纹状体—苍白球GABA和神经降压素能递质系统的功能学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苍白球(globus pallidus, GP)是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。形态学研究证实苍白球接受来自纹状体的Y-氨基丁酸(Gamma-aminobutyric acid, GABA)和神经降压素(neurotensin, NT)能纤维支配,并表达相应受体。GABA是脑内最主要的抑制性递质。在帕金森病状态下苍白球GABAA受体表达降低,然而GABA含量明显增强。苍白球微量注射GABAA受体阻断剂bicuculline可以缓解帕金森病运动减少等症状。神经降压素是由13个氨基酸组成的肽类物质。在中枢神经系统,神经降压素作为神经递质或神经调质发挥重要作用,并且与中枢神经系统疾病密切相关。在6-羟基多巴胺(6-hydroxydopamine,6-OHDA)损毁的大鼠,全身给予一种可以穿过血脑屏障的神经降压素类似物,可以产生抗帕金森病效应。目的:探讨正常及帕金森病状态下苍白球内源性GABA和神经降压素的效应。方法:细胞外电生理记录,行为学,免疫组织化学等实验方法。
     结果:
     1.正常大鼠苍白球微量注射GABAA受体阻断剂gabazine可以使苍白球神经元放电频率由15.9±1.8 Hz升高到19.4±2.1 Hz,平均增加28.3±3.3%,与生理盐水组相比明显增强,差别有统计学意义(P<0.001)。
     2.在6-OHDA帕金森病模型大鼠损毁侧,gabazine对苍白球神经元的兴奋效应(46.0%)比未损毁侧(21.5%)和正常大鼠(28.3%)明显增强,差别有统计学意义(P<0.05)。
     3.在正常和帕金森病模型大鼠,gabazine引起的兴奋效应与苍白球神经元基础放电频率呈负相关性。
     4. GABAB受体阻断剂CGP55845仅能使正常和帕金森病模型大鼠苍白球神经元产生微弱的兴奋效应,与生理盐水组相比差别没有统计学意义(P>0.05)。
     5.在正常大鼠,单侧苍白球微量注射gabazine产生明显的对侧旋转行为(27.0±3.5圈/60min, n=8),与生理盐水对照组(2.3±0.8圈/60min, n=6)相比明显增加,差别有统计学意义(P<0.001)。在6-OHDA帕金森病模型大鼠损毁侧苍白球,微量注射gabazine可以增加由阿朴吗啡诱导的旋转圈数(25.5%),与生理盐水对照组(2.5%)相比明显增加,差别有统计学意义(P<0.01)。
     6.免疫组化染色显示在6-OHDA帕金森病模型大鼠损毁侧,苍白球GABAA受体al亚单位表达明显降低(P<0.01)。
     7.神经降压素可以兴奋正常和帕金森病模型大鼠苍白球神经元,使其放电频率增加(P<0.001)。神经降压素在帕金森病模型大鼠未损毁侧苍白球引起的兴奋效应(95.9%)比损毁侧(37.3%)和正常大鼠(48.3%)明显增强,差别有统计学意义(P<0.05)。
     8.双侧苍白球微量注射神经降压素可以缓解氟哌啶醇所致的僵直症状(P<0.05)。这种效应可以被选择性神经降压素1型受体拮抗剂SR48692阻断。
     9.在氟哌啶醇条件下,神经降压素可以兴奋苍白球神经元,放电频率由11.3±1.6Hz升高到14.8±1.9 Hz,平均增加34.9±3.2%(P<0.001)。这种效应可以被SR48692所阻断。
     10.正常大鼠侧脑室微量注射神经降压素可明显提高纹状体内多巴胺(dopamine,DA)含量(P<0.01)。6-OHDA帕金森病模型大鼠损毁侧纹状体DA含量与未损毁侧和正常大鼠相比明显降低(P<0.001)。损毁侧纹状体DA更新率(DOPAC+HVA)/DA、DOPAC/DA、HVA/DA均明显高于未损毁侧和正常大鼠(P<0.001)。帕金森病模型大鼠侧脑室微量注射神经降压素可明显提高损毁侧和未损毁侧纹状体DA含量(P<0.05)。
     结论:Gabazine可以兴奋苍白球神经元,增加由阿朴吗啡诱导的帕金森病模型大鼠的旋转圈数,提示阻断苍白球内源性GABAA受体可以拮抗帕金森病状态下过度的纹状体-苍白球GABA能纤维支配。神经降压素通过激活神经降压素1型受体兴奋苍白球神经元,而且神经降压素还可以增加纹状体多巴胺含量。上述实验结果为苍白球GABA和神经降压素等递质系统抗帕金森病的机制提供了一定的理论和实验依据。
The globus pallidus is an important structure in the indirect pathway of the basal ganglia circuit. By innervating all the other basal ganglia nuclei, the globus pallidus plays a critical role in movement regulation. Morphological studies have revealed a high level of GABA and GABAA receptors in the globus pallidus. The expression of GABAA receptors in the globus pallidus was decreased under parkinsonian state, while the GABA content was increased. Early studies have revealed that microinjection of GABAA receptor antagonist, bicuculline, into the globus pallidus had marked antiparkinsonian effects. Neurotensin is a tridecapeptide which plays an important role in the central nervous system by acting either as a neurotransmitter or a neuromodulator. Systemic administration of a neurotensin analog that can cross the blood-brain barrier produced antiparkinsonian effects in 6-hydroxydopamine (6-OHDA)-lesioned rats. Morphological studies have indicated that the globus pallidus receives neurotensinergic innervation from the striatum, and both neurotensin type-1 and type-2 receptors are present in the globus pallidus. Object:To investigate the effects of endogenous GABA and neurotensin in the globus pallidus of normal and parkinsonian rats. Methods:in vivo extracellular recording, behavioral tests and immunohistochemistry were performed in the present studies. Results:
     1. In normal rats, micro-pressure ejection of GABAA receptor antagonist, gabazine, increased the spontaneous firing rate of pallidal neurons from 15.9±1.8 Hz to 19.4±2.1 Hz. The average increase was 28.3±3.3%, which was significantly different (P<0.001) from that of vehicle (normal saline) injection.
     2. In 6-OHDA parkinsonian rats, gabazine increased the firing rate by 46.0% on the lesioned side, which was significantly greater than that on the unlesioned side (21.5%, P<0.05), as well as that in normal rats (28.3%, P<0.05).
     3. A negative correlation between gabazine-induced excitation and the basal firing rate was observed in globus pallidus neurons of both normal and 6-OHDA parkinsonian rats.
     4. Micro-pressure ejection of GABAB receptor antagonist, CGP55845, only produced a weak increase in the firing rate of globus pallidus neurons in normal and parkinsonian rats, which was not significantly different from that of control group (P>0.05).
     5. In the behaving rats, unilateral microinjection of gabazine evoked consistent contralateral rotation in normal rats (P<0.001), and significantly potentiated apomorphine-induced contralateral rotations in 6-OHDA parkinsonian rats (P<0.01).
     6. The expression of GABAA receptor al subunit was decreased in the globus pallidus on the lesioned side of 6-OHDA lesioned rats (P<0.01).
     7. Micro-pressure ejection of neurotensin into the globus pallidus increased the spontaneous firing rate of pallidal neurons in normal and 6-OHDA parkinsonian rats (P<0.001). The neurotensin-induced increase in firing rate of globus pallidus on unlesioned side (95.9%) was stronger than that on lesioned side (37.3%, P<0.05) and normal rats (48.3%, P<0.05).
     8. Bilateral microinjection of neurotensin into the globus pallidus significantly attenuated haloperidol-induced catalepsy (P<0.05). This anticataleptic effect was completely counteracted by SR48692.
     9. Microinjection of neurotensin excited pallidal neurons from 11.3±1.6 Hz to 14.8±1.9 Hz in the presence of systemic haloperidol administration. The average increase was 34.9±3.2% (P<0.001). SR48692 blocked the excitatory effect induced by neurotensin.
     10. In normal rats, intracerebroventricular microinjection of neurotensin significantly elevated the concentration of dopamine in the striatum (P<0.01). In 6-OHDA parkinsonian rats, the striatal dopamine level on the lesioned side was significantly decreased compared with that on the unlesioned side and normal rats (P<0.001), while the turnover ratio, (DOPAC+HVA)/DA, DOPAC/DA and HVA/DA, were significantly increased (P<0.001). Furthermore, microinjection of neurotensin significantly elevated the striatal dopamine level on both sides of 6-OHDA parkinsonian rats (P<0.05).
     Conclusion:The present study indicated that gabazine increased the spontaneous firing rate of globus pallidus neurons and potentiated apomorphine-induced contralateral rotation in 6-OHDA lesioned rats. Therefore, blockade of GABAA receptors in globus pallidus could counteract the excessive striato-pallidal activity under parkinsonian state. Neurotensin increased the activity of globus pallidus neurons and also increased the dopamine level in striatum on both normal and 6-OHDA parkinsonian rats. The present electrophysiological, behavioral and immunohistochemical studies may provide a rational for further investigations into the potential of pallidal GABAergic and neurotensinergic neurotransmission in the treatment of Parkinson's disease.
引文
1. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990; 13,266-271.
    2. Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neuroscience. 2001; 21,32-38.
    3. DeLong MR. Activity of pallidal neurons during movement. J Neurol. 1971; 34,414-427.
    4. Hebb MO, Robertson HA. Synergistic influences of the striatum and the globus pallidus on postural and locomotor control. Neuroscience. 1999; 90,413-421.
    5. Lozano A, Hutchison S, Kiss Z, Tasker R, Davis K, Dostromxky J. Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg. 1996; 84,194- 202.
    6. Albin RL, Young AB, Penny JB. The functional anatomy of basal ganglia disorders Trends Neurosci. 1989; 12, 366-375.
    7. Wichmann T, Delong MR. 1996. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol. 1996; 6,751-758.
    8. El-Deredy W, Branston NM, Samuel M, Schrag A, Rothwell JC, Thomas DG, Quinn NP. Firing patterns of pallidal cells in parkinsonian patients correlate with their pre-pallidotomy clinical scores. Neuroreport. 2000; 11,3413- 3418.
    9. Oertel WH, Nitsch C, Mugnaini E. Immunocytochemical demonstration of the GABA-ergic neurons in rat globus pallidus and nucleus entopeduncularis and their GABA-ergic innervation. Adv Neurol. 1984; 40,91-98.
    10. Zhang JH, Sato M, Tohyama M. Different postnatal development profiles of neurons containing distinct GABAA receptor beta subunit mRNAs in the rat forebrain. J Comp Neurol. 1991; 308, 586-613.
    11. Bolam JP, Smith Y. The striatum and the globus pallidus send convergent synaptic inputs onto single cells in the entopeduncular nucleus of the rat: a double anterograde labelling study combined with postembedding immunocytochemistry for GABA. J Comp Neurol. 1992; 321, 456-476.
    12. Shink E, Smith Y. Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol. 1995; 358,119-141.
    13. Bowery N, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987; 20,365-383.
    14. Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992; 12, 1040-1062.
    15. Peng Z, Hauer B, Mihalek RM, Homanics GE, Sieghart W, Olsen RW, Houser CR. GABA (A) receptor changes in delta subunit-deficient mice: altered expression of alpha4 and gamma2 subunits in the forebrain. J Comp Neurol. 2002; 446,179-197.
    16. Macdonald RL, Olsen RW. GABAA receptor channels. Annu Rev Neuroscience. 1994; 17, 569-602.
    17. Sieghart W. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev. 1995; 47,181-234.
    18. Robertson RG, Clarke CA, Boyce S, Sambrook MA, Crossman AR. The role of striatopallidal neurones utilizing gamma-aminobutyric acid in the pathophysiology of MPTP-induced Parkinsonism in the primate: evidence from [3H] flunitrazepam autoradiography. Brain Res. 1990; 531,95-104.
    19. Calon F, Goulet M, Blanchet PJ, Martel JC, Piercey MF, Bedard PJ, Di Paolo T. Levodopa or D2 agonist induced dyskinesia in MPTP monkeys: correlation with changes in dopamine and GABAA receptors in the striatopallidal complex. Brain Res.1995; 680, 43-52.
    20. Pan HS, Penney JB, Young AB. Gamma-aminobutyric acid and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. J Neurochem. 1985; 45,1396-1404.
    21. Griffiths PD, Sambrook MA, Perry R, Crossman AR. Changes in benzodiazepine and??acetylcholine receptors in the globus pallidus in Parkinson's disease. J Neurol Sci. 1990; 100,131-136.
    22. Chadha A, Dawson LG, Jenner PG., Duty S. Effect of unilateral 6-hydroxydopamine lesions of thenigrostriatal pathway on GABA (A) receptor subunit gene expression in the rodent basal gangliaand thalamus. Neuroscience. 2000; 95,119-126.
    23. Robertson RG, Graham WC, Sambrook MA, Crossman AR. Further investigations into thepathophysiology of MPTP-induced parkinsonism in the primate: an intracerebral microdialysisstudy of gamma-aminobutyric acid in the lateral segment of the globus pallidus. Brain Res. 1991;563,278-280.
    24.Ochi M, Koga K, Kurokawa M, Kase H, Nakamura J, Kuwana Y. Systemic administration ofadenosine A (2A) receptor antagonist reverses increased GABA release in the globus pallidus ofunilateral 6-hydroxydopamine-lesioned rats: a microdialysis study. Neuroscience. 2000; 100,53-62.
    25.Schroeder JA, Schneider JS. ABA-opioid interactions in the globus pallidus:[D-Ala2]-Met-enkephalinamide attenuates potassium-evoked GABA release after nigrostriatallesion. J Neurochem. 2002; 82,666-673.
    26.Kinkead B, Binder EB, Nemeroff CB. Does neurotensin mediate the effects of antipsychoticdrugs? Biol Psychiatry. 1999; 46,340-351.
    27.Vincent P, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci.1999; 20,302-309.
    28.Tyler-McMahon BM, Boules M, Richelson E. Neurotensin: peptide for' the next millennium.Regul Pept. 2000; 93,125-136.
    29.Garver DL, Bissette G, Yao JK, Nemeroff CB. Relation of CSF neurotensin concentrations tosymptoms and drug response of psychotic patients. Am J Psychiatry. 1991; 148,484-488.
    30.Bissette G, Nemeroff CB, Decker MW, Kizer JS, Agid Y, Javoy-Agid F. Alterations in regionalbrain concentrations of neurotensin and bombesin in Parkinson's disease. Ann Neurol. 1985; 17,324-328.
    31.Le F, Cusack B, Richelson E. The neurotensin receptor: is there more than one subtype? TrendsPharmacol Sci. 1996; 17,1-3.
    32.Nicot A, Rostene W, Berod A. Neurotensin receptor expression in the rat forebrain and midbrain:a combined analysis by in situ hybridization and receptor autoradiography. J Comp Neurol. 1994;341,407-419.
    33.Sarret P, Krzywkowski P, Segal L, Nielsen MS, Petersen CM, Mazella J, Stroh f, Beaudet A.Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. JComp Neurol. 2003a; 461,483-505.
    34.Palacios JM, Kuhar MJ. Neurotensin receptors are located on dopamine-containing neurones inrat midbrain. Nature. 2003; 294,587-589.
    35.Fernandez A, Jenner P, Marsden CD, De Ceballos ML Activity in human basal ganglia:increased neurotensin levels in substantia nigra in ParCharacterization of neurotensin-likeimmunorkinson's disease. Peptides. 1995; 16,339-346.
    36.Chinaglia G, Probst A, Palacios JM. Neurotensin receptors in Parkinson's disease and progressivesupranuclear palsy: an autoradiographic study in basal ganglia. Neuroscience. 1990; 39,351-360.
    37.Cadet JL, Kujirai K, Przedborski S. Bilateral modulation of [3H] neurotensin binding byunilateral intrastriatal 6-hydroxydopamine injections; evidence from a receptor autoradiographicstudy. Brain Res. 1991; 564,37-44.
    38.Ferraro L, O'Connor WT, Antonelli T, Fuxe K, Tanganelli S. Differential effects of intrastriatalneurotensin (1-13) and neurotensin (8-13) on striatal dopamine and pallidal GABA release; adual-probe microdialysis study in the awake rat. Eur-J Neurosci. 1997; 9,1838-1846.
    39.Boules M, Warrington L, Fauq A, McCormick D, Richelson E. Antiparkinson-like effects of anovel neurotensin analog in unilaterally 6-hydroxydopamine lesioned rats. Eur J Pharmacol. 2001;428,227-233.
    40.Martorana A. Fusco FR, D'Angelo V, Sancesario G, Bernardi G. Enkephalin, neurotensin, andsubstance P immunoreactivite neurones of the rat GP following 6-hydroxydopamine lesion of thesubstantia nigra. Exp Neurol. 2003; 183,311-319.
    41.Kita H. Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat.??Brain Res.1992; 589,84-90.
    42. Fernandez A, De Ceballos ML, Jenner P, Marsden CD. Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson's disease patients. Neuroscience. 1994; 61, 73-79.
    43. McCormick SE, Stoessl AJ. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia. Neuroscience. 2003; 119,547-555.
    44. Chen L, Yung KKL, Yung WH. Neurotensin'depolarizes globus pallidus neurons in rats via neurotensin type-1 receptor. Neuroscience. 2004; 125,853-859.
    45. Maneuf YP, Mitchell IJ, Crossman AR, Brotchie JM. On the role of enkephalin cotransmission in the GABAergic striatal efferents to the globus pallidus. Exp Neurol. 1994; 125,65-71.
    46. Paxinos G, Watso C. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York. 1986
    47. Kelland MD, Soltis RP, Anderson LA, Bergstrom DA, Walters JR. In vivo characterization of two cell types in the rat globus pallidus which have opposite responses to dopamine receptor stimulation: comparison of electrophysiological properties and responses to apomorphine, dizocilpine, and ketamine anesthesia. Synapse. 1995; 20,338-350.
    48. Kita H. Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat. Brain Res.1992; 589,84-90.
    49. Querejeta E, Delgado A, Valdiosera R, Erlij D, Aceves J. Intrapallidal D2 dopamine receptors control globus pallidus neuron activity in the rat. Neurosci Lett. 2001; 300,79-82.
    50. Cobb WS, Abercrombie ED. Relative involvement of globus pallidus and subthalamic nucleus in the regulation of somatodendritic dopamine release in substantia nigra is dopamine-dependent. Neuroscience. 2003; 119,777-786.
    51. Galvan A, Villalba RM, West SM, Maidment NT, Ackerson LC, Smith Y, Wichmann T. GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters. J Neurophysiol. 2005; 94,990-1000.
    52. Matsumura M, Tremblay L, Richard H, Filion M. Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neuroscience. 1995; 65,59-70.
    53. Kita H, Nambu .A, Kaneda K, Tachibana Y, Takada M. Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol. 2004; 92,3069-3084.
    54. Yu TS, Wang SD, Liu JC, Yin HS. Changes in the gene expression of GABA (A) receptor alphal and alpha2 subunits and metabotropic glutamate receptor 5 in the basal ganglia of the rats with unilateral 6-hydroxydopamine lesion and embryonic mesencephalic grafts. Exp Neurol. 2001; 168,231-241.
    55. Nielsen KM, Soghomonian JJ. Normalization of glutamate decarboxylase gene expression in the entopeduncular nucleus of rats with a unilateral 6-hydroxydopamine lesion correlates with increased GABAergic input following intermittent but not continuous levodopa. Neuroscience. 2004; 123,31-42.
    56. Katz J, Nielsen KM, Soghomonian JJ. Comparative effects of acute or chronic administration of levodopa to 6-hydroxydopaminelesioned rats on the expression of glutamic acid decarboxylase in the neostriatum and GABAA receptors subunits in the substantia nigra, pars reticulata. Neuroscience. 2005; 132,833-842.
    57. Soghomonian JJ, Chesselet MF. Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat. Synapse. 1992; 11,124-133.
    58. Billings LM, Marshall JF. Glutamic acid decarboxylase 67 mRNA regulation in two globus pallidus neuron populations by dopamine and the subthalamic nucleus. J Neurosci. 2004; 24, 3094-3103.
    59. Soares J, Kliem MA, Betarbet R, Greenamyre JT, Yamamoto B, ,Wichmann T. Role of External Pallidal Segment in Primate Parkinsonism: Comparison of the Effects of l-Methyl-4-Phenyl-l,2,3,6-Tetrahydropyridine-Induced Parkinsonism and Lesions of the External Pallidal Segment. J Neurosci. 2004; 24,6417-6426.
    60. Araki T, Matsubara M, Fujihara K, Kato H, Imai Y, Itoyama Y. Gamma-aminobutyric acidA and??benzodiazepine receptor alterations in the rat brain after unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. Neurol Res. 2002; 24,107-112.
    61. Chen L, Wang HT, Han XH, Li YL, Cui QL, Xie JX. Behavioral and electrophysiological effects of pallidal GABAB receptor activation and blockade on haloperidol-induced akinesia in rats. Brain Res. 2008; 1244,65-70.
    62. Turgeon SM, Albin RL. Postnatal ontogeny of GABAB binding in rat brain. Neuroscience. 1994; 62,601-613.
    63. Windels F, Kiyatkin EA. GABAergic mechanisms in regulating the activity state of substantia nigra pars reticulata neurons. Neuroscience. 2006; 140,1289-1299.
    64. Kita H, Kitai ST. Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res.1991; 564,296-305.
    65. Cooper AJ, Stanford IM. Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J Physiol. 2000; 527,291-304.
    66. Chan CS, Surmeier DJ, Yung WH. Striatal information signaling and integration in globus pallidus: timing matters. Neurosignals. 2005; 14,281-289.
    67. Herrera-Marschitz M, Ungerstedt U. The dopamine-gamma aminobutyric acid interaction in the striatum of the rat is di rently regulated by dopamine D-1 and D-2 types of receptor: evidence obtained with rotational behavioral experiments. Acta Physiol Scand. 1987; 129,371-380.
    68. Aiko Y, Hosokawa S, Shima F, Kato M, Kitamura K. Alterations in local cerebral glucose utilization during electrical stimulation of the striatum and globus pallidus in rat. Brain Res, 1988; 442, 43-52.
    69. Sanudo-Pena MC, Walker JM. Effect of intrapallidal cannabinoids on rotational behavior in rats: interactions with the dopaminergic system. Synapse. 1998; 28,27-32.
    70. Chen L, Yung WH. Effects of the GABA-uptake inhibitor tiagabine in rat globus pallidus. Exp Brain Res. 2003; 152,263-269.
    71. Chen L, Savio Chan C, Yung WH. Electrophysiological and behavioral effects of zolpidem in rat globus pallidus. Exp Neurol. 2004; 186,212-220.
    72. Maneuf YP, Mitchell II, Crossman AR, Brotchie JM. On the role of enkephalin cotransmission in the GABAergic striatal efferents to the globus pallidus. Exp Neurol. 1994; 125, 65-71.
    1. Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr. 1960; 38,1236-1239.
    2. Mounayar S, Boulet S, Tande D, Jan C, Pessiglione M, Hirsch EC, Feger J, Savasta M, Francois C, Tremblay L. A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain.2007; 130,2898-2914.
    3. El-Deredy W, Branston NM, Samuel M, Schrag A, Rothwell JC, Thomas DG, Quinn NP. Firing patterns of pallidal cells in parkinsonian patients correlate with their pre-pallidotomy clinical scores. Neuroreport.2000; 11,3413-3418.
    4. Starr PA, Rau GM, Davis V, Marks WJ, Ostrem JL, Simmons D, Lindsey N, Turner RS. Spontaneous pallidal neuronal activity in human dystonia:comparison with Parkinson's disease and normal macaque. J Neurophysiol.2005; 93,3165-3176.
    5. Soares J, Kliem MA, Betarbet R, Greenamyre JT, Yamamoto B, Wichmann T. Role of External Pallidal Segment in Primate Parkinsonism:Comparison of the Effects of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism and Lesions of the External Pallidal Segment. J Neurosci.2004; 24,6417-6426.
    6. Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci.1998;21,32-38.
    7. Magnin M, Morel A, Jeanmonod D. Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience.2000; 96,549-564.
    8. Raz A, Vaadia E, Bergman H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci.2000; 20,8559-8571.
    9. Wichmann T, Soares J. Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J Neurophysiol. 2006; 95,2120-2133.
    10. Sarret P, Krzywkowski P, Segal L, Nielsen MS, Petersen CM, Mazella J, Stroh T, Beaudet A. Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. J Comp Neural.2003a; 461,483-505.
    11. Fassio A, Evans G, Grisshammer R, Bolam JP, Mimmack M, Emson PC. Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology.2000; 39,1430-1142.
    12. Hokfelt T, Broberger C, Xu ZQD, Sergeyev V, Ubink R, Diez M. Neuropeptides:an overview. Neuropharmacology.2000:39,1337-1356.
    13. Boules M, Warrington L, Fauq A, McCormick D, Richelson E. Antiparkinson-like effects of a novel neurotensin analog in unilaterally 6-hydroxydopamine lesioned rats. Eur J Pharmacol.2001; 428,227-233.
    14. Paxinos G, Watso C. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York. 1986.
    15. Kelland MD, Soltis RP, Anderson LA, Bergstrom DA, Walters JR. In vivo characterization of two cell types in the rat globus pallidus which have opposite responses to dopamine receptor stimulation:comparison of electrophysiological properties and responses to apomorphine, dizocilpine, and ketamine anesthesia. Synapse.1995; 20,338-350.
    16. Breit S, Bouali-Benazzouz R, Popa RC, Gasser T, Benabid AL, Benazzouz A. Effects of 6-hydroxydopamine-induced severe or partial lesion of the nigrostriatal pathway on the neuronal activity of pallido-subthalamic network in the rat. Exp Neurol.2007; 205,36-47.
    17. Chang JY, Shi LH, Luo F, Woodward DJ. Neural responses in multiple basal ganglia regions following unilateral dopamine depletion in behaving rats performing a readmill locomotion task. Exp Brain Res.2006; 172,193-207.
    18. Soares J, Kliem MA, Betarbet R, Greenamyre JT, Yamamoto B, Wichmann T. Role of External Pallidal Segment in Primate Parkinsonism:Comparison of the Effects of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism and Lesions of the External Pallidal Segment. J Neurosci.2004; 24:6417-6426.
    19. Morin AJ, Tajani M, Jones BE, Beaudet A. Spatial relationship between neurotensinergic axons and cholinergic neurons in the rat basal forebrain:a light microscopic study with three-dimensional reconstruction. J Chem Neuroanat.1996; 10,147-156.
    20. Alexander MJ, Leeman SE. Widespread expression in adult rat forebrain of mRNA encoding high-affinity neurotensin receptor. J Comp Neurol.1998; 402,475-500.
    21. Brauth SE, Kitt CA, Reiner A, Quirion R. Neurotensin binding sites in the forebrain and midbrain of the pigeon. J Comp Neurol.1986; 253,358-373.
    22. Palacios JM, Chinaglia G, Rigo M, Ulrich J, Probst A. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia. Synapse.1991;7,114-122.
    23. Ruskin DN, Rawji SS, Walters JR. Effects of full D1 dopamine receptor agonists on firing rates in the globus pallidus and substantia nigra pars compacta in vivo:tests for D1 receptor selectivity and comparisons to the partial agonist SKF 38393. J Pharmacol Exp Ther.1998; 286,272-281.
    24. Martorana A, Fusco FR, D'Angelo V, Sancesario G, Bernardi G. Enkephalin, neurotensin, and substance P immunoreactivite neurones of the rat GP following 6-hydroxydopamine lesion of the substantia nigra. Exp Neurol.2003; 183,311-319.
    25. McCormick SE, Stoessl AJ. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia. Neuroscience.2003; 119,547-555.
    26. Sarret P, Perron A, Stroh T, Beaudet A. Immunohistochemical distribution of NTS2 neurotensin receptors in the rat central nervous system. J Comp Neurol.2003b; 461,520-538.
    27. Fernandez A, de Ceballos ML, Jenner P, Marsden CD. Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson's disease patients. Neuroscience. 1994; 61,73-79.
    28. Masuo Y, Montagne MN, Pelaprat D, Scherman D, Rostene W. Regulation of neurotensin-containing neurons in the rat striatum. Effects of unilateral striatal lesions with quinolinic acid and ibotenic acid on neurotensin content and its binding site density. Brain Res. 1990; 520,6-13.
    29. Herve D, Tassin JP, Studler JM, Dana C, Kitabgi P, Vincent JP, Glowinski J, Rostene W. Dopaminergic control of 1251-labeled neurotensin binding site density in corticolimbic structures of the rat brain. Proc Natl Acad Sci.1986; 83,6203-6207.
    30. Masuo Y, Pelaprat D, Montagne MN, Scherman D, Rostene W. Regulation of neurotensin-containing neurons in the rat striatum and substantia nigra. Effects of unilateral nigral lesion with 6-hydroxydopamine on neurotensin content and its binding site density. Brain Res. 1990; 510,203-210.
    31. Wichmann T, DeLong MR. Functional neuroanatomy of the basal ganglia in Parkinson's disease. Adv Neurol.2003; 91,9-18.
    32. Zahm DS, Heimer L. Ventral striatopallidal parts of the basal ganglia in the rat:I. Neurochemical compartmentation as reflected by the distributions of neurotensinan dsubstance P immunoreactivity. J Comp Neurol.1988; 272,516-535.
    33. Fernandez A, Jenner P, Marsden CD, De Ceballos ML. Activity in human basal ganglia: increased neurotensin levels in substantia nigra in ParCharacterization of neurotensin-like immunorkinson's disease. Peptides.1995; 16,339-346.
    34. Chinaglia G, Probst A, Palacios JM. Neurotensin receptors in Parkinson's disease and progressive supranuclear palsy:an autoradiographic study in basal ganglia. Neuroscience.1990; 39,351-360.
    35. Lorenc-Koci E, Wolfarth S, Ossowska K. Haloperidol-increased muscle tone in rats as a model of parkinsonian rigidity. Exp Brain Res.1996; 109,268-276.
    36. Marino MJ, Valenti O, Conn PJ. Glutamate receptors and Parkinson's disease. Drugs Aging. 2003; 20,377-397.
    37. Nakao N, Nakai K, Itakura T. Fetal striatal transplants reinstate the electrophysiological response of pallidal neurons to systemic apomorphine challenge in rats with excitotoxic striatal lesions. Eur J Neurosci.2000; 12,3426-3432.
    38. Michaud JC, Gueudet C, Soubrie P. Effects of neurotensin receptor antagonists on the firing rate of rat ventral pallidum neurons. Neuroreport.2000; 11,1437-1441.
    39. Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain:comparison with D2 receptor expressing neurons. Neuropsychopharmacol.1999; 20, 60-80.
    40. Okubo Y, Olsson H, Ito H, Lofti M, Suhara T, Halldin C, Farde L. PET mapping of extrastriatal D2-like dopamine receptors in the human brain using an anatomic standardization technique and [11C]FLB 457. Neuroimage.1999; 10,666-674.
    41. Bergstrom DA, Walters JR. Dopamine attenuates the effects of GAB A on single unit activity in the globus pallidus. Brain Res.1984; 310,23-33.
    42. Nakanishi H, Hori N, Kastuda N. Neostriatal evoked inhibition and effects of dopamine on globus pallidal neurons in rat slice preparations. Brain Res.1985; 358,282-286.
    43. Chen L, Yung KKL, Yung WH. Neurotensin depolarizes globus pallidus neurons in rats via neurotensin type-1 receptor. Neuroscience.2004; 125,853-859.
    44. Xue Y, Bai B, Yung WH, Chen L. Electrophysiological effects of neurotensin on globus pallidus neurons of 6-hydroxydopamine-lesioned rats. Neurosignals.2009; 17,153-161.
    45. Studler JM, Kitabgi P, Tramu G. Extensive co-localization of neurotensin with dopamine in rat meso-cortico-frontal dopaminergic neurons. Neuropeptides.1988; 11,95-100.
    46. Laitinen K, Crawley JN, Mefford IN. Neurotensin and cholecystokinin microinjected into the ventral tegmental area modulate microdialysate concentrations of dopamine and metabolites in the posterior nucleus accumbens. Brain Res.1990; 523,342-346.
    47. Drumheller AD, Gagne MA, St-Pierre S. Effects of neurotensin on regional brain concentrations of dopamine, serotonin and their main metabolites. Neuropeptides.1990; 15,169-178.
    1. Naito A, Kita H. The cortico-pallidal projection in the rat:an anterograde tracing study with biotinylated dextran amine. Brain Res.1994; 653,251-257.
    2. Albin RL, Young AB, Penny JB. The functional anatomy of basal ganglia disorders. Trends Neurosci.1989; 12,366-375.
    3. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990; 13,281-285.
    4. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR. D1 and D2 dopamine receptor regulated gene expression of striatopallidal neurons. Science.1990; 250, 1429-1432.
    5. Gerfen CR. The neostriatal mosaic:multiple levels of compartmental organization. Trends Neurosci.1992; 15,133-139.
    6. Chesselet MF, Delfs JM. Basal ganglia and movement disorders:an update. Trends Neurosci. 1996; 19,417-422.
    7. Smith Y, Bevan MD, Shink E, Bolam JP. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience.1998; 86,353-387.
    8. Shink E, Smith Y. Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA-and glutamate-containing terminals in the squirrel monkey. J Comp Neurol.1995; 358,119-141.
    9. Oorschot DE. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia:a stereological study using the Cavalieri and optical disector methods. J Comp Neurol.1996; 366,580-599.
    10. Hazrati LN, Parent A. The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res.1992; 592,213-227.
    11. Rinvik E, Ottersen OP. Terminals of subthalamonigral fibers are enriched with glutamate-like immunoreactivity:an electron microscopic immunogold analysis in the cat. J Chem Neuroanat. 1993; 6,19-30.
    12. Naito A, Kita H. The cortico-pallidal projection in the rat:an anterograde tracing study with biotinylated dextran amine. Brain Res.1994; 653,251-257.
    13. Sadikot AF, Parent A, Francois C. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey:a PHA-L study of subcortical projections. J Comp Neurol. 1992; 315,137-159.
    14. Mouroux M, Hassani OK, Feger J. Electrophysiological and Fos immunohistochemical evidence for the excitatory nature of the parafascicular projection to the globus pallidus. Neuroscience. 1997; 81,387-397.
    15. Smith Y, Bolam JP, Von Krosigk M. Topographical and synaptic organization of the GABA-containing pallidosubthalamic projection in the rat. Eur J Neurosci.1990; 2,500-511.
    16. Bevan MD; Clarke NP, Bolam JP. Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat. J Neurosci.1997a; 17.308-324.
    17. Rajakumar N, Elisevich K, Flumerfelt BA. The pallidostriatal projection in the rat:a recurrent inhibitory loop? Brain Res.1994; 651,332-336.
    18. Bolam JP, Smith Y. The striatum and the globus pallidus send convergent synaptic inputs into single cells in the entopeduncular nucleus of the rat:a doubleanterograde labelling study combined with post-embedding immunocytochemistry for GABA. J Comp Neurol.1992; 321, 456-476.
    19. Kita H, Kitai ST. The morphology of globus pallidus projection neurons in the rat:an intracellular staining study. Brain Res.1994; 636,308-319.
    20. Von Krosigk M, Smith AD. Synaptic organization of GABAergic inputs from the striatum and the globus pallidus onto neurons in the substantia nigra and retrorubral field which project to the medullary reticular formation. Neuroscience.1992; 50,531-549.
    21. Bevan MD, Smith AD, Bolam JP. The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat. Neuroscience.1996; 75,5-12.
    22. Hazrati LN, Parent A. Projection from the external pallidum to the reticular thalamic nucleus in the squirrel monkey. Brain Res.1991; 550,142-146.
    23. Gandia JA, Delasheras S, Gareia M, Gimenez-Amaya JM. Afferent projections to the reticular thalamic nucleus from the globus pallidus and the substantia nigra in the rat. Brain Res Bull.1993; 32,351-358.
    24. Fisher RS, Boylan MK, Hull CD, Buchwald NA, Levine MS. Branched projections of pallidal and peripallidal neurons to neocortex and neostriatum:a double-labeling study in the cat. Brain Res.1985; 326,156-159.
    25. Schmued L, Phermsangngam P, Lee H, Thio S, Chen E, Truong P, Colton E, Fallon J. Collateralization and GAD immunoreactivity of descending pallidal efferents. Brain Res.1989; 487,131-142.
    26. Sato F, Lavallee P, Levesque M, Parent A. Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol.2000; 417,17-31.
    27. Kita H. Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience.2001; 105,871-879.
    28. Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev.1995; 20,91-127.
    29. Kita H, Kitai ST. Intracellular study of rat globus pallidus neurons:membrane properties and responses to neostriatal subthalamic and nigral stimulation. Brain Res.1991; 564,296-305.
    30. Nambu A, Llinas R. Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol.1994; 72,1127-1139.
    31. Park MR, Falls WM, Kitai ST. An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. J Comp Neurol.1982; 211,284-294.
    32. Millhouse OE. Pallidal neurons in the rat. J Comp Neurol.1986; 254,209-227.
    33. Nambu A, Llinas R. Morphology of globus pallidus neurons:its correlation with electrophysiology in guinea pig brain slices. J Comp Neurol.1997; 377,85-94.
    34. Cooper AJ, Stanford IM. Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neuron in vitro. J Physiol.2000; 527,291-304.
    35. Wenzel A, Villa M, Mohler H, Benke D. Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J Neruochem.1996; 66,1240-1248.
    36. Bernard V, Bolam JP. Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat:co-localization at synapses with the GluR2/3 subunit of the AMPA receptor. Eur J Neurosci.1998; 10,3721-3736.
    37. Kosinski CM, Standaert DG, Counihan TJ, Scherzer CR, Kerner JA, Daggett LP, Velicelebi G, Penney JB, Young AB, Landwehrmeyer GB. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain:striatum and globus pallidus. J Comp Neurol.1998; 390, 63-74.
    38. Meng SZ, Obonai T, Isumi H, Takashima S. A developmental expression of AMPA-selective glutamate receptor subunits in human basal ganglia. Brain Dev.1997; 19,388-392.
    39. Betarbet R, Porter RH, Greenamyre JT. GluR1 glutamate receptor subunit is regulated differentially in the primate basal ganglia following nigrostriatal dopamine denervation. J Neurochem.2000; 74,1166-1174.
    40. Wullner U, Standaert DG, Testa CM, Penney JB, Young AB. Differential expression of kainite receptors in the basal ganglia of the developing and adult rat brain. Brain Res.1997; 768, 215-223.
    41. Messenger MJ, Dawson LG, Duty S. Changes in metabotropic glutamate receptor 1-8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology.2002; 43,261-271.
    42. Soltis RP, Anderson LA, Walters JR, Kelland MD. A role for non-NMDA excitatory amino acid receptors in regulating the basal activity of rat globus pallidus neurons and their activation by the subthalamic nucleus. Brain Res.1994; 666,21-30.
    43. Aiko Y, Hosokawa S, Shima F, Kato M, Kitamura K. Alterations in local cerebral glucose utilization during electrical stimulation of the striatum and globus pallidus in rats. Brain Res. 1988; 442,43-52.
    44. Zhang JH, Sato M, Tohyama M. Different postnatal development profiles of neurons containing distinct GABAA receptor beta subunit mRNAs in the rat forebrain. J Comp Neurol.1991; 308, 586-613.
    45. Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain, Ⅰ.Telencephalon, diencephalons, mesencephalon, J Neurosci.1992; 12, 1040-1062.
    46. Henderson Z. Expression of GABAA receptor subunit messenger RNA in non-cholinergic neurons of the rat basal forebrain. Neuroscience.1995; 65,1077-1086.
    47. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G.. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience.2000; 101, 815-850.
    48. Schwarzer C, Berresheim U, Pirker S, Wieselthaler A, Fuchs K, Sieghart W, Sperk G. Distribution of the major γ-aminobutyric acidA receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol.2001; 433,526-549.
    49. Waldvogel HJ, Kubota Y, Fritschy J, Mohler H, Faull RL. Regional and cellular localization of GABAA receptor subunits in the human basal ganglia:An autoradiographic and immunohistochemical study. J Comp Neurol.1999; 415,313-340.
    50. Crossman AR, Mitchell IJ, Sambrook MA, Jackson A. Chorea and myoclonus in the monkey induced by gamma-aminobutyric acid antagonist in the lentiform complex. Brain.1988; 111, 1211-1233.
    51. Matsumura M, Tremblay L, Richard H, Filion M. Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neurosciece.1995; 65,59-70.
    52. Maneuf YP, Mitchell IJ, Crossman AR, Brotchie JM. On the role of enkephalin cotransmission in the GABAergic striatal efferents to the globus pallidus. Exp Neurol.1994; 125,65-71.
    53. Yu TS, Wang SD, Liu JC, Yin HS. Changes in the gene expression of GABA-A receptor alphal and alpha2 subunits and metabotropic glutamate receptor 5 in the basal ganglia of the rats with unilateral 6-hydroxydopamine lesion and embryonic mesencephalic grafts. Exp Neurol.2001; 168,231-241.
    54. Schroeder JA, Schneider JS. GABA-A and mu-opioid receptor binding in the globus pallidus and endopeduncular nucleus of animals symptomatic for and recovered from experimental Parkinsonism. Brain Res.2002; 947,284-289.
    55. Chen L, Boyes J, Yung WH, Bolam JP. Subcellular localization of GABAB receptor subunits in rat globus pallidus. J Comp Neurol.2004; 474,340-52.
    56. Bowery N, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience.1987; 20,365-383.
    57. Chu DMC, Albin RL, Young AB, Penney JB. Distribution and kinetics of GABAB binding sites in rat central nervous system:a quantitative autoradiographic study. Neuroscience.1990; 34, 341-357.
    58. Stefani A, Spadoni F, Giacomini G, Lavaroni F, Bernardi G. The modulation of calcium current by GABA metabotropic receptors in a sub-population of pallidal neurons. Eur J Neurosci.1999; 11, 3995-4005.
    59. Chan SCY, Yung KKL, Yung WH. Pre-and postsynaptic distribution of GABAB receptors in rat globus pallidus revealed by immunocytochemistry and electrophysiology. Soc Neurosci Abstr. 2000; 25,622-627.
    60. Chen L, Chan SC, Yung WH. Rotational behavior and electrophysiological effects induced by GABAB receptor activation in rat globus pallidus. Neuroscience.2002; 114,417-425.
    61. Lindvall O, Bjorklund A. Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res.1979; 172,169-173.
    62. Lavoie B, Smith Y, Parent A. Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol.1989; 289, 36-52.
    63. Cossette M, Levesque M, Parent A. Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci Res.1999; 34,51-54.
    64. Fuchs H, Hauber W. Dopaminergic innervation of the rat globus pallidus characterized by microdialysis and immunohistochemistry. Exp Brain Res.2004; 154,66-75.
    65. Dawson TM, Gehlert DR, McCabe RT, Barnett A, Wamsley JK. D-1 dopamine receptors in the rat brain:a quantitative autoradiographic analysis. J Neurosci.1986; 6,2352-2365.
    66. Savasta M, Dubois A, Scatton B. Autoradiographic localization of Dl dopamine receptors in the rat brain with [3H] SCH 23390. Brain Res.1986; 375,291-301.
    67. Mengod G, Vilaro MT, Niznik HB, Sunahara RK, Seeman P, O'Dowd BF, Palacios JM. Visualization of a dopamine D1 receptor mRNA in human and rat brain. Brain Res Mol Brain Res. 1991; 10,185-191.
    68. Mansour A, Meador-Woodruff JH, Zhou Q, Civelli O, Akil H, Watson SJ. A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience.1992; 46,959-971.
    69. Meador-Woodruff JH, Mansour A. Expression of the dopamine D2 receptor gene in brain. Biol Psychiatry.1991; 30,985-1007.
    70. Fox CA, Mansour A, Thompson RC, Bunzow JR, Civelli O, Watson SJ Jr. The distribution of dopamine D2 receptor heteronuclear RNA (hnRNA) in the rat brain. J Chem Neuroanat.1993; 6, 363-373.
    71. Gurevich EV, Joyce JN. Distribution of dopamine D3 receptor expressing neurons in the human forebrain:comparison with D2 receptor expressing neurons. Neuropsychopharmacol.1999; 20, 60-80.
    72. Okubo Y, Olsson H, Ito H, Lofti M, Suhara T, Halldin C, Farde L. PET mapping of extrastriatal D2-like dopamine receptors in the human brain using an anatomic standardization technique and [11C]FLB 457. Neuroimage.1999; 10,666-674.
    73. Hurley MJ, Jolkkonen J, Stubbs CM, Jenner P, Marsden CD. Dopamine D3 receptors in the basal ganglia of the common marmoset and following MPTP and L-DOPA treatment. Brain Res.1996; 709,259-264.
    74. Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, De La Calle A. Differential regional and cellular distribution of dopamine D2-like receptors:an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol.1998; 402,353-371.
    75. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature.1996; 381,245-248.
    76. Ariano MA, Wang J, Noblett KL, Larson ER, Sibley DR. Cellular distribution of the rat D4 dopamine receptor protein in the CNS using anti-receptor antisera. Brain Res.1997; 752,26-34.
    77. Bergstrom DA, Walters JR. Dopamine attenuates the effects of GABA on single unit activity in the globus pallidus. Brain Res.1984; 310,23-33.
    78. Nakanishi H, Hori N, Kastuda N. Neostriatal evoked inhibition and effects of dopamine on globus pallidal neurons in rat slice preparations. Brain Res.1985; 358,282-286.
    79. Floran B, Floran L, Sierra A, Aceves J. D2 receptor-mediated inhibition of GABA release by endogenous dopamine in the rat globus pallidus. Neurosci Lett.1997; 237,1-4.
    80. Cooper AJ, Stanford IM. Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA (A) IPSCs in vitro. Neuropharmacology.2001; 41,62-71.
    81. Herkenham M, Lynn AB, De Costa BR, Richfield EK. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res.1991a; 547,264-274.
    82. Herkenham M, Lynn AB, Johnson MR, Melvin LS, De Costa BR, Rice KC. Characterization and localization of cannabinoid receptor in rat brain:a quantitative in vitro autoradiographic study. J Neurosci.1991b; 11,563-583.
    83. Mailleux P, Vanderhaeghen JJ. Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience.1992; 48,655-668.
    84. Miller AS, Walker JM. Electrophysiological effects of a cannabinoid on neural activity in the globus pallidus. Eur J Pharmacol.1996; 304,29-35.
    85. Miller AS, Walker JM. Local effects of cannabinoids on spontaneous activity and evoked inhibition in the globus pallidus. Eur J Pharmacol.1998; 352,199-205.
    86. Sanudo-Pena MC, Walker JM. Effect of intrapallidal cannabinoids on rotational behavior in rats: Interactions with the dopaminergic system. Synapse.1998; 28,27-32.
    87. Di MV, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J.2000; 14,1432-1438.
    88. Lastres-Becker I, Hansen HH, Berrendero F, De Miguel R, Perez-Rosado A, Manzanares J, Ramos JA, Fernandez-Ruiz J. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington's disease. Synapse.2002; 44, 23-35.
    89. Gerfen CR, Young WS. Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments:an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res.1988; 460,161-167.
    90. Lavoie B, Parent A, Bedard PJ. Effects of dopamine denervation on striatal peptide expression in parkinsonian monkeys. Can J Neurol Sci.1991; 18,373-375.
    91. Peckys D, Landwehrmeyer GB. Expression of μ, κ, and d opioid receptor messenger RNA in the human CNS:a 35P in situ hybridization study. Neuroscience.1999; 88,1093-1135.
    92. Stanford IM, Cooper AJ. Presynaptic μ and δ opoid receptor modulation of GABA-A IPSCs in the rat globus pallidus in vitro. J Neurosci.1999; 19,4796-4803.
    93. Brog JS, Zahm DS. Morphology and fos immunoreactivity reveal two subpopulations of striatal neurotensin neurons following acute 6-hydroxydopamine lesions and preserpine administration. Neuroscience.1995; 65,71-86.
    94. Brog JS, Zahm DS. Morphologically distinct subpopulations of neurotensin-immunoreactive striatal neurons observed in rat following dopamine depletions and D2 receptor blockade project to the globus pallidus. Neuroscience.1996; 74,805-812.
    95. Fassio A, Evans G, Grisshammer R, Bolam P, Mimmack M, Emson PC. Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology.2000; 39,1430-1442.
    96. Fernandez A, De Ceballos M, Jenner P, Marsden CD. Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson's disease patients. Neuroscience. 1994; 61,73-79.
    97. Zahm DS, Johnson SN. Asymmetrical distribution of neurotensin immunoreactivity following unilateral injection of 6-hydroxydopamine in rat ventral tegmental area (VTA). Brain Res.1989; 483,301-311.
    98. Ferraro L, O'Connor WT, Antonelli T, Fuxe K, Tanganelli S. Differential effects of intrastriatal neurotensin (1-13) and neurotensin (8-13) on striatal dopamine and pallidal GABA release. A dual-probe microdilysis study in the awake rat. Eur J Neurosci.1997; 9,1838-1846.
    99. Audinat E, Hermel JM, Crepel F. Neurotensin-induced excitation of neurons of the rat's frontal cortex studied intracellularly in vitro. Exp Brain Res.1989; 78,358-368.
    100. Jiang ZG, Pessia M, North RA. Neurotensin excitation of rat ventral tegmental neurons. J Physiol. 1994; 474,119-129.
    101. Kirkpatrick K, Bourque CW. Effects of neurotensin on rat supraoptic nucleus neurons in vitro. J Physiol.1995; 482,373-381.
    102. Matthew RT. Neurotensin depolarizes cholinergic and a subset of non-cholinergic septal/diagonal band neurons by stimulating neurotensin-1 receptors. Neuroscience.1999; 94,775-783.
    103. Li AH, Huang HM, Tan PP, Wu T, Wang HL. Neurotensin excites periaqueductal gray neurons projecting to the rostral ventromedial medulla. J Neurophysiol.2001; 85,1479-1488.
    104. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999; 38,1083-1152.
    105. Lavoie B, Parent A. Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol.1990; 299,1-16.
    106. McQuade R, Sharp T. Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. J Neurochem.1997; 69,791-796.
    107. Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Verge D. Cellular and subcellular localization of 5-hydroxytryptaminelB receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience.1999; 88,899-915.
    108. Bonaventure P, Hall H, Gommeren W, Cras P, Langlois X, Jurzak M, Leysen JE. Mapping of serotonin 5-HT (4) receptor mRNA and ligand binding sites in the post-mortem human brain. Synapse.2000; 36,35-46.
    109. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, Mestikawy S, Hamon M, Descarries L. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol.2000; 417,181-194.
    110. Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced Parkinsonism. Brain Res.1991; 547,142-151.
    111. Wichmann T, DeLong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol.1996; 6,751-758.
    112. Nini A, Feingold A, Slovin H, Bergman H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol.1995; 74,1800-1805.
    113. Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abele M, Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 1998; 21,32-38.
    114. Raz A, Vaadia E, Bergman H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydrop-yridine vervet model of parkinsonism. J Neurosci.2000; 20,8559-8571.
    115. Lozano A, Hutchison W, Kiss Z, Tasker R, Davis K, Dostrovsky J. Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg.1996; 84,194-202.
    116. Magnin M, Morel A, Jeanmonod D. Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience.2000; 96,549-564.
    117. Plenz D, Kital ST. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature.1999; 400,677-682.
    118. Magill PJ, Bolam JP, Bevan MD. Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci.2000; 20,820-833.
    119. Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience.2001; 106,313-330.
    120. Tanford IM. Independent neuronal oscillators of the rat globus pallidus. J Neurophysiol.2003; 89, 1713-1717.
    121. El-Deredy W, Branston NM, Samuel M, Schrag A, Rothwell C, Thomas DG, Quinn NP. Firing patterns of pallidal cells in parkinsonian patients correlate with their pre-pallidotomy clinical scores. Neuroreport.2000; 11,3413-3418.
    122. Brownell AL, Canales K, Chen YI, Jenkins BG, Owen C, Livni E, Yu M, Cicchetti F, Sanchez-Pernaute R, Isacson O. Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson's disease model. Neuroimage.2003; 20,1064-1075.
    123. Bianchi L, Galeffi F, Bolam JP, Corte L. The effect of 6-hydroxydopamine lesions on the release of amino acids in the direct and indirect pathways of the basal ganglia:a dual microdialysis probe analysis.Eur J Neurosci.2003; 18,856-868.
    124. Galvan A, Floran B, Erlij D, Aceves J. Intrapallidal dopamine restores motor deficits induced by 6-hydroxydopamine in the rat. J Neural Transm.2001; 108,153-166.
    125. Hutchinson WD, Levy R, Dostrovsky JO, Lozano AM, Lang AE. Effects of apomorphine on globus pallidus neurons in parkinsonian patients. Ann Neurol.1997; 42,767-775.
    126. Heime G, Bar-Gad I., Goldberg JA, Bergman H. Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. J Neurosci.2002; 22,7850-7855.
    127. McCormic SE, Stoessl AJ. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia. Neuroscience. 2003; 119,547-555.
    128. McCormick SE., Stoessl AJ. Blockade of nigral and pallidal opioid receptors suppresses vacuous chewing movements in a rodent model of tardive dyskinesia. Neuroscience.2002; 112,851-859.
    129. Garant DS, Gale K. Lesions of substantia nigra protect against experimentally induced seizures. Brain Res.1983; 273,156-161.
    130. Makulkin RF, Novytskyi SA, Korniienko TV. Role of globus pallidus in mechanisms of antiepileptic caudate-cortical effects. Fiziolog Zhur.1992; 38,3-9.
    131. Iadarola MJ, Gale K. Substantia nigra:site of anti-convulsant activity mediated by gamma-aminobutyric acid. Science.1982; 218,1237-1240.
    132. Depaulis A, Vergnes M, Marescaux C. Endogenous control of epilepsy:the nigral inhibitory system. Prog Neurobiol.1994; 42,33-52.
    133. Sabatino M, Grava G, Ferraro G, Savatteri V, La Grutta V. Inhibitory control by substantia nigra of generalized epilepsy in the cat. Epilepsy Res.1988; 2,380-386.
    134. Dybdal D, Gale K. Postural and anticonvulsant effects of inhibition of the rat subthalamic nucleus. J. Neurosci.2000; 20,6728-6733.
    135. Andre V, Pineau N, Motte J, Marescauz C, Nehlig A. Mapping of neuronal networks underlying generalized seizures induced by increasing doses of pentylenetetrazol in the immature and adult rat:a c-Fos immunohistochemical study. Eur J Neurosci.1998; 10,2094-2106.
    136. Hayashi T. A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol.1952; 3,46-64.
    137. Sabatino M, La V, Ferraro G, La G Relations between basal ganglia and hippocampus:action of substantia nigra and pallidum, Rev Electroencephalogr. Neurophysiol Clin.1986; 16,179-190.
    138. Sawamura A, Hashizume K, Tanaka T. Electrophysiological, behavioral and metabolical features of globus pallidus seizures induced by a microinjection of kainic acid in rats. Brain Res.2002; 935,1-8.
    139. Fink-Jensen A, Suzdak PD, Swedberg MDB, Judge ME, Hansen L, Nielsen PG. The y-aminobutyric acid (GABA) uptake inhibitor, tiagabine, increases extracellular brain levels of GABA in awake rats. Eur J Pharmacol.1992; 220,197-201.
    140. Uzdak PD, Foged C, Andersen KE. Quantitative autoradiographic characterization of the binding of [3H] tiagabine (NNC 05-328) to the GABA uptake carrier. Brain Res.1994; 647,231-241.
    141. Deransart C, Riban V, Le B-T, Hechler V, Marescauz C, Depaulis A. Evidence for the involvement of the pallidum in the modulation of seizures in a genetic model of absence epilepsy in the rat. Neurosci Lett.1999; 265,131-134.
    142. Carraway RE, Leeman SE. The isolation of a new hypotensive peptide, neurotensin, from bovinehypothalami. J Biol Chem.1973; 248,6854-6861.
    143. Bean AJ, Dagerlind A, Hokfelt T, Dobner PR. Cloning of human neurotensin/neuromedin N genomic sequences and expression in the ventral mesencephalon of schizophrenics and age/sex matched controls. Neuroscience.1992; 50,259-268.
    144. Kitabgi P, De Nadai F, Rovere C, Bidard JN. Biosynthesis, maturation, release, and degradation of neurotensin and neuromedin N. Ann N Y Acad Sci.1992; 668,30-42.
    145. Jennes L, Stumpf WE, Kalivas PW. Neurotensin:topographical distribution in the rat brain byimmunohistochemistry. J Comp Neurol.1982; 210,211-224.
    146. Tanaka K, Masu M, Nakanishi S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron.1990; 4,847-854.
    147. Vita N, Laurent P, Lefort S, Chalon P, Dumont X, Kaghad M. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett.1993; 317, 139-142.
    148. Watson M, Isackson PJ, Makker M, Yamada MS, Yamada M, Cusack B. Identification of a polymorphism in the human neurotensin receptor gene. Mayo Clin Proc.1993; 68,1043-1048.
    149. Alexander MJ, Leeman SE. Widespread expression in adult rat forebrain of mRNA encoding high-affinity neurotensin receptor. J Comp Neurol.1998; 402,475-500.
    150. Fassio A, Evans G, Grisshammer R, Bolam JP, Mimmack M, Emson PC. Distribution of the neurotensin receptor in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology.2000; 39,1430-1442.
    151. Shi WX, Bunney BS. Actions of neurotensin:a review of the electrophysiological studies. Ann N Y Acad Sci.1992; 668,129-145.
    152. Skrzydelski D, Lhiaubet AM, Lebeau A, Forgez P, Yamada M, Hermans E. Differential involvement of intracellular domains of the rat neurotensin receptor in coupling to G proteins:a molecular basis for agonistdirected trafficking of receptor stimulus. Mol Pharmacol.2003; 64, 421-429.
    153. Gully D, Canton M, Boigegrain R, Jeanjean F, Molimard JC, Poncelet M. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci.1993; 90,65-69.
    154. Gully D, Labeeuw B, Boigegrain R, Oury-Donat F, Bachy A, Poncelet M. Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J Pharmacol Exp Ther.1997; 280,802-812.
    155. Richard F. Agonism inverse agonism and neutral antagonism at the constitutively active human neurotensin receptor 2. Mol Pharmacol.2001; 60,1392-1398.
    156. Walker LC, Koliatsos VE, Kitt CA, Richardson RT, Rokaeus A, Price DL. Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. J Comp Neurol.1989; 280, 272-282.
    157. Mazella J, Botto JM, Guillemare E, Coppola T, Sarret P, Vincent JP. Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J Neurosci.1996; 16,5613-5620.
    158. Sarret P, Beaudet A, Vincent JP, Mazella J. Regional and cellular distribution of low affinity neurotensin receptor mRNA in adult and developing mouse brain. J Comp Neurol.1998; 394, 344-356.
    159. Walker N, Lepee-Lorgeoux I, Fournier J, Betancur C, Rostene W, Ferrara P. Tissue distribution and cellular localization of the levocabastine-sensitive neurotensin receptor mRNA in adult rat brain. Mol Brain Res.1998; 57,193-200.
    160. Sarret P, Krzywkowski P, Segal L, Nielsen MS, Petersen CM, Mazella J. Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. J Comp Neurol.2003; 46, 483-505.
    161. Mazella J, Zsurger N, Navarro V, Chabry J, Kaghad M, Caput D. The 100-kDa-neurotensin receptor is gp95/sortilin, a non-Gprotein-coupled receptor. J Biol Chem.1998; 273,262-266.
    162. Mazella J. Sortilin/neurotensin receptor-3:a new tool to investigate neurotensin signaling and cellular trafficking? Cell Signal.2001; 13,1-6.
    163. Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM. Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J Biol Chem.1999; 274,832-836.
    164. Navarro V, Martin S, Sarret P, Nielsen MS, Petersen CM, Vincent J. Pharmacological properties of the mouse neurotensin receptor 3. Maintenance of cell surface receptor during internalization of neurotensin. FEBS Lett.2001; 495,100-105.
    165. Martin S, Vincent JP, Mazella J. Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J'Neurosci.2003; 23,1198-1205.
    166. Morris NJ, Ross SA, Lane WS, Moestrup SK, Petersen CM, Keller SR. Sortilin is the major 110-kDa protein in GLUT4 vesicles from adipocytes. J Biol Chem.1998; 273,3582-3587.
    167. Nouel D, Sarret P, Vincent JP, Mazella J, Beaudet A. Pharmacological, molecular and functional characterization of glial neurotensin receptors. Neuroscience.1999; 94,1189-1197.
    168. Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS. Sortilin is essential for proNGF-induced neuronal cell death. Nature.2004; 427,843-848.
    169. Rostene W, Azzi M, Boudin H, Lepee I, Souaze F, Mendez-Ubach M. Use of nonpeptide antagonists to explore the physiological roles of neurotensin. Focus on brain neurotensin/dopamine interactions. Ann N Y Acad Sci.1997; 814,125-141.
    170. Gully D, Canton M, Boigegrain R, Jeanjean F, Molimard JC, Poncelet M. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. PNAS.1993; 90,65-69.
    171. Labbe-Jullie C. [H] SR 48692, the first nonpeptide neurotensin antagonist radioligand: characterization of binding properties and evidence for distinct agonist and antagonist binding domains on the rat neurotensin receptor. Mol Pharm.1996; 47,1050-1056.
    172. Azzi M, Gully D, Heaulme M, Berod A, Pelaprat D, Kitabgi P. Neurotensin receptor interaction with dopaminergic systemsin the guinea-pig brain shown by neurotensin receptor antagonists. Eur J Pharmacol.1994; 255,167-174.
    173. Brouard A, Pelaprat D, Vial M, Lhiaubet AM, Rostene W. Effects of ion channel blockers and phorbol ester treatments on [3H] dopamine release and neurotensin facilitation of [3H] dopamine release from rat mesencephalic cells in primary culture. J Neurochem.1994; 62,1416-1425.
    174. Oury-Donat F, Thurneyssen O, Gonalons N, Forgez P, Gully D, Le FG. Characterization of the effect of SR48692 on inositol monophosphate, cyclic GMP and cyclic AMP responses linked to neurotensin receptor activation in neuronal and non-neuronal cells. Br J Pharmacol.1995; 116, 1899-1905.
    175. Pugsley TA, Akunne HC, Whetzel SZ, Demattos S, Corbin AE, Wiley JN. Differential effects of t he nonpeptide neurotensin antagonist, SR,48692 on the pharmacological effects of neurotensin agonists. Peptides.1995; 16,37-44.
    176. Dubuc I, Costentin J, Terranova JP, Barnouin MC, Soubrie P, Le Fur G. The nonpeptide neurotensin antagonist, SR 48692, used as a tool to reveal putative neurotensin receptor subtypes. BrJ Pharmacol.1994; 112,352-354.
    177. Chalon P, Vita N, Kaghad M, Guillemot M, Bonnin J, Delpech B. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett.1996; 386,91-94.
    178. Botto JM, Guillemare E, Vincent JP, Mazella J. Effects of SR 48692 on neurotensin-induced calcium-activated chloride currents in the Xenopus oocyte expression system:agonist-like activity on the levocabastine-sensitive neurotensin receptor and absence of antagonist effect on the levocabastine insensitive neurotensin receptor. Neurosci Lett.1997; 223,193-196.
    179. Yamada M, Lombet A, Forgez P, Rostene W. Distinct functionalcharacteristics of levocabastine sensitive rat neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Life Sci.1998; 62,375-380.
    180. Betancur C, Canton M, Burgos A, Labeeuw B, Gully D, Rostene W. Characterization of binding sites of a new neurotensin receptor antagonist, [3H] SR 142948A, in the rat brain. Eur J Pharmacol.1998; 343,67-77.
    181. Heaulme M, Leyris R. Involvement of potentially distinct neuro-tensin receptors in neurotensin-induced stimulation of striatal dopamine release evoked by KCI versus electrical depolarization. Neuropharmacology.1997; 36,1447-1454.
    182. Vita N, Oury-Donat F, Chalon P, Guillemot M, Kaghad M, Bachy A. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Eur J Pharmacol.1998; 360,265-72.
    183. Machida R, Tokumura T, Tsuchiya Y, Sasaki A, Abe K. Pharmacokinetics of novel hexapeptides with neurotensin activity in rats. Biol Pharm Bull.1993; 16,43-47.
    184. Tokumura T, Tanaka T, Sasaki A, Tsuchiya Y, Abe K, Machida R. Stability of a novel hexapeptide, (Me) Arg-Lys-Pro-Trp-tert-Leu-Leu-OEt, with neurotensin activity, in aqueous solution and in the solid state. Chem Pharm Bull.1990; 38,3094-3098.
    185. Lugrin D, Vecchini F, Doulut S, Rodriguez M, Martinez J, Kitabgi P. Reduced peptide bond pseudopeptide analogues of neurotensin:binding and biological activities, and in vitro metabolic stability. Eur J Pharmaco.1991; 20,191-198.
    186. Dubuc I, Costentin J, Doulut S, Rodriguez M, Martinez J, Kitabgi P. JMV 449 a pseudopeptide analogue of neurotensin-(8-13) with highly potent and long-lasting hypothermic and analgesic effects in the mouse. Eur J Pharmacol.1992; 219,327-329.
    187. Torup L, Borsdal J, Sager T. Neuroprotective effect of the neurotensin analogue JMV-449 in a mouse model of permanent middle cerebral ischaemia. Neurosci Lett.2003; 351,173-176.
    188. Wustrow DJ, Davis MD, Akunne HC, Corbin AE, Wiley JN, Wise LD, Heffner TG. Reduced amine bond neurotensin 8-13 mimetics with potent in vivo activity. Bio-org Med Chem Lett.1995; 5,997-1002.
    189. Feifel D, Melendez G, Shilling PD. A systemically administered neurotensin agonist blocks disruption of prepulse inhibition produced by a serotonin-2A agonist. Neuropsychopharmacology. 2003; 28,651-653.
    190. Feifel D, Melendez G, Shilling PD. Reversal of sensorimotor gating deficits in Brattleboro rats by acute administration of clozapine and a neurotensin agonist, but not haloperidol; a potential predictive model for novel antipsychotic effects. Neuropsychopharmacology.2004; 29,731-738.
    191. Petrie KA, Bubser M, Casey CD, Davis MD, Roth B, Deutch AY. The neurotensin agonist PD149163 increases Fos expression in the prefrontal cortex of the rat. Neuropsychopharmacology. 2004; 29,1878-1888.
    192. Checler F, Vincent JP, Kitabgi P. Neurotensin analogs [D-TYR11] and [D-PHE11] neurotensin resist degradation by brain peptidases in vitro and in vivo. J Pharmacol Exp Ther. 1983; 227, 743-748.
    193. Rioux F, Quirion R, Regoli D, Leblanc MA, St-Pierre S. Pharmacological characterization of neurotensin receptors in the rat isolated portal vein using analogues and fragments of neurotensin. Eur J Pharmacol.1980; 66,273-279.
    194. Quirion R, Rioux F, Regoli D, St-Pierre S. Selective blockade of neurotensin-induced coronary vessel constriction in perfused rat hearts by a neurotensin analogue. Eur J Pharmacol.1980; 61, 309-312.
    195. Rioux F, Kerouac R, St-Pierre S. Characterization of the inhibitory effect of [D-Trp11]-NT toward some biological actions of neurotensin in rats. Neuropeptides.1983; 3,345-354.
    196. Akunne HC, Demattos SB, Whetzel SZ, Wustrow DJ, Davis DM, Wise LD. Agonist properties of a stable hexapeptide analog of neurotensin. N alpha MeArg-Lys-Pro-Trp-tLeu-Leu (NT1). Biochem Pharmacol.1995; 49,1147-1154.
    197. Tyler BM, Douglas CL, Fauq A, Pang YP, Stewart JA, Cusack B. In vitro binding and CNS effects of novel neurotensin agonists that cross the blood-brain barrier. Neuropharmacology.1999; 38,1027-1034.
    198. Cusack B, Boules M, Tyler BM, Fauq A, McCormick DJ, Richelson E. Effects of a novel neurotensin peptide analog given extracranially on CNS behaviors mediated by apomorphine and haloperidol. Brain Res.2000; 856,48-54.
    199. Boules M Cusack B Zhao L, Fauq A, McCormick D, Richelson E. A novel neurotensin peptide analog given extracranially decreases food intake and weight in rodents. Brain Research.2000; 865,35-44.
    200. Cusack B, Chou T, Jansen K, McCormick DJ, Richelson E. Analysis of binding sites and efficacy of a species-specific peptide at rat and human neurotensin receptors. J Pept Res.2000; 55,72-80.
    201. Beaudet A, Woulfe J. Morphological substrate for neurotensin-dopamine interactions in the rat midbrain tegmentum. Ann N Y Acad Sci.1992; 668,173-185.
    202. Seroogy KB, Mehta A, Fallon JH. Neurotensin and cholecystokinin coexistence within neurons of the ventral mesencephalon:projections to forebrain. Exp Brain Res.1987; 68,277-289.
    203. Bayer VE, Towle AC, Pickel VM. Ultrastructural localization of neurotensin-like immunoreactivity within dense core vesicles in perikarya, but not terminals, colocalizing tyrosine hydroxylase in the rat ventral tegmental area. J Comp Neurol.1991; 311,179-196.
    204. Studler JM, Kitabgi P, Tramu G, Herve, D, Glowinski J, Tassin JP. Extensive co-localization of neurotensin with dopamine in rat meso-cortico-frontal dopaminergic neurons. Neuropeptides. 1988; 11,95-100.
    205. Berger B, Gaspar P, Verney C. Colocalization of neurotensin (NT) in the mesocortical dopaminergic (DA) system:restricted regional and laminar distribution in rat lack of colocalization in human. Ann N Y Acad Sci.1992; 668,307-310.
    206. Gaspar P, Berger B, Febvret A. Neurotensin innervation of the human cerebral cortex:lack of colocalization with catecholamines. Brain Res.1990; 530,181-195.
    207. Tanji H, Araki T, Fujihara K, Nagasawa H, Itoyama Y. Alteration of neurotensin receptors in MPTP-treated mice. Peptides.1999; 20,803-807.
    208. Dilts RP, Kalivas PW. Localization of Mu Opioid and Neurotensin Receptors within the A10 Region of the rat. Ann N Y Acad Sci.1992; 668,472-475.
    209. Zahm DS, Grosu S, Williams EA, Qin S, Berod A. Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat:retrograde labeling and in situ hybridization combined. Neuroscience.2001; 104,841-851.
    210. Fallon, J.H. Topographic organization of ascending dopaminergic projections. Ann N Y Acad Sci 1988; 537,1-9.
    211. Merchant KM, Dobie DJ, Dorsa DM. Expression of the proneurotensin gene in the rat brain and its regulation by antipsychotic drugs. Ann N Y Acad Sci.1992; 668,54-69.
    212. Boudin H, Pelaprat D, Rostene W, Beaudet A. Cellular distribution of neurotensin receptors in rat brain:immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor. J Comp Neurol.1996; 373,76-89.
    213. Schotte A, Leysen JE. Autoradiographic evidence for the localization of high affinity neurotensin binding sites on dopaminergic nerve terminals in the nigrostriatal and mesolimbic pathways in rat brain. J Chem Neuroanat.1989; 2,253-257.
    214. Pickel VM, Chan J, Delle KT. Boudin H, Pelaprat D, Rostene W. High-affinity neurotensin receptors in the rat nucleus accumbens:subcellular targeting and relation to endogenous ligand. J Comp Neurol.2001; 435,142-55.
    215. Dell Donne KT, Chan J, Boudin H, Pelaprat D, Rostene W, Pickel VM. Electron microscopic dual labeling of highaffinity neurotensin and dopamine D2 receptors in the rat nucleus accumbens shell. Synapse.2004; 52,176-87.
    216. Nicot A, Rostene W, Berod A. Neurotensin receptor expression in the rat forebrain and midbrain: a combined in situ hybridization and receptor radioautography study. J Comp Neurol.1994; 341, 407-419.
    217. Delle Donne, K.T., Sesack, S.R., Pickel, V.M. Ultrastructural immunocytochemical localization of neurotensin and the dopamine D2 receptor in the rat nucleus accumbens. J Comp Neurol 1996; 371,552-566.
    218. Roberts GW, Crow TJ, Polak JM. Neurotensin:first report of a cortical pathway. Peptides.1981; 1,37-43.
    219. Mandell AJ, Selz KA, Owens MJ, Kinkead B, Shlesinger MF, Gutman DA. Cellular and behavioral effects of D2 dopamine receptor hydrophobic eigenmode-targeted peptide ligands. Neuropsychopharmacology.2003; 28, S98-107.
    220. Fuxe K, Von EG, Agnati LF, Merl WT, Tanganelli S. Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin. Ann N Y Acad Sci.1992; 668,186-204.
    221. Zahm DS. Compartments in rat dorsal and ventral striatum revealed following injection of 6-hydroxydopamine into the ventral mesencephalon. Brain Res.1991; 552,164-169.
    222. Blaha CD, Coury A, Fibiger HC, Phillips AG Effects of neurotensin on dopamine release and metabolism in the rat striatum and nucleus accumbens:cross-validation using in vivo voltammetry and microdialysis. Neuroscience.1990; 34,699-705.
    223. Blaha CD, Phillips AG. Pharmacological evidence for common mechanisms underlying the effects of neurotensin and neuroleptics on in vivo dopamine efflux in the rat nucleus accumbens. Neuroscience.1992; 49,867-77.
    224. Nouel D, Costentin J. Locomotor effects of [D-Trpll]-neurotensin and dopamine transmission in rats. Eur J Pharmacol.1994; 254,263-269.
    225. St-Gelais F, Legault M, Bourque MJ, Rompre PP, Trudeau LE. Role of calcium in neurotensin-evoked enhancement in firing in mesencephalic dopamine neurons. J Neurosci.2004; 24,2566-2574.
    226. Cador M, Rivet JM, Kelley AE, Le MM, Stinus L. Substance P, neurotensin and enkephalin injections into the ventral tegmental area:comparative study on dopamine turnover in several forebrain structures. Brain Res.1989; 486,357-363.
    227. Kalivas PW, Burgess SK, Nemeroff CB, Prange Jr AJ. Behavioral and neurochemical effects of neurotensin microinjection into the ventral tegmental area of the rat. Neuroscience.1983; 8, 495-505.
    228. Laitinen K, Crawley JN, Mefford IN, De Witte P. Neurotensin and cholecystokinin microinjected into the ventral tegmental area modulate microdialysate concentrations of dopamine and metabolites in the posterior nucleus accumbens. Brain Res.1990; 523,342-346.
    229. Steinberg R, Brun P, Souilhac J, Bougault I, Leyris R, Le Fur G Neurochemical and behavioural effects of neurotensin vs [D-Tyrll]-neurotensin on mesolimbic dopaminergic function. Neuropeptides.1995; 28,43-50.
    230. Shi WX, Bunney BS. Effects of neurotensin on midbrain dopamine neurons:are they mediated by formation of a neurotensin-dopamine complex? Synapse.1991; 9,157-164.
    231. Pinnock RD. Neurotensin depolarizes substantia nigra dopamine neurones. Brain Res.1985; 338, 151-154.
    232. Pozza MF, Kung E, Bischoff S, Olpe HR. The neurotensin analog xenopsin excites nigral dopamine neurons. Eur J Pharmacol.1988; 145,341-343.
    233. Ferraro L, Tomasini MC, Fernandez M, Bebe BW, O'Connor WT, Fuxe K. Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission:a dual-probe microdialysis study in intact conscious rat brain. Neuroscience.2001; 102,113-120.
    234. McCarthy PS, Walker RJ, Yajima H, Kitagawa K, Woodruff GN. The action of neurotensin on neurones in the nucleus accumbens and cerebellum of the rat. Gen Pharmacol.1979; 10,331-333.
    235. Tanganelli S, O'Connor WT, Ferraro L, Bianchi C, Beani L, Ungerstedt U. Facilitation of GABA release by neurotensin is associated with a reduction of dopamine release in rat nucleus accumbens. Neuroscience.1994; 60,649-657.
    236. Li XM, Ferraro L, Tanganelli S, O'Connor WT, Hasselrot U, Ungerstedt U. Neurotensin peptides antagonistically regulate postsynaptic dopamine D2 receptors in rat nucleus accumbens:a receptor binding and microdialysis study. J Neural Trans Gen.1995; 102,125-137.
    237. Chapman MA, See RE, Bissette G Neurotensin increases extracellular striatal dopamine levels in vivo. Neuropeptides.1992; 22,175-83.
    238. O'Connor WT, Tanganelli S, Ungerstedt U, Fuxe K. The effects of neurotensin on GABA and acetylcholine release in the dorsal striatum of the rat:an in vivo microdialysis study. Brain Res. 1992; 573,209-216.
    239. Audinat E, Hermel JM, Crepel F. Neurotensin induced excitation of neurons of the rat's frontal' cortex studied intracellularly in vitro. Exp Brain Res.1989; 78,358-368.
    240. Penit-Soria J, Audinat E, Crepel F. Excitation of rat prefrontal cortical neurons by dopamine:an in vitro electrophysiological study. Brain Res.1987; 425,263-274.
    241. Ferraro L, Tomasini MC, Siniscalchi A, Fuxe K, Tanganelli S, Antonelli T. Neurotensin increases endogenous glutamate release in rat cortical slices. Life Sci.2000; 66,927-936.
    242. Nemeroff CB. Neurotensin:perchance an endogenous neuroleptic? Biol Psychiatry.1980; 15, 283-302.
    243. Wolf SS, Hyde TM, Saunders RC, Herman MM, Weinberger DR, Kleinman JE. Autoradiographic characterization of neurotensin receptors in the entorhinal cortex of schizophrenic patients and control subjects. J Neural Trans.1995; 10,55-65.
    244. Lindstrom LH, Widerlov E, Bissette G, Nemeroff CB. Reduced CSF neurotensin concentration in drug-free schizophrenia patients. Schizophr Res.1988; 1,55-59.
    245. Sharma RP, Janicak PG Bissette G, Nemeroff CB. CSF neurotensin concentrations and antipsychotic treatment in schizophrenic and schizoaffective disorder. Am J Psychiatry.1997; 154, 1019-1021.
    246. Breslin NA, Suddath RL, Bissete G, Nemeroff CB, Lowrimore P, Weinberger DR. CSF concentration of neurotensin in schizophrenia:an investigation of clinical and biochemical correlates. Schizophr Res.1994; 12,35-41.
    247. Merchant KM, Dobner PR, Dorsa DM. Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum. J Neurosci.1992; 12,652-663.
    248. Chinaglia G, Probst A, Palacios JM. Neurotensin receptors in Parkinson's disease and progressive supranuclear palsy:an autoradiographic study in basal ganglia. Neuroscience.1990; 39,351-360.
    249. Sadoul JL, Checler F, Kitabgi P, Rostene W, Javoy-Agid F, Vincent JP. Loss of high affinity neurotensin receptors in substantia nigra from parkinsonian subjects. Biochem Biophys Res Commun.1984; 125,395-404.
    250. Uhl GR, Whitehouse PJ, Price DL, Tourtelotte WW, Kuhar MJ. Parkinson's disease:depletion of substantia nigra neurotensin receptors. Brain Res.1984; 308,186-190.
    251. Yamad M, Richelson E. Heterogeneity of melanized neurons expressing neurotensin receptor messenger RNA in the substantia nigra and the nucleus paranigralis of control and Parkinson's disease brain. Neuroscience.1995; 64,405-417.
    252. Goulet M, Morissette M, Grondin R, Falardeau P, Be'dard PJ, Rostene W. Neurotensin receptors and dopamine transporters; effects of MPTP lesioning and chronic dopaminergic treatments in monkeys. Synapse.1999; 32,153-64.
    253. Quirion R, Welner S, Gauthier S, Bedard P. Neurotensin receptor binding sites in monkey and humanbrain:autoradiographic distribution and effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. Synapse.1987; 1,559-566.
    254. Bissette Q Nemeroff CB, Decker MW, Kizer JS, Agid Y, Javoy-Agid F. Alterations in regional brain concentrations of neurotensin and bombesin in Parkinson's disease. Ann Neurol.1985; 17, 324-328.
    255. Fernandez A, Jenner P, Marsden CD, De Ceballos ML. Characterization of neurotensin-like immunoreactivity in human basal ganglia:increased neurotensin levels in substantia nigra in Parkinson's disease. Peptides.1995; 16,339-346.
    256. Hanson GR, Keefe KA. Dopamine D-1 regulation of caudate neurotensin mRNA in the presence or absence of the nigrostriatal dopamine pathway. Mol Brain Res.1999; 66,111-121.
    257. Emson PC, Horsfield PM, Goedert M, Rossor MN, Hawkes CH. Neurotensin in human brain: regional distribution and effects of neurological illness. Brain Res.1985; 347,239-244.
    258. Francois B, Andrea D. Antiparkinson-like effects of neurotensin in 6-hydroxydopamine lesioned rats. Brain Research.1991; 583,187-192.
    259. Boules M, Warrington L, Fauq A, McCormick D, Richelson E. Antiparkinson-like effects of a novel neurotensin analog in unilaterally 6-hydroxydopamine lesioned rats. Eur J Pharmacol.2001; 428,227-233.
    260. Przedborski S, Wright M, Fahn S, Cadet JL. Autoradiographic evidence of [3H] neurotensin binding changes in discrete regions of brain in the rat model of persistent spasmodic dyskinesia induced by iminodipropionitrile. Neurosci Lett.1989; 107,335-340.
    261. Stoessl AJ. Effects of neurotensin in a rodent model of tardive dyskinesia. Neuropharmacology. 1995; 34,457-462.
    262. Stoessl AJ, Szczutkowski E. Neurotensin and neurotensin analogues modify the effects of chronic neuroleptic administration in the rat. Brain Res.1991; 558,289-295.
    263. Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005; 346,967-989.
    264. Stanford IM. Independent neuronal oscillators of the rat globus pallidus. J Neurophysiol.2003; 89, 1713-1717.
    265. Ruzicka E, Roth J, Jech R, Busek P. Subhypnotic doses of zolpidem opposes dopaminergic-induced dyskinesia in Parkinson's disease. Mov Disord.2000; 15,734-735.
    266. Farver DK, Khan MH. Zolpidem for antipsychotic-induced Parkinsonism. Ann Pharmacother. 2001; 35,435-437.
    267. Chadha A, Howell O, Atack JR, Sur C, Duty S. Changes in [3H] zolpidem and [3H]Ro 15-1788 binding in rat globus pallidus and substantia nigra pars reticulata following a nigrostriatal tract lesion. Brain Res.2000; 862,280-283.
    268. Chadha A, Sur C, Atack J, Duty S. The 5-HT (1B) receptor agonist, CP-93129, inhibits [(3) H]-GABA release from rat globus pallidus slices and reverses akinesia following intrapallidal injection in the reserpine-treated rat. Br J Pharmacol.2000; 130,1927-1932.
    269. Suzdak PD, Foged C, Andersen KE. Quantitative autoradiographic characterization of the binding of [3H]tiagabine (NNC 05-328) to the GABA uptake carrier. Brain Res.1994; 647,231-241.
    270. Borden LA. GABA transporter heterogeneity:pharmacology and cellular localization. Neurochem Int.1996; 29,335-356.
    271. Chen L, Yung WH. Effects of GABA-uptake inhibitor tiagabine in rat globus pallidus. Exp Brain Res.2003;152,263-269.
    272. Chen L, Chan YS, Yung WH. GABAB receptor activation in the rat globus pallidus potently suppresses pentylenetetrazol-induced tonic seizure. J Biomed Sci.2004; 11,457-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700