茶树种质间谷氨酸脱羧酶活性差异及γ-氨基丁酸茶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对茶树种质间Y-氨基丁酸(GABA)含量和L-谷氨酸脱羧酶(GAD)活性差异、提高茶叶GABA含量方法、GABA绿茶品质特征以及GABA绿茶改善小鼠抑郁状态和学习记忆障碍作用等方面进行了深入研究。
     首先研究了30份茶树种质间GABA含量和GAD活性的差异。发现自然条件下,不同茶树种质叶片中GABA平均含量为0.09 mg/g,种质间变异系数为22.61%,GAD活性平均值为1.57u/g,变异系数为51.32%。经3h厌氧处理后,30份茶树种质中GABA平均含量升至1.29 mg/g,种质间变异系数为27.60%,GAD活性平均值升至25.51u/g,变异系数为21.83%。自然条件和厌氧条件下,茶树GABA含量和GAD活性在种质间均存在明显差异。
     自然条件下茶树种质GAD活性变异系数大,据此进行聚类分析,供试茶树种质可分为三个类群。第1类群茶树GAD活性及GABA含量均较高,为小叶种和中叶种茶树种质;第1I类群茶树以中、大叶种为主;第1II类群茶树中GAD活性及GABA含量均较低,以大叶种为主。
     以高酶活GAD茶树品种为材料,采用真空充氮和谷氨酸钠溶液浸泡方法均可加工出GABA含量达1.50 mg/g以上的GABA茶。红外线照射和冰醋酸溶液处理均能使茶叶GABA含量提高,但GABA含量未达到1.5mg/g的标准。
     感官品质方面,真空充氮方法加工GABA茶干茶色泽偏黄或微红,汤色、叶底微黄,香气中夹杂有闷气;液体浸泡方法加工GABA茶干茶色泽、汤色、叶底及香气均正常。真空充氮和液体浸泡处理后茶叶滋味更为醇和,但不及对照样茶的浓爽。
     生化成分方面,真空充氮方法加工的GABA茶与对照样茶相比,水浸出物含量提高2.5%-6.1%,茶多酚含量降低4.6%-11.6%,游离氨基酸总量提高23.0%-39.1%,咖啡碱和花青素含量与对照接近。液体浸泡方法加工的GABA茶与对照样茶相比,水浸出物含量降低2.5%-3.5%,游离氨基酸总量提高26.9%-54.5%,花青素含量降低12.0%-14.6%,咖啡碱、茶多酚和花青素含量均与对照接近。GABA茶加工过程中GABA与Glu呈现相互消长的关系,茶鲜叶经过连续真空充氮处理后GABA含量大幅上升,Glu含量显著降低。长时间真空充氮处理间以除氮增氧处理可以进一步提高GABA含量。经厌氧处理后茶叶中Pro、GABA、Gly等游离氨基酸含量上升。Glu和Asp含量下降。Thea、Arg、His等游离氨基酸的含量在厌氧条件与正常条件下无明显变化。由厌氧环境转入有氧条件下,GABA、Pro、Thi、Gliu、Asp、Thea等氨基酸含量均有不同程度上升。
     采用GC-MS方法共分离鉴定出64种香气组分。采用真空充氮方法加工的GABA茶Ⅰ中,顺-茉莉酮、丙酸橙花酯、雪松醇是其特有的香气成份;采用液体浸泡方法加工的GABA茶Ⅱ中,2,6,0-三甲基十五烷、3-甲基十六烷是其特有香气物质。三种样茶中,香气物质总量为GABA茶I>GABA茶Ⅱ>对照样。
     小鼠悬尾实验和强迫游泳实验结果提示长期给以GABA茶可改善模型动物的抑郁状态。GABA茶抗抑郁作用可能与小鼠脑内GABA浓度上升有关。小鼠跳台实验结果表明高剂量GABA茶对东莨菪碱造成的学习记忆障碍有显著改善作用。GABA茶对小鼠学习记忆障碍的改善作用不是通过降低AChE活性实现的。
The differences of the contents of GABA and the activities of GAD among tea germplasms,the methods to increase GABA in tea,the quality characteristics of the GABA tea,the action of the GABA tea to mice depression and learning behaviour obstructed were studied in this research.
     Under natural condition,the average content of GABA of the tested tea germplasms was 0.09 mg/g,with the variation coefficient of 22.61%, the average activity of GAD was 1.57u/g,with the variation coefficient of 51.32%.After 3h anaerobic treatment, the average content of GABA of the tested tea germplasms increased to 1.29mg/g,with the variation coefficient of 27.60%, the average activity of GAD increased to 25.51u/g,with the variation coefficient of 21.83%.
     Based on the GAD activity of tea germplasms in natural condition the tested tea germplasms were divided into three groups.In the first group,they were small and medium tea germplasms with high GABA and GAD activity. In the second group,they were mainly medium and large tea germplasms. In the third group,they were mainly large tea germplasms with lower GABA and GAD activity.
     The GABA content of the tea made by the method of vacuum or immersion was higher than 1.50 mg/g,the standard content of GABA tea, while the GABA content of the tea made by the method of infrared ray or glacial acetic acid was lower than 1.50 mg/g.
     Treatment of the green tea with vacuum, the characteristics of GABA tea was implicated in the yellowish or reddish dry tea, the yellowish soup and the soaked leaves, the fragrance mixed with other odour, whereas the colour and the fragrance of the GABA tea made by immersion were similar to that of the control green tea, however, the taste of the soup of GABA tea was purer and thinner than that of the control green tea.
     The contents of the coffein and cyanidin of the GABA tea made by vacuum were close to that of the control green tea. Netherless,compared with the control green tea, the solid content of the water extract increased for 2.5%-6.1%, and the content of the free amino acids increased for 23.0%-39.1%, but the content of the tea polyphenol reduced 4.6%-11.6%. The contents of the coffein, tea polyphenol and cyaniding of the GABA tea made by immersion were close to that of the control green tea, and the content of the water extract reduced 2.5%-3.5%, the content of the cyaniding reduced 12.0%-14.6%, the content of the free amino acids increased 26.9%-54.5%.
     The relationship of GABA and Glu during the processing of GABA tea was shown as growth and decline. After treatment the green tea with vacuum, the content of GABA grew but that of Glu dropped. The content of GABA was further increased by the treatment that long time vacuum intervened by oxygen. After anaerobic treatment, the contents of Pro, GABA, Glygrew, while that of Glu, Asp dropped, and the contents of Thea, Arg, His changed little. From anaerobic condition to oxygen, the contents of GABA、Pro、Thr、Glu、Asp、Thea grew to varying degrees.
     The aromatic constituents of the tested tea were analyzed by GC-MS methods,64 aromatic constituents were identified. Cis-Jasmone, Neryl propionate and Cedrol were the characteristic constituents of the GABA teaⅠmade by vacuum treatment, and for the GABA teaⅡmade by immersion, they were Pentadecane,2,6, 0-trimethyl-, 3-Methylhexadecane.For the total amounts of the aromatic constituents, it was: GABA teaⅠ> GABA teaⅡ> control tea.
     The results of tail suspension and the forced swimming tests in mice,fed with the GABA tea for a long time,demonstrate that the GABA tea possessed significant antidepressant activities which might be attributed to the increasing GABA concentration of mice brain. Furthermore,the evaluation of scopolamine-induced learning and memory deficits of mice via step-down passive avoidance test suggested that the GABA tea could alleviate their symptom, which was not related to the changing of AChE acitivities.
引文
[1]Christensen HN. Special transport and neurological significance of two aminoacids in a configuration conventionally designated as D[J] JEx p Biol,1994,196:297-305
    [2]叶惟泠.γ-氨基丁酸的发现史[J].生理科学进展,1986,17(2):187-189.
    [3]Rhodes D, Handa S,Bressan RA. Metabolic changes associated with adaptation of plant cells to water stress[J]. Plant Physiol,1986,82:890-903
    [4]Fougere F,Rudulier D,Streeter J G. Effects of salt stress on aminoacid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa[J]. Plant Physiol,1991,96: 1228-1236
    [5]穆小民,吴显荣.高等植物体内4-氨基丁酸的代谢及生理作用[J].氨基酸和生物资源,1994,4:44-47.
    [6]Satyanarayan V, Nair P M. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher paints[J]. Phytochem,1990,29:367-375.
    [7]Reggiani R, Cantu CA, Brambilla I et al. Accumulation and inter-conversion of amino acids in rice roots under anoxia[J]. Plant Cell Physiol,1988,29:981-987.
    [8]Perez-Alfocea F. NaCl stress induced organic solute changes on leaves and calli of L ycopersicon esculent um L. pennelli and their interspecific hybrid[J]. J Plant Physiol 1994,143:106-111
    [9]Bown AW, Shelp BJ. The metabolism and physiological roles of 4-aminobutyric acid[J]. Biochem,1989,8:21-25
    [10]Bown AW, Shelp BJ. The metabolism and functions of y-aminobutyric acid[J]. Plant Physiol, 1997,115:1-5
    [11]Satyanarayan V, Nair PM. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants[J]. Phytochemist ry,1990,29:367-375
    [12]Wallace W, Secor J, Schrader L. Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation[J].Plant Physiol,1984,75:170-175.
    [13]Handa S, Bressan R Y, Handa AK et al. Solutes contributing to os motic adjustment in cultured plant cells adapted to water stress[J]. Plant Physiol,1983,73:834-843.
    [14]Serraj R, Shelp BJ, Sinclair TR. Accumulation of y-aminobutyric acid in nodulated soybean in response to drought stress[J]. Physiol Plant,1998,102:79-86.
    [15]Streeter JG, Thompson JF. In vivo and in vitro studies onγ-aminobutyric acid metabolism with the radish plant (Raphanus sativus L.)[J].Plan Physiol,1972,49:579-584.
    [16]Chung I,Bown AW,Shelp BJ. The production and efflux of 4-aminobutyrate in isolated mesophyll cells[J]. Plant Physiol,1992,99:659-664
    [17]Tuin L G, Shelp BJ. In sit u [14C] glutamate metabolism by developing soybean cotyledons. Ⅰ. Metabolic routes[J]. J Plant Physiol,1994,143:1-7
    [18]Tsushida T, Murai T. Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic conditions[J]. Agr Biol Chem,1987,51:2865-2871.
    [19]Bown AW, Shelp BJ. The metabolism and physiological roles of 4-aminobutyric acid[J]. Biochem,1989,8:21-25
    [20]Satyanarayan V, Nair PM. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants[J]. Phytochemistry,1990,29:367-375
    [21]Gallego PP, Whotton L, Picton S et al. A role for glutamate de-carboxylase during tomato ripening:the characteristics of a cDNA encoding a putative glutamate decarboxylase with a calmodulin binding site[J]. Plant Mol Biol,1995,27:1143-1151
    [22]Yu SJ, Oh S2H. Cloning and characterization of a tobacco cDNA encoding calcium/ calmodulin-dependent glutamate decarboxylase[J].Mol Cell,1998,8:125-129
    [23]Turano FJ, Fang TK. Characterization of two glutamate decarboxylase cDNA clones from A rabidopsis[J]. Plant Physiol,1998,117:1411-1421
    [24]Zik M, Arazi T, Snedden WA et al. Two isoforms of glutamate decarboxylasein A rabidopsis are regulated by calcium/ calmodulin and differ in organ distribution [J]. Plant Mol Biol,1998,37:967-975
    [25]Baum G, Chen Y, Arazi T et al. A plant glutamate decarboxylase containing a calmodulin-binding domain[J]. J Biol Chem,1993,268:19610-19617
    [26]Bown AW, Shelp BJ. The metabolism and functions ofγ- aminobutyric acid[J]. Plant Physiol, 1997,115:1-5.
    [27]Heber U, Tyankova L, Santarius KK. Stabilization and inactivation of biological membranes during freezing in the presence of aminoacids[J].Biochim Biophys Acta,1971,241:578-582
    [28]Yuan T, Vogel HJ. Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase[J]. J Biol Chem,1998,273:30328-30335
    [29]Johnson BS,Singh NK,Cherry J H et al. Purification and characterization of glutamate decarboxylase from Cowpea[J]. Phytochemistry,1997,46:39-44
    [30]吕莹果,张晖,马晓博,姚惠源.米胚芽谷氨酸脱羧酶的分离纯化及部分酶学性质的研究[J].西北农林科技大学学报(自然科学版),2008(36)8:190-196
    [31]李冰冰,王玉萍,顾振新等.发芽糙米与稻谷的谷氨酸脱羧酶活力及γ2氨基丁酸含量比较[J].食品与发酵工艺,2006(32)6:28-30
    [32]Tiburcio AF, Altabella T, Borrell A et al. Polyamine metabolism and its regulation[J]. Physiol Plant,1997,100:664-674.
    [33]Bhatnagar P, Glasheen BM, Bains SK et al. Transgenic manipulation of the metabolism of polyamines in Poplar cells[J]. Plant Physiol,2001,125:2139-2153.
    [34]Naylor AW, Tolbert NE. Glutamic acid metabolism in green and etiolated barley leaves[J]. Physiol Plant,1956,9:220-229.
    [35]Dixon ROD, Fowden L. y-aminobutyric acid metabolism in plants[J]. Ann Bot, 1961,25:513-530.
    [36]Tokunaga M, Nakano Y, Kitaoka S. The GABA shunt in the callus cells derived from soybean cotyledon[J]. Agr Biol Chem,1976,40:115-120.
    [37]Shelp BJ.Watlon CS, Snedden WA et al. GABA shunt in developing soybean seeds is associated with hypoxia[J]. Physiol Plant,1995,94:219-228
    [38]Shelp BJ,Bown AW,McLean MD. Metabolism and functions of Gamma amino-butyric acid[J]. Trends Plant Sci,1999,4(11):446-452
    [39]袁仕善、.周智广.谷氨酸脱羧酶若干研究进展[J].生理科学进展,1998,29(1):77-80.
    [40]Areshev AG,Mamaeva OK,Andreeva NS,Sukhareva BS.Structure of glutamate decarboxylaseand related PLP-enzymes:computer-graphicalstudies[J].J.Biomol. Struct.Dyn.,2000,18:127-136
    [41]Salzmann D,Christen P,Mehta PK,Sandmeier E.Rates of evolution'of pyridoxal-5'-phosphate-dependent enzymes[J].Biochem.Biophys.Res. Commun.,2000,270:576-580.
    [42]Arazi T.,Baum G.,Snedden W.A.,Shelp B. Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase[J].Plant Physiol.,1995,108(2):551-561
    [43]Baum,G.,Chen,Y.,Arazi,T.,Takatsuji,H. A plant glutamate decarboxylase containing a calmodulin binding domain.Cloning,sequence,and functional analysis[J].J. Biol.Chem.,1993, 268,19610-19617
    [44]Yevtushenko DP,McLean MD,Peiris S,Van Cauwenberghe OR,Shelp BJ. Calcium/calmodulin activation of two divergent glutamate decarboxylases from tobacco[J].J.Exp.Bot.,2003, 54:2001-2002.
    [45]Yuan T.Vogel HJ.Calcium-calmodulin induced dimerization of the carboxyl-terminal domain from petunia:a novel calmodulin peptide interaction motif[J].J.Biol.Chem.,1998, 273:30328-30335.
    [46]Chen Y.,Baum G.,and Fromm H.,The 58-Kilodalton calmodulin-Binding glutamate decarboxylase is a ubiquitous protein in petunia organs and its expression isdevelopmentally regulated[J].Plant Physiol.,1993,106:1381-1387
    [47]Snedden WA,Arazi.,Fromm H.,and Shelp BJ,Calcium/calmodulin activation of soybean glutamate decarboxylase[J].Plant Physiol.,1995,108(2):543-549
    [48]Camas A,Cardenas L,Quinto C,Lara M, Expression of different calmodulin genes in bean(Phaseolus vulgaris L.):Role of nod factor on calmodulin gene regulation[J].Mol.Plant Microbe Interact,2002,15:428-436
    [49]Baum,G.,Lev-Yadum S.,Fridmann Y.,et al., Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in Plants[J].1996,EMBO J.,15:2988-2996
    [50]Snedden WA,Koutsia N,Baum G et al. Activation of a recombinant petunia glutamate decarboxylase by calcium/ calmodulin or by a monoclonal antibody which recognizes the calmodulin-binding Domain[J].J Biol Chem,1996,271:4148-4153
    [51]Breitkreuz KE, Shelp BJ. Subcelluar compartmentation of the 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons [J]. Plant Physiol,1995,108:99-103
    [52]Snedden WA,Chung I, Pauls RH et al. Proton/L-glutamate symport and the regulation of intracellular pH in isolated mesophyll cells[J]. Plant Physiol,1992,99:665-671
    [53]Carroll AD, Fox GG,Lauries S et al. Ammonium assimilation and the role of γ-aminobutyric acid in pH homeostasis in carrot cell suspensions[J]. Plant Physiol,1994,106:513-520
    [54]Crawford LA, Bowm AW, Breitkreuz KE et al. The synthesis ofy-aminobutyric acid in response to treatments reducing cytosolic Ph[J]. Plant Physiol,1994,104:865-871
    [55]Catherine P.,Scott-Taggart,et al.,Regulation ofγ-aminobutyric acid synthesis insitu by glutamate decarboxylase[J].Physiologia Plantarum,1999,106:363-369
    [56]Chung I,Bown AW,Shelp BJ. The production and efflux of 4-aminobutyrate in isolated mesophyll cells[J]. Plant Physiol,1992,99:659-664
    [57]Cholewa E,Cholewinski AJ, Shelp BJ et al. Cold shock-stimulatedγ-aminobutyric acid synthesis is mediated by an increase in cytosolic Ca2+, not by an increase in cytosolic H+[J]. Can JBot,1991,75:375-382
    [58]Shelp BJ,Watlon CS, Snedden WA et al. GABA shunt in developing soybean seeds is associated with hypoxia[J]. Physiol Plant,1995,94:219-228
    [59]Snedden W A, Chung I, Pauls R H, et al. Plant Physiol,1992;99:665-671.
    [60]Crawford LA, Bown A W, Breitkreuz K E, et al. Plant Physiol,1994;104:865-871.
    [61]Carroll AD, Fox GG, Lauries S et al. Ammonium assimilation and the role of y-aminobutyric acid in pH homeostasis in carrot cell suspensions[J]. Plant Physiol,1994,106:513-520.
    [62]Carroll AD, Fox GG,Lauries S et al. Ammonium assimilation and the role of γ-aminobutyric acid in pH homeostasis in carrot cell suspensions [J]. Plant Physiol,1994,106:513-520
    [63]Crawford LA, Bowm AW, Breitkreuz KE et al. The synthesis of y-aminobutyric acid in response to treatments reducing cytosolic Ph[J]. Plant Physiol,1994,104-.865-871
    [64]B.B.布坎南,W格鲁依森姆,R.L.琼斯.植物生物化学与分子生物学[M].北京:科学出版社,2004:549-565
    [65]Satyanarayan V, Nair PM. Metabolism, enzymology and possible roles of4-aminobutyrate in higher plants[J]. Phytochemist ry,1990,29:367-375
    [66]Breitkreuz KE. Identification and characterization of GABA proline and quaternary ammonium compound transporters from A rabidopsis thaliana[J]. FEBS Lett,1999,450:280-284
    [67]Fischer WN. Amino acid transport in plants[J]. Trends Plant Sci,1998,3:188-195
    [68]Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes[J].Phytoche mistry,1989,28:570-582.
    [69]Reggiani R,Laoreli P. Evidence for involvement of phospholipase C in the anaerobic signal transduction[J]. Plant Cell Physiol,2000,41 (12):1392-1396
    [70]Knight MR,Campbell AK,Smith SM et al. Transgenic plant ae-quorin reports the effect of touch and cold shock and elicitors on cytoplasmic calcium[J]. Nat ure,1991,352:524-526
    [71]Ramputh AL,Bown AW. Rapid gamma aminobutyric acid synthesis and the inhibition of the growth and development of oblique banded leaf-roller larvae[J]. Plant Physiol 1996,111:1349-1352
    [72]Jones RS,Mitchell CA. Calcium ion movement in growth inhibition of mechanically stresses soybean seedlings[J]. Physiol Plant,1989,76:598-602
    [73]Kathiresan A,Tung P,Chinnappa CC et al. γ-aminobutyric acid stimulates ethylene biosythesis in sun flower[J]. Plant Physiol,1997,115:129-135
    [74]Turano FJ, Kramer GF, Wang CY. The effect of methionine,ethylene and polyamine catabolic intermediates on polyamine accumulation in detached soybean leaves [J]. Physiol Plant, 1997,101:510-518
    [75]Kinnersley A M. Critical Reviews in Plant Sciences,2000; 19:479-509.
    [76]Abeles FB, Morgan P W, Saltveit ME.Ethylene in Plant Biology[J]. San Diego,Calif;Academic Press,1992
    [77]Wallace W, Secor J, Schrader L. Rapid accumulation of y-aminobutyric acid and alanine in soybean leaves in response to anabrupt transfer to lower temperature, darkness, or mechanical manipulation[J]. Plant Physiol,1984,75:170-175
    [78]Roberts J KM. Contribution of malate and amino acid metabolism to cytoplasmic pH regulation in hypoxic maize root tips studied using magnetic resonance spectroscopy[J]. Plant Physiol,1992,98:480-48
    [79]Reggiani R,Laoreli P. Evidence for involvement of phospholipase C in the anaerobic signal transduction[J]. Plant Cell Physiol,2000,41 (12):1392-1396
    [80]Lane TR,Stiller M. Glutamic acid decarboxylation in Chlorella[J]. Plant Physiol 1970,45:558-562
    [81]Alan WB,Guijin Z. Mechanical stimulation,γ-aminobutyric acid synthesis, and growth inhibition in soybean hypocotyl tissue[J]. Can JBot,2000,78:119-123
    [82]Mayer RR,Cherry J H,Rhodes D. Effects of heat shock on amino acid metabolism of Cowpea cells[J]. Plant Physiol,1990,94:796-810
    [83]Janzen DJ, Allen LJ, MacGregor KB et al. Cytosolic acidification andγ-aminobutyric acid synthesis during the oxidative burstin isolated Asparagus sprengeri mesophyll cells [J]. Can J Bot,2001,79:438-443
    [84]Rainputh A I, Bown A W. Plant Physiol,1996; 111:1349-1352
    [85]Hammond-Kosack KE,Jones JDG. Resistance gene-dependent plant defense responses[J]. Plant Cell,1996,8:1773-1791
    [86]Cholewa E,Cholewinski AJ, Shelp BJ et al. Cold shock-stimulatedy-aminobutyric acid synthesis is mediated by an increase in cytosolic Ca2+, not by an increase in cytosolic H+[J]. Can JBot,1997,75:375-382
    [87]北京医学基础部.中枢神经介质概论[M].北京:科学出版社.1977:210-215
    [88]Satya Narayan V, Nair P M. Metabolism, enzymology and possible roles of 4-aminobutyric acid[J]. Biochemistry,1989,8:21-25
    [89]Takahashi H et al. On the site of action of γ-aminobutyric acid on blood pressure and heart rate of anestheized cats[J].Jpn J Physiol.,1958,8:378-380.
    [90]Segal SA, et al. Blockade of central nervous system GABAergic tone causes sympathetic mediated increases in coronary vasculas resistance in cats[J]. Circulation Res.,1984,55:404-408
    [91]Krajnc D, Neff NH, Hadjiconstantiou M. Glutamate, glu-tamine and glutamine synthetase in the neonatal rat brain following hypoxia [J]. Brain Res,1996,707 (10):134-137
    [92]Klein Rl, Harris RA. Regulation of GABAAreceptor structure and function by chronic drug treatments in vivo and with stablytransfected cells[J]. Jpn J Phmacol,1996,70 (1):1-15
    [93]Suzuki T, Mizoguchi H, Noguchi H, et al. Effects of flu-riarizine and diltiazem on physical dependence on barbital in rats[J]. Pharmacol Biochem Benhave,1993,45 (3):703-712
    [94]Kumamoto E. The pharmacology of amino-acid responses in septal neurons[J]. Prog Neurobiology,1997,52 (3):197-259
    [95]王世明.GABAA受体研究进展[J].中国局解手术学杂志,2001,10(3):307-308
    [96]Misgele U, Bijak M, JarolimekW. A physiological role for GABABreceptors and the effectsof baclofen in themammalian central nervous system[J].Prog Neurobiol,1995,46:434
    [97]Ong J, Kerr DIB. GABA-recepters in peripheral tissues[J].Life Sci,1990,46:1489
    [98]Yu ZF, Cheng GJ, Hu BR. Mechanism of colchiine impair-ment on learning and memory and protective effect of CGP36472 in mice[J].Brain Res,1997,750:53
    [99]李华.GABAB受体及其临床意义[J].中国临床神经科学,2001,9(1):96-98
    [100]王来仪.γ-氨基丁酸、受体药理学及对心血管活动的调节[J].心血管学报,1991,10(1):46-49
    [101]Antonaccio MJ & Tayloy DG. Involvement of central GAB A reception in the regulation of blood pressure and heart of anestizes cats[J]. Eur J Pharmacol.,1977,46:283-285
    [102]Sun MK & Guyenrt PG. Arterial bar-oreceptor and vagalinputs to sympatho excitatory neurons in rat medulla[J]. Am J Physiol.,1987,252:699-702
    [103]Billingsley ML, et al., Effect of peripherally adiministered GABA and other amino acids on cardiopulmonary responses in anesthetize rats and dogs[J]. Arch Int Pharmacodyn.,1982,2:55-131
    [104]杨立川.高γ-氨基丁酸与癫病[J]国内外医学神经病学外科学分册,1993,16(3):19-20
    [105]Tadashi O.Tomoko S. Effect of the Defatted Rice Germ Enriched with GABA for Sleepness,Depression,Autonomic Discorder by Oral Administration[J].Nippon Shokuhin Kagaku Kogaku Kaishi,2000,47(8):596-603
    [106]杭维亮.应用γγ--氨基丁酸等治疗癫痛79例临床观察[J].遵义医学院学报,1994,17(1):23-25
    [107]Guidotti A, Auta J, Davis J, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizo-phrenia and bipolar disorder:a postmortem brain study[J]. Arch Gen Psychiatry,2000,57:1061-1069
    [108]Veldic M, Caruncho HJ, Liu WS, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains[J]. Proc Natl Acad Sci USA.2004,101(1):348-353
    [109]Akbarian S, Huang HS. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders[J]. Brain Reserach Reviews,2006,52:293-304
    [110]Dracheva S, Elhakem SL, McGurk SR, et al. GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia[J]. J Neurosci Res. 2004,76:581-592
    [111]Addington AM. Gornick M, Duckworth J, et al. GAD1(2q3111). which encodesglutamic acid decarboxylase (GAD67), is associated with childhood onset schizophrenia and cortical gray matter volume loss[J]. Mol Psychiatry,2005,10(6):581-588
    [112]Zhang BY, Yuan YB, Jia YB, et al. An association study between polymorphisms in five genes in glutamate and GAB A pathway and paranoid schizophrenia[J]. Eur Psychiatry,2005,20 (1):45-49
    [113]De Luca V, Muglia P, Masellis M. Polymorphisms in glutamate decarboxylase genes analysis in schizophrenia[J]. Psychiatr Genet.2004,14 (1):39-42
    [114]Ikeda M, Ozaki N, Yamanouchi Y, et al. No association between the glutamate decarboxylase 67 gene (GAD1) and schizophrenia in the Japanese population[J]. Schizophrenia Research,2007,91:22-26
    [115]Ishikawa M, Mizukami K, Iwakiri M, et al. Immunohistochemical and immunoblot study of GABAAα1 andβ2/3 subunits inthe prefrontac cortex of subjects with schizophrenia and bipolar disorder[J]. Neuroscience Research,2004,50:77-84
    [116]Lo WS, Laul CF, Xuan Z, et al. Association of SNPs and haplotypes in GABAA receptorβ-gene with schizophrenia[J]. Mol Psychiatry,2004,9:603-608
    [117]Liu JX, Shi Y, Tang W, et al. Positive association of the human GABA-A-receptor betasubunit gene haplotype withschizophrenia in the Chinese Han population. Biochem Bio-phys Res Commun.2005,334:817-823
    [118]Petryshcn TL, Middleton FA, Tah AR, et al. Genetic in-vestigation of chromosome 5q GABAA receptor subunit genes in schizophrenia[J]. Mol Psychiatry,2005,10:1074-1088
    [119]Ambrosio AM, Kennedy JL, Macciardi F, et al. A lingkage study between the GABAA beta and GABAA gamma subunit genes and major psychoses [J]. CNS Spectr.2005,10:57-61
    [120]Ikeda M, Iwata N, Suzuki T, et al. Association analysis of chromosome 5 GABAA receptor cluster in Japanese schizophrenia patients[J]. Biol Psychiatry,2005,58:440-445
    [121]Ishikawa M, Mizukami K, Iwakiri M, et al. Immunohistochemical and immunoblot analysis of gamma-aminobutyric acid B receptor in the prefrontal cortex of subjects with schizophrenia and bipolar disorder[J]. Neurosci Lett.2005,383 (3):272-277
    [122]陆勤.γ-氨基丁酸的神经营养作用[J].国外医学生理、病理科学与临床分册,1995,15(3):187-188
    [123]翟启慧.昆虫分子生物学的一些进展:神经递质和离子通道[J].昆虫学报,1995,38(3):370-378
    [124韦习会,漆兴桂,夏东.日粮添加Y-氨基丁酸对肥育猪生长和饲料利用的影响[J].家畜生态,2004,25(2):11
    [125]李爱学.γ-氨基丁酸和氟安定对产蛋高峰期母鸡摄食行为以及有关内分泌的影响[硕士学位论文],南京:南京农业大学,2003
    [126]陈忠,王婷,黄丽明.GABA对热应激仔鸡的影响[J].动物学研究,2002,23(4):341
    [127]吴常信.中国家禽研究[M].成都:四川科学技术出版社,2005.354-355
    [128]赵彤.GABA对大鼠海马脑片缺氧损伤的保护作用[J].Chin J Appl Physiol,2003,19(1):16-19
    [129]甘平.GABA受体在脑缺血中的作用[J].中国神经科学杂志,2004,20(1):78-81
    [130]Billingsley ML, et al., Effect of peripherally adiministeredGABA and other amino acids on cardiopulmonary responses in anesthetize rats and dogs[J]. Arch Int Pharmacodyn.,1982,2:55-131
    [131]徐传伟,夏应和.γ-氨基丁酸控制哮喘急性发作临床疗效观察[J].滨洲医学院学报,1999,22(2):181
    [132]方廉,罗荣生.GABA对离体卵巢颗粒细胞孕酮的影响[J].细胞生物学杂志,1994,16(3):137-139
    [133]张辉,倪江,张伟,等.GABA影响大鼠卵巢黄体细胞原酮的生成[J].生理学报,2000,52(3):185-187
    [134]Kalia V, Hole D R, Willson C A. Effect of gonadalsteroids and gamma-aminobntyric acid on LH Releaseand dopmine expression and activity in the zona incerta in rats[J].Reproduction and Fertility,1999,117:189-197
    [135]Leigh A JCarter N DHorto Ret al Ovarian steriod regulation of glutamic acid decarboxylase geneexpression in indivdual hypothamic nuclei[J].Neuroendocrinology,1990,52:433-438
    [136]Willson C A,James M D,Leigh A J.Role of gamma-aminobutyric acid in the zona incerta in thr control ofluteinizing hormone release and ovulation[J].Neuroendocrinology,1990,52:354-360
    [137]Yuan Y Y, He C N, Shi Q X. GABA initiates theacrosome reaction and fertilizing ability in humansperm[J].Acta physiol Sin,1998,50(3):326-332
    [138]Perez L J,Valcarcel A, de las Heras M A,et al. The storage of pure ram semen at room temperature results in capacitation of a perm subpopulation[J]. Theriogenology,1997,47:549-558
    [139]She Q X, Yuan Y Y,Roldan E R. Y-Aminobutyric acid (GABA) induces the acrosome reaction in human Spermatozoa[J].Mol Hum Reprod,1997,3:677-683
    [140]Yuan Y Y,Zhong Z H,Shi Q X. Znitiation of acrosome reaction in Chinese Hamster sperm by cumulus oophorus and matric[J].Acta Anat Sin,1998,29:404-409
    [141]McCann SM, Vijayan E, et al. Gamma aminobutyricacid(GABA), a modulator pituitary hormone secretion by hypothalamic and pituitary action[J]. Psychoneuro endocrinology,1984, 9(2):97-106
    [142]Tadashi O,Tomoko S. Effect of the Defatted Rice GermEnriched with GABA for Sleepness,Depression,AutonomicDiscorder by Oral Administration[J].Nippon Shokuhin Kagaku Kogaku Kaishi,2000,47(8):596-603
    [143]Leventhal A.G., Wang Y., Pu M., Zhou Y., et al., GABA and its agonists improved visual cortical function in senescent monkeys[J]. Science,2003,300:812-815
    [144]沈渔邮.精神病学[M].4版.北京:人民卫生出版社,2001:457-458
    [145]李凌江.精神病学[M].北京:高等教育出版社,2003:156-158,426-455
    [146]Michael G,J uan J,Andreasen N.New Oxford Textbook of Psychiatry[M].U K:Oxford University Press,2003:535-537
    [147]朱紫清,季建林,肖世富.抑郁障碍的诊疗关键[M].南京:江苏科学技术出社,2003:1-2
    [148]Ban T A.Pharmacot herapy of depression:a historical analysis[J]. J Neural Transm,2001,108(6):707-716
    [149]Zhong Ning.The clinical observation to fluoxetine t hrought reating Parkinsons disease wit h depression[J]. J Med Theory Pract,2008,21(8):890-891
    [150]Perna G,Bertani A,Caldirola D,et al.A comparison of citalopram and paroxetine in the treatment of panic disorder:a randomized,single blind study[J]. Pharmacopsychiatry,2001,34(3):85-90
    [151]Mullins C D,Shaya F T,Meng F,et al. Comparison of first refill rates among users of sert rallne,paroxetine,and citalopram[J].Clin Ther,2006,28(2):297-305
    [152]Gatti F,Bellini L, Gasperini M,et al. Fluvoxamine alone in the treatment of delusional depression[J]. AmJ Psychiatry,1996,153(3):414-416
    [153]李文迁,李德香.西酞普兰治疗急性卒中后抑郁的疗效及其对卒中康复的影响[J].国际脑血管病杂志,2006,14(4):275-278
    [154]Pogosova G V, Zhidko N I, Mikheeva T G,et al.Clinical effectiveness and safety of citalopram in patient s wit h depression after myocardial infarction[J]. Kardiologiia,2003,43(1):24-29
    [155]Sheehan D V.Attaining remission in generalized anxiety disorder:venlafaxine extended release comparative data[J].J Clin Psychiatry,2001,62(Suppl19):26-31
    [156]Nelson J C,Lu Pritchett Y,Martynov O,et al. The safety and tolerability of duloxetine compared wit h paroxetine and placebo:a pooled analysis of 4 clinical trials[J].Prim Care Companion J Clin Psychiatry,2006,8(4):212-219
    [157]Dmochowski R R,Miklos J R,Norton P A,et al.Duloxetine versus placebo for the treatment of North American women with stress urinary incontinence[J] J Urol,2003,170(4 Pt1):1259-1263
    [158]Gelenberg A J,McGahuey C,Laukes C,et al.Mirtazapine substitution in SSRI-induced sexual dysfunction[J].J Clin Psychiatry,2000,61(5):356-360
    [159]王晓慧,孙家华.现代精神医学[M].北京:人民军医出版社,2002:950-975
    [160]姜佐宁.现代精神病学[M].2版.北京:科学出版社,2001:1086-1111
    [161]姜春和.抗抑郁药临床应用进展[J].协和药学,2008,23(2):11-15
    [162]Bennett D A J r,Phun L,Polk J F,et a/.Neuropharmacology of St.Johns wort (Hypericum.)[J].Ann Pharmacot her,1998,32(11):1201-1208
    [163]Hurt R D,Sachs D P,Glover E D,et al.A comparison of sustained-release bupropion and placebo for smoking cessation[J].N Engl J Med,1997,337(17):1195-1202
    [164]Zhai Jin2guo,liu Qin,Xuan Qiong. Buspirone hydrochloride intreatment of tardive dyskinesia[J].J New Drug Clin Remed,1996,15(3):192.Chinese
    [165]Wang Wenli.Yang Xiangmin.Efficacy of citalopram in treatment of acute post stroke depression and it s effect on cognitive function[J].J Forth Mil Med Univ,2007,28 (5):431.Chinese
    [166]孙国欣.突触素与运动、学习记忆的神经生物学研究进展[J].西安体育学院学报,2006,23(3):82-85
    [167]周丽莎,朱书秀,望庐山.草苁蓉提取物对阿尔茨海默病大鼠乙酰胆碱及学习记忆能力的影响[J].中国医院药学杂志,2009,29(23):1980-1983
    [168]张栋珉,肖谦.糖尿病大鼠海马胆碱乙酰转移酶表达与认知功能的相关性[J].第四军医大学学报,2009,30(22):2553-2556
    [169]刘智斌,牛文民,杨晓航,牛晓梅,王渊.嗅三针对老年痴呆大鼠学习记忆功能及海马胆碱乙酰化酶、乙酰胆碱酯酶活性的影响[J].针刺研究,2009,34(2):48-51
    [170]李永生.中枢神经递质与学习记忆的相关性研究进展[J].实用医药杂志,2006,6:864-865
    [171]Howland JG,Wang YT.Synaptic plasticity in learning and memory:stress effects in the hippocampus[J].Prog Brain Res,2008,169:145-581
    [172]StramielloM,Wagner JJ.D(1/5)receptor-mediated enhancement of LTP requires PKA, Src family kinases,and NR2B-containing NMDARs[J].Neuropharmacology,2008,55(5):871-877
    [173]KEhr G.NMDA receptor function:subunit composition versus spatial distribution[J].Cell Tissue Res,2006,326(2):439-446
    [174]Nakanishi N,Tu S,Shin Y,etla.Neuroprotection by the NR3A subunit of the NMDA receptor[J].Neuroscience,2009,29(16):5260-5265
    [175]Edwards FA. Anatomy and electrophysiology of fast central synapse lead to a structuralmodel for longterm potentiation[J].Physiol Rev,1995,75(4):7592-7597
    [176]Mansuy IM,Mayford M,Jacob B, et al.Restricted and regulated overexpression reveals calcineurin as a key component in the transition from shortterm to longterm memory[J].Cell,1998,92:39-49
    [177]Winder DG,Mansuy IM,Osman M,et al.Genetic and pharmaco10 gical evidence for a novel,intermediate phase of longterm potentiation suppressed by calcineurin[J]. Cell,1998,92:25-37
    [178]Yin JCP, Wallach JS, Del Vecchio M, et al.Induction of a dominant-negative CREB transgene specifically blocks longterm memory in Drosophila[J].Cell,1994,79:49-58
    [179]Yin JCP, Del Vecchio M. Zhou H, et al.CREB as a memory modulator:induced expression of dCREB2 activator isoform enhances longterm memory in Drosophila[J]. Cell, 1995,81:107-115
    [180]WaddellS, Armstrong JD, Kitamoto, et al.memory[J].Cell,2000,103(5):805
    [181]Madani R,Hulo S,Toni N,et al.Enhanced hippocampal longterm potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice[J].EMBOJ,1999,18(11):3007-3012
    [182]Eagger S A,Levy r,Sahakian B J,et al.Tacrine in Alzheimer'sDisease[J].Lancet,1991,337:989-992
    [183]Summers W K,Majovski L V,Marsh GM,et al.Oral tetrahy droacrindine in longterm treatment of senile dementia Alzheimer type[J].The New Eng J Med,1986,315:1241-1245
    [184]Parnetti L,Senin U.Cognitive enhancement therapy for Alzheimer's Disease[J].Drugs,1997,53:752-768
    [185]Petkov V D,Mo sharrof AH,Petkov V V,et al.Age-related differences in memory and in the memory effects of nootropic drugs[J].Acta Physiol Pharmacol Bulg,1990,16(2):28-36
    [186]Nicolaus BJR.Chemistry and pharmaco10 gy of nootropics[J].Drug Dev Res,1982,2(6):463-467
    [187]Soldtos CTM.CNS effects of ISF2522, a new nootropic[J].CurrTher Res,1979,26(7):525-526
    [188]杨军,魏守建,王静.当归芍药散治疗老年痴呆症药理研究进展[J].安徽中医学院学报,1998,16(3):61-64
    [189]徐章华,邵玉芬.α-亚麻酸对大鼠行为、视网膜及肝脑脂肪酸构成的影响[J].中国公共卫生,2002,18(3):301-303
    [190]Manharr Vaughan D, Reymann KG.1 S,3R-ACPD dose dependently induces a slow onset potentiation in the dentate gyrus in vivo[J]. Eur J Pharmacol,1995,294:497-498
    [191]朱传江,张均田.(-),(+)-7-羟基-黄皮酰胺对大鼠海马齿状回突触传递功能的影响[J].药学学报,2004,39(1):34-36
    [192]张均田.人参皂苷Rgl的促智作用机制对神经可塑性和神经发生的影响[J].药学学报,2005,40(5):385-388
    [195]林智,大森正司.γ-氨基丁酸茶(Gabaron Tea)降血压机理的研究[J].茶叶科学,2001,21(2):153-156
    [196]黄亚辉,郑红发,曾贞,刘霞林,雷翔剑,彭亿海.金白龙茶(GABARON)治疗高血压临床试验报告[J].高血压杂志,2002,10(1):55-56
    [197]宛晓春.茶叶生物化学(第三版)[M].北京:中国农业出版社.2003.34
    [198]Y.sawai,Y.Yamaguchi,D.Miyama,and H. Yoshitomi.Cycling treatment of anaerobic and aerobic incubation increases the content of y-aminobutyric acid in tea shoots[J].Amino Acids, 2001,20:331-334
    [199]林智,林钟鸣,尹军峰,谭俊峰.厌氧处理对茶叶γ-氨基丁酸含量及其品质的影响[J].食品科学,2004(2):35-39
    [201]Yoshiya S. Method for Accumulation of y-aminobutyric Acid in Tea:JPO 926189, Kanagana Pretecture[P].Japan.1997,8,12,Int.CI.A23F3106
    [202]谭济才,肖文军.氨基酸叶面肥喷施茶树的效果[J].茶叶通讯,2002,(4):7-9
    [203]张定,汤茶琴,陈暄等.叶面喷施氨基酸对茶叶中γ-氨基丁酸含量的影响[J].茶叶科学,2006,26(4):237-242.
    [204]林智.杨钟鸣等.高Y-氨基丁酸炒青绿茶试制成功[J].科技简讯.2002,4:21
    [205]萧慧,萧伟祥.茶叶中r-氨基丁酸形成机理与富集技术[J].福建茶叶.2003.02:33-35
    [207]孙宁玲,朱继红,张瑞军,等.高胰岛素血症的高血压患者肾素—血管紧张素—醛固 酮系统的变化[J].中国循环杂志1995,10:587-590
    [208]Hata A, Namikawa C, Sasaki M, et al. Angiotensinogen as a risk factor for essential hypertension in Japan [J], J Clin Invest,1994,93:1285—1287
    [209]彭师奇.多肽药物化学[M].北京:科学出版社,1993:293
    [210]Ondetti M A, Gushman D W. Inhibitors of Angiotensin-Converting Enzyme. In Biochemical regulation of blood pressure[M].New York:Wiley,1981:165-204
    [211]Yukihiko Hara, Taeko Matsuzaki, Tateo Suzuki, AngiotensinI converting enzyme inhibiting activity of tea components [J].Nippon Nogeikagaku Kaishi,1987,61(7):803—807
    [212]Miki Kobayashi, Mikiko Mochizuki, Takeshi Terashima,Hidehiko Yokogoshi. Hypotensive effect and activation of dopaminergic neurons by theanine in rats [M]. Proceedings of the International Symposium on tea Culture and Health Science.Kakegawa, Japan,1996.10,164—169
    [213]毛志方,吴惠岭,李强,周卫龙,宿迷菊,徐建峰,傅剑云.γ-氨基丁酸茶降血压作用动物试验研究[J].中国茶叶加工,2007,2:14-16
    [214]黄亚辉,郑红发,曾贞,刘霞林.金白龙茶(GABARON)的研制及临床试验[J].茶叶通讯,2001,4:3-5
    [215]黄亚辉,曾贞,郑红发,黄怀生.GABA茶中γ-氨基丁酸的TLC测定及提纯研究[J].氨基酸和生物资源,2008,30(3):11-15
    [216]姚森,杨特武,赵莉君,熊善柏.发芽糙米中γ-氨基丁酸含量的品种基因型差异分析[J].中国农业科学,2008,41(12):3974-3982
    [217]张晖.米胚谷氨酸脱羧酶性质及其富集γ-氨基丁酸研究.江南大学博士学位论文,2004:22-24
    [218]吴琴燕,杨敬辉,朱桂梅,肖婷,陈宏州,郭建,潘以楼.糙米原料中γ-氨基丁酸含量与谷氨酸脱羧酶活性分析[J].江西农业学报,2009,21(6):8-10
    [219]许建军,江波,许时婴.比色法快速测定乳酸菌谷氨酸脱羧酶活性及其应用[J].微生物学通报,2004,31(2):66-71
    [220]施兆鹏,刘仲华.夏茶苦涩味化学实质的数学模型探讨[J].茶叶科学,1987,7(2):7-12
    [221]朱宇.茶叶中的氨基酸在加工过程中的变化及对茶品质的影响[J].四川农业大学学报,1995,13(3):284-287
    [222郭玉琼,詹梓金,金心怡,郭雅玲,赖钟雄.白芽奇兰茶做青过程的品质化学分析[J].江西农业大学学报,2003,25(1):124-129
    [223]Delauney AJ,Hucaa,Kishor PBK,et al.Cloning of ornithine-aminotransferase cDNA from Vigna acoriitifolia by trans-complementation in Escherichia coli and regulation of praline biosynthesis[J].J Biol Chem,1993,268:18673-18678
    [224]Peng Z,Lu Q,Verma D P S. Reciprocal regulation of % 1-pyrroline-5-carboxylate synthetase and pro-line dehydrogenase genes controls proline levels during and after osmotic stress in plants[J]. Mol Gen enet,1996,253:334-341
    [225]Kiyosue T, Yoshiba Y, Yamaguchi - Shinozaki K, et al. A nuclear gene encoding mitochondrial roline dehy drogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregu-ated by dehydrationin Arabidopsis thaliana[J]. Plant Cell,1996,8: 1323-1335
    [226]Verbruggen N, Hua XJ, Maym, et al. Nvironmental and developmental signals modulate proline homeostasis:evidence for a negative transcriptional regulator[J]. Proc Natl Acad Sci USA,1996,93:8787-8791
    [227]商业部茶叶畜产局,商业部杭州茶叶加工研究所.茶叶品质理化分析[M].上海:上海科学技术出版社,1989
    [228]曾晓雄,庞新文,汪琢成.炒青绿茶香气成分气相—质谱分析[J].色谱,1990,8(3):169-172
    [229]朱旗,施兆鹏,任春梅.绿茶香气不同提取方法的研究[J].茶叶科学,2001,21(1):38-43
    [230]朱旗,施兆鹏,任春梅.用顶空吸附法与茶汤过柱吸附法分析绿茶香气[J].湖南农业大学学报,2001,27(6):469-471
    [231]宛晓春,汤坚.不同干燥温度和方式对绿茶香气组分和特征影响的研究[J].无锡轻工业学院学报,1992,11(4):285-291
    [232]倪德江,陈玉琼.制茶工艺对名优绿茶香气品质的影响[J].茶叶科学,1997,17(1):65-68
    [233]李拥军,施兆鹏.炒青和烘青绿茶香气的对比分析[J].食品科学,2001,22(11):65-67
    [234]杨贤强,陈席卿.炒青绿茶制造中香气组分变化的研究[J].食品科学,1989(8):1-7
    [235]倪德江,陈玉琼.绿针茶加工过程香气的动态变化[J].华中农业大学学报,1996,15(2):194-199
    [236]李拥军,施兆鹏.炒青绿茶加工中香气的动态变化[J].茶叶科学,2001,21(2):124-129
    [237]张正竹,宛晓春,陶冠军.茶鲜叶中糖苷类香气前体的液质联用分析[J].茶叶科学,2005,25(4):275-281
    [238]张正竹,宛晓春,施兆鹏,夏涛.茶鲜叶在不同季节及绿茶加工贮藏过程中糖苷类香气前体含量变化研究[J].食品与发酵工业,2003(29)3:14
    [239]Philippe B, Denis G, Marcel H. Molecular modeling of the GABA/GABABreceptor complex[J].J Med Chem,2001,44(1):27-35
    [240]张凌,毛玉婷.抑郁症的神经生物学基础[J].生物学教学,2005,30(9):5
    [241]张士善,朱桐君,张丹参,等.脑内γ-氨基丁酸水平对学习记忆的影响.中国药理学 报,1989,10(1):10-12
    [242]张均田.我国神经药理学十年研究进展[J].中国药理学报,1997,13(2):97-102
    [243]张士善,张力,张丹参.脑内Glu/GABA学习记忆调节系统[J].中国药理学通讯,1996;13(3):18-22
    [244]Ionkov D, Georgiev V. Memory effects of GABAergic antagonists in rats trained with two-way active avoidance tasks[J]. Acta Physiol Pharmacol Bulg,1985;11(2):44
    [245]Flood JF, et al. Modulation of memory processing by glutamic acid receptor agonists and antagonists. Brain Res,1990;521:197
    [246]Alreja M,Wu M,Liu W,et al.Muscarinic tone sustains impulse flow inthe septohippocampal GABA but not cholinergic pathway implications forlearning and memory[J]. J Neurosci 2000,20 (2):8103-10
    [247]徐叔云,卞如濂,陈修.药理实验方法学,第3版[M].北京:人民卫生出版社.2002:807
    [248]Wonnemann M,Singer A,Siebert B,et al.Evaluation of synaptosomal uptake inhibition of most relevant constituents of St.John's Wort[J].Pharmacopsychiatry,2001,34(1):141-158
    [249]Muller W E.Singer A,Wonnemann M,et al.Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract[J].Pharmacopsychiatry,1998,31(1):16-21
    [250]Bartus RT. On neurodegenerative diseases, models, and treatment strategies:lessons learned and lessons forgotten a generation following the cholinergic hypothesis [J]. Exp Neurol,2000,163: 495-529
    [251]Krajnc D, Neff NH, Hadjiconstantiou M. Glutamate, glu-tamine and glutamine synthetase in the neonatal rat brain following hypoxia [J].Brain Res,1996,707(10):134-137
    [252]黄福平,陈伟,陈荣冰,梁月荣.乌龙茶做青过程中可溶性糖含量的变化[J].中国茶叶,2002,24(6):13-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700