron, D.1998. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7,179-184.
    131. Martinez-Torres, D., Foster, S. P., Field, L. M., Devonshire, A. L., and Williamson, M. S. 1999. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera:Aphididae). Insect Mol Biol 8,339-346.
    132. Miyazaki, M., Ohyama, K., Dunlap, D. Y., and Matsumura, F.1996. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly(Musca domestica). Mol Gen Genet 252,61-68.
    133. Molberg, W. K.1990. Understanding and combating agrochemical resistance.In:Green M B, Lebaron H M, Moberg M Keds. Managing Resistance to Agrochemicals. Washington: American Chemical Society.,1-15.
    134. Morin, S., Williamson, M. S., Goodson, S. J., Brown, J. K., Tabashnik, B. E., and Dennehy, T. J.2002. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem Mol Biol 32,1781-1791.
    135. Mutero, A., Pralavorio, M., Bride, J. M., and Fournier, D.1994. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci U S A 91, 5922-5926.
    136. Nabeshima, T., Kozaki, T., Tomita, T., and Kono, Y.2003. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem Biophys Res Commun 307,15-22.
    137. Nabeshima, T., Mori, A., Kozaki, T., Iwata, Y, Hidoh, O., Harada, S., Kasai, S., Severson, D. W., Kono, Y, and Tomita, T.2004. An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem Biophys Res Commun 313,794-801.
    138. Newcomb, R. D., Campbell, P. M., Ollis, D. L., Cheah, E., Russell, R. J., and Oakeshott, J. G. 1997a. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci U S A 94, 7464-7468.
    139. Newcomb, R. D., Campbell, P. M., Russell, R. J., and Oakeshott, J. G.1997b. cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem Mol Biol 27,15-25.
    140. Newcomb, R. D., Gleeson, D. M., Yong, C. G., Russell, R. J., and Oakeshott, J. G.2005. Multiple mutations and gene duplications conferring organophosphorus insecticide resistance have been selected at the Rop-1 locus of the sheep blowfly, Lucilia cuprina. J Mol Evol 60, 207-220.
    141.Nikou, D., Ranson, H., and Hemingway, J.2003. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318,91-102.
    142. Oakeshott, J. G, Devonshire, A. L., Claudianos, C., Sutherland, T. D., Home, I., Campbell, P. M., Ollis, D. L., and Russell, R. J.2005. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin-and carboxyl-esterases. Chem Biol Interact 157, 269-275.
    143. Oppenoorth, F. J., and van, A.1960. Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132,298-299.
    144. Ordentlich, A., Barak, D., Kronman, C., Ariel, N., Segall, Y., Velan, B., and Shafferman, A. 1995. Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase. J Biol Chem 270, 2082-2091.
    145. Ordentlich, A., Barak, D., Kronman, C., Ariel, N., Segall, Y, Velan, B., and Shafferman, A. 1998. Functional characteristics of the oxyanion hole in human acetylcholinesterase. J Biol Chem 273,19509-19517.
    146. Ortelli, F., Rossiter, L. C., Vontas, J., Ranson, H., and Hemingway, J.2003. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem J 373, 957-963.
    147. Park, Y, and Taylor, M. F.1997. A novel mutation L1029H in sodium channel gene hscp associated with pyrethroid resistance for Heliothis virescens (Lepidoptera:Noctuidae). Insect Biochem Mol Biol 27,9-13.
    148. Park, Y., Taylor, M. F., and Feyereisen, R.1997. A valine421 to methionine mutation in IS6 of the hscp voltage-gated sodium channel associated with pyrethroid resistance in Heliothis virescens F. Biochem Biophys Res Commun 239,688-691.
    149. Paton, M. G., Karunaratne, S. H., Giakoumaki, E., Roberts, N., and Hemingway, J.2000. Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem J 346,17-24.
    150. Pittendrigh, B., Aronstein, K., Zinkovsky, E., Andreev, O., Campbell, B., Daly, J., Trowell, S., and Ffrench-Constant, R. H.1997a. Cytochrome P450 genes from Helicoverpa armigera: expression in a pyrethroid-susceptible and-resistant strain. Insect Biochem Mol Biol 27, 507-512.
    151. Pittendrigh, B., Reenan, R., ffrench-Constant, R. H., and Ganetzky, B.1997b. Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Mol Gen Genet 256,602-610.
    152. Prapanthadara, L. A., and Ketterman, A. J.1993. Qualitative and quantitative changes in glutathione S-transferases in the mosquito Anopheles gambiae confer DDT-resistance. Biochem Soc Trans 21,304.
    153. Prapanthadara, L. A., Koottathep, S., Promtet, N., Hemingway, J., and Ketterman, A. J.1996. Purification and characterization of a major glutathione S-transferase from the mosquito Anopheles dirus (species B). Insect Biochem Mol Biol 26,277-285.
    154. Pridgeon, J. W., Zhang, L., and Liu, N.2003. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene 314, 157-163.
    155. Qu, M. J., Han, Z. J., Xu, X. J., and Yue, L. N.2003. Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker). Pestic Biochem Physiol 77,99-105.
    156. Radic, Z., Pickering, N. A., Vellom, D. C., Camp, S., and Taylor, P.1993. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl-and butyrylcholinesterase inhibitors. Biochemistry 32,12074-12084.
    157. Radic, Z., Reiner, E., and Taylor, P.1991. Role of the peripheral anionic site on acetylcholinesterase:inhibition by substrates and coumarin derivatives. Mol Pharmacol 39, 98-104.
    158. Radic, Z., and Taylor, P.2001. Peripheral site ligands accelerate inhibition of acetylcholinesterase by neutral organophosphates. J Appl Toxicol 21 Suppl 1,13-14.
    159. Ranasinghe, C., and Hobbs, A. A.1998:Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hubner):possible involvement of CYP6B7 in pyrethroid resistance. Insect Biochem Mol Biol 28,571-580.
    160. Ranson, H., Jensen, B., Vulule, J. M., Wang, X., Hemingway, J., and Collins, F. H.2000a. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 9, 491-497.
    161. Ranson, H., Jensen, B., Wang, X., Prapanthadara, L., Hemingway, J., and Collins, F. H. 2000b. Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol Biol 9,499-507.
    162. Ren, X., Han, Z., and Wang, Y.2002. Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hubner). Arch Insect Biochem Physiol 51,103-110.
    163. Rendic, S., and Di Carlo, F. J.1997. Human cytochrome P450 enzymes:a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29, 413-580.
    164. Rohl, C. A., Boeckman, F. A., Baker, C., Scheuer, T., Catterall, W. A., and Klevit, R. E.1999. Solution structure of the sodium channel inactivation gate. Biochemistry 38,855-861.
    165. Rose, R. L., Goh, D., Thompson, D. M., Verma, K. D., Heckel, D. G., Gahan, L. J., Roe, R. M., and Hodgson, E.1997. Cytochrome P450 (CYP)9A1 in Heliothis virescens:the first member of a new CYP family. Insect Biochem Mol Biol 27,605-615.
    166. Sabourault, C., Guzov, V. M., Koener, J. F., Claudianos, C., Plapp, F. W., Jr., and Feyereisen, R.2001. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdalphaE7) gene in resistant house flies. Insect Mol Biol 10, 609-618.
    167. Schuler, T. H., Martinez-Torres, D., Thomas, A. J., Denholm, I., Devonshire, A. L., Duce, I. . R., and Williamson, M. S.1998. Toxicological, electrophysiological, and molecular characterization of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.) Pestic Biochem Physiol 59,169-182.
    168. Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y, Cohen, S., Barak, D., and Ariel, N.1992. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J 11, 3561-3568.
    169. Smmisaert, H. R.1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphates. Science 143,129-131.
    170. Stewart, N. A., Mark, H., and Thomas, J.1989. Differences in Structure and Distribution of the Molecular Forms of Acetylcholinesterase. The J of Cell Bio 108,2301-2311.
    171. Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I. 1991. Atomic structure of acetylcholinesterase from Torpedo californica:a prototypic acetylcholine-binding protein. Science 253,872-879.
    172. Taylor, P., and Radic, Z.1994. The cholinesterases:from genes to proteins. Annu Rev Pharmacol Toxicol 34,281-320.
    173.Tomita, T., and Scott, J. G.1995. cDNA and deduced protein sequence of CYP6D1:the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly. Insect Biochem Mol Biol 25,275-283.
    174. Vaughan, A., Hawkes, N., and Hemingway, J.1997. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem J 325,359-365.
    175. Villatte, F., and Bachmann, T. T.2002. How many genes encode cholinesterase in arthropods? Pesticide Biochem. Physiol 73,122-129.
    176. Vontas, J. G, Hejazi, M. J., Hawkes, N. J., Cosmidis, N., Loukas, M., Janes, R. W., and Hemingway, J.2002a. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol Biol 11,329-336.
    177. Vontas, J. G., Small, G. J., and Hemingway, J.2000. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stal). Insect Mol Biol 9,655-660.
    178. Vontas, J. G, Small, G. J., and Hemingway, J.2001. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357,65-72.
    179. Vontas, J. G, Small, G. J., Nikou, D. C., Ranson, H., and Hemingway, J.2002b. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362, 329-337.
    180. Voss, G, and Matsumura, F.1964. Resistance to Organophosphorus Compounds in the Two-Spotted Spider Mite:2 Different Mechanisms of Resistance. Nature 202,319-320.
    181. Walsh, S. B., Dolden, T. A., Moores, G. D., Kristensen, M., Lewis, T., Devonshire, A. L., and Williamson, M. S.2001. Identification and characterization of mutations in housefly(Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J 359,175-181.
    182. Wang, X. P., and Hobbs, A. A.1995. Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect Biochem Mol Biol 25,1001-1009.
    183. Wei, S. H., Clark, A. G, and Syvanen, M.2001. Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochem Mol Biol 31, 1145-1153.
    184. Weill, M., Fort, P., Berthomieu, A., Dubois, M. P., Pasteur, N., and Raymond, M.2002. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc Biol Sci 269,2007-2016.
    185. Weill, M., Lutfalla, G., Mogensen, K., Chandre, F., Berthomieu, A., Berticat, C., Pasteur, N., Philips, A., Fort, P., and Raymond, M.2003. Comparative genomics:Insecticide resistance in mosquito vectors. Nature 423,136-137.
    186. Williamson, M. S., Martinez-Torres, D., Hick, C. A., and Devonshire, A. L.1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet 252,51-60.
    187. Zhu, F., Li, T., Zhang, L., and Liu, N.2008. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiol 8,18.
    188. Zhu, F. Y., Lee, S. H., and M., C. J.1996. A Point Mutation of Acetylcholinesterase Associated with Azinphosmethyl Resistance and Reduced Fitness in Colorado Potato Beetle Pestic Biochem Physiol 55,100-108.
    189. Zhu, Y. C., and Snodgrass, G. L.2003. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. Insect Mol Biol 12,39-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700