GABA_B受体神经保护功能的分子机制研究及其与G蛋白动态相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GABAB受体是中枢神经系统中主要的抑制性神经递质γ-氨基丁酸(GABA)的代谢型受体,在神经元的突触前和突触后都有广泛的表达。同时,它也是GPCR C家族成员之一,与Gi/o型G蛋白相互偶联,介导缓慢而持久的神经突触活动。GABAB受体功能的减弱或亢进会导致多种中枢神经系统疾病,如癫痫,痉挛,焦虑,抑郁,疼痛,药物成瘾,认知损伤等,是重要的药物靶点。
     最近的研究表明,GABAB受体的激活具有神经保护的功能,但是,其作用的具体分子机制还并不清楚。在本课题研究的第一部分,我们以低钾诱导的小脑颗粒神经元的凋亡作为细胞模型,确认了GABAB受体的神经保护作用。进一步,我们发现GABAB受体的激活介导了PI3K/Akt信号通路,并且这条信号通路在GABAB受体介导的神经保护作用中起到了重要的作用。进而,我们有意思的发现GABAB受体的激活可以引起IGF-1受体活性的增强。用IGF-1受体的抑制剂抑制受体活性或用RNA干扰降低IGF-1受体表达后,GABAB受体介导的Akt的激活被抑制了。这表明GABAB受体可以转激活IGF-1受体并进一步激活了Akt信号通路。同时,通过免疫共沉淀和配体竞争实验,我们发现GABAB受体可以与IGF-1受体相互作用并且.两者之间的转激活效应是配体非依赖的。这个研究一方面阐明了GABAB受体神经保护功能的分子机制,暗示GABAB受体在神经退行性疾病中潜在药理学功能;另一方面,这首次发现了GABAB受体对RTK的转激活作用,也进一步表明了GPCR与RTK之间信号交联的重要意义。
     新的蛋白质与蛋白质相互作用研究手段的建立使得传统的GPCR与G蛋白相互作用的基于“碰撞”的模型受到了挑战。在GPCR A家族成员的研究表明受体与G蛋白之间可以形成稳定的复合物,并且受体的激活并不导致G蛋白三聚体的解离。但是,对GPCR C家族成员与G蛋白的相互作用的研究还没有报道。在第二部分的研究中,我们用BRET和TR-FRET的方法研究了GABAb受体与G蛋白的相互作用,以及受体激活前后受体与G蛋白,G蛋白Gα和Gβγ亚基之间相互作用的动态变化。我们的结果暗示G蛋白可以和GABAB受体预结合,并且受体激活后会使得G蛋白与GABAB受体相互作用的减弱,同时也导致了Gα和Gβγ之间相互作用的变化。这些结果一方面证实了G蛋白可以受体预结合并伴随着受体的激活呈现动态的变化,另一方面也为建立基于BRET技术的GABAB受体的新的药物筛选细胞模型提供思路。
GABAB receptor is the metabotropic recetor of y-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the central nevous system (CNS). It is widely expressed presynaptically and postsynaptically. Meanwhile, GABAB receptor belongs to G protein coupled receptor family (GPCR) group C and couples with Gi/o protein, mediating slow and prelonged synaptic activity. Hypoactivity or hyperactivity of GABAB receptor would reslut in various nevous system disorders, such as epilepsy, spasticity, anxiety, stress, depression, addiction, pains and memory dysfunction. Therefore, it is an important drug target.
     The activation of GABAB receptor is reported to promote neuronal survival under ischemia and metabolic stress. However, the molecular mechanism by which the GABAB receptor mediates neuroprotection remains to be elucidated. In the first study of our work, we confirmed that the activation of GABAB receptor protected cerebellar granule cells (CGNs) from potassium-induced apoptosis. Furthermore, we found that the actvation of GABAB receptor increased P13K/Akt signal pathway activity and this pathway played an important role in the antiapoptosis function of GABAB receptor. Interestingly, we found the GABAB receptor activation increased insulin-like growth factor 1 receptor (IGF-1R) phosphorylation. When we used the inhibitor of IGF-1R to treat the neurons or knockdowned the expression of IGF-1R in both CGNs and transfected MEF cells, the agonist of GABAB receptor, baclofen-stimulated Akt phosphorylation was reduced significantly, which suggested the activation of GABAB receptor transactivated IGF-1R and then induced Akt pathway. Meanwhile, using co-immunoprecipitation and ligand competition assay, we showed that there was an interaction between GABAB receptor and IGF-1R while the transactivation of IGF-1R by GABAB receptor was ligand-independent. These results showed a new function for GABAB receptor and further highlighted the importance of functional cross-talk networks between GPCRs and receptor tyrosine kinases (RTKs). Meanwhile, our results revealed GABAB receptor as a potential drug target for the treatment of neurodegenerative disorders.
     The new approaches for protein-protein interaction brought challenge to traditional GPCR-G protein collision-interaction model. The research on GPCR group A members found that the receptor and G protein could form stable complex and G protein wouldn't disassociate during the receptor activation. However, there is no result about GPCR group C members. In the secondary part of our work, we used BRET and TR-FRET to study the dynamic change between GABAB receptor and G protein. We showed that G protein pre-coupled with GABAB receptor and both the interaction between GABAB receptor and G protein and Gαand Gβγwere decreased. These results might provide a new insight for drug screening cell model of GABAB receptor.
引文
1. Bettler, B. and J.Y. Tiao, Molecular diversity, trafficking and sub cellular localization of GABAB receptors. Pharmacol Ther,2006.110(3):p.533-43.
    2. Vacher. C.M. and B. Bettler, GABA(B) receptors as potential therapeutic targets. Curr Drug Targets CNS Neurol Disord,2003.2(4):p.248-59.
    3. Pin, J.P., T. Galvez, and L. Prezeau, Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther,2003.98(3):p.325-54.
    4. Kaupmann, K., et al., Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature,1997.386(6622):p.239-46.
    5. Kaupmann. K., et al., GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature,1998.396(6712):p.683-7.
    6. Pinard, A., R. Seddik, and B. Bettler, GABAB receptors:physiological functions and mechanisms of diversity. Adv Pharmacol,2010.58:p.231-55.
    7. Bettler, B., et al., Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev,2004.84(3):p.835-67.
    8. Pin, J.P., et al., Activation mechanism of the heterodimeric GABA(B) receptor. Biochem Pharmacol,2004.68(8):p.1565-72.
    9. Havlickova, M., et al., The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gamma-aminobutyrate B receptor. Mol Pharmacol,2002.62(2):p.343-50.
    10. Brock, C., et al., Assembly-dependent surface targeting of the heterodimeric GABAB Receptor is controlled by COPI but not 14-3-3. Mol Biol Cell.2005.16(12):p. 5572-8.
    11. Margeta-Mitrovic, M., Y.N. Jan, and L.Y. Jan, A trafficking checkpoint controls GABA(B) receptor helerodimerization. Neuron.2000.27(1):p.97-106.
    12. Malitschek, B., et al., The N-terminal domain of gamma-aminobutyric Acid(B) receptors is sufficient to specify agonist and antagonist binding. Mol Pharmacol, 1999.56(2):p.448-54.
    13. Liu, J., et al., Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J Biol Chem,2004.279(16): p.15824-30.
    14. Margeta-Mitrovic, M., Y.N. Jan, and L.Y. Jan, Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc Natl Acad Sci U S A,2001.98(25):p. 14643-8.
    15. Rondard, P., et al., Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning. EMBO J,2008.27(9):p.1321-32.
    16. Monnier, C., et al., Trans-activation between 7TM domains:implication in heterodimeric GABAB receptor activation. EMBO J.2011.30(1):p.32-42.
    17. Thompson, S.M. and B.H. Gahwiler. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptie potentials in rat hippocampal slice cultures. J Neurophysiol, 1992.67(6):p.1698-701.
    18. Harrison, N.L., On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J Physiol,1990.422:p.433-46.
    19. Newberry, N.R. and R.A. Nicoll, Direct hyper polarizing action of baclofen on hippocampal pyramidal cells. Nature,1984.308(5958):p.450-2.
    20. Bowery, N.G., GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol,1993. 33:p.109-47.
    21. Bowery, N.G., et al., International Union of Pharmacology. ⅩⅩⅩⅢ. Mammalian gamma-aminobutyric acid(B) receptors:structure and function. Pharmacol Rev, 2002.54(2):p.247-64.
    22. Simonds, W.F., G protein regulation of adenylate cyclase. Trends Pharmacol Sci, 1999.20(2):p.66-73.
    23. Tang, W.J. and A.G. Gilman. Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science,1991.254(5037):p.1500-3.
    24. Tu. H., et al.,Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cell Signal,2007. 19(9):p.1996-2002.
    25. Xu, C., et al., GABA(B) receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses. Nat Neurosci,2008.11(12):p.1410-8.
    26. Kang, J., et al., Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci.1998.1(8):p.683-92.
    27. Hirono, M., T. Yoshioka, and S. Konishi, GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci,2001. 4(12):p.1207-16.
    28. New, D.C., et al., GABAB heterodimeric receptors promote Ca2+ influx via store-operated channels in rat cortical neurons and transfected Chinese hamster ovary cells. Neuroscience,2006.137(4):p.1347-58.
    29. Tsu, R.C., et al., Differential coupling of the formyl peptide receptor to adenylate cyclase and phospholipase C by the pertussis toxin-insensitive Gz protein. Biochem J. 1995.309 (Pt 1):p.331-9.
    30. Rebecchi, M.J. and S.N. Pentyala. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev.2000.80(4):p.1291-335.
    31. Margeta-Mitrovic, M., et al., Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol,1999.405(3):p. 299-321.
    32. Princivalle, A.P., et al., Distribution of GABA(B(1a)), GABA(B(1b)) and GABA(B2) receptor protein in cerebral cortex and thalamus of adult rats. Neuroreport,2001. 12(3):p.591-5.
    33. Ong. J. and D.I. Kerr, GABA-receptors in peripheral tissues. Life Sci.1990.46(21): p.1489-501.
    34. Enna, S.J., A GABA(B) mystery:the search for pharmacologically distinct GABA(B) receptors. Mol Interv,2001.1(4):p.208-18.
    35. Fritschy, J.M., et al., GABAB-receptor splice variants GBla and GBlb in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci,1999.11(3):p.761-8.
    36. Prosser, H.M., et al., Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice. Mol Cell Neurosci,2001.17(6):p.1059-70.
    37. Schuler, V., et al., Epilepsy, hyperalgesia, impaired memory, and loss of pre-and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron,2001.31(1): p.47-58.
    38. Catalano, P.N., et al., GABA(B1) knockout mice reveal alterations in prolactin levels, gonadotropic axis, and reproductive function. Neuroendocrinology,2005.82(5-6):p. 294-305.
    39. Mombereau. C., et al., Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. Neuroreport,2005.16(3):p.307-10.
    40. Vacher. C.M., et al., Hyperdopaminergia and altered locomolor activity in GABAB1-deficient mice. J Neurochem.2006.97(4):p.979-91.
    41. Zhou. C., et al.. Neuroprotection of gamma-aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia. J Neurosci Res,2008.86(13):p. 2973-83.
    42. Xiang, Y., et al., Nerve growth cone guidance mediated by G protein-coupled receptors. Nat Neurosci,2002.5(9):p.843-8.
    43. McClellan, K.M., A.R. Calver, and S.A. Tobet, GABAB receptors role in cell migration and positioning within the ventromedial nucleus of the hypothalamus. Neuroscience.2008.151(4):p.1119-31.
    44. Cryan, J.F., et al., Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N, N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine):anxiolylic-like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther,2004.310(3):p. 952-63.
    45. Bockaert. J., et al., GPCR interacting proteins (G1P). Pharmacol Ther,2004.103(3): p.203-21.
    46. Rives, M.L., et al., Crosstalk between GABA(B) and m Glula receptors reveals new insight into GPCR signal integration. Embo J,2009.28(15):p.2195-2208.
    47. Boyer, S.B., et al.. Direct interaction of GABAB receptors with M2 muscarinic receptors enhances muscarinic signaling. J Neurosci,2009.29(50):p.15796-809.
    48. Balasubramanian, S., et al., Hetero-oligomerizalion between GABAA and GABAB receptors regulates GABAB receptor trafficking. J Biol Chem,2004.279(18):p. 18840-50.
    49. Hahner. L.. S. McQuilkin. and R.A. Harris, Cerebellar GABAB receptors modulate function of GABAA receptors.1991. p.2466-2472.
    50. Schwenk, J., et al., Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature,2010.465(7295):p.231-5.
    51. Chang. W., et al., Complex formation with the Type B gamma-aminobutyric acid receptor affects the expression and signal transduction of the extracellular calcium-sensing receptor. Studies with HEK-293 cells and neurons. J Biol Chem. 2007.282(34):p.25030-40.
    52. Cheng, Z., et al., Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in marine growth plate chondrocyles. Endocrinology,2007.148(10):p.4984-92.
    53. Maurel, D.. et al., Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies:application to GPCR oligomerization. Nat Methods,2008.5(6):p.561-7.
    54. Prezeau, L., et al., Functional crosstalk between GPCRs:with or without oligomerization. Curr Opin Pharmacol.10(1):p.6-13.
    55. Tabata, T., et al., Ca2+activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GAB A. Proc Natl Acad Sci USA. 2004.101(48):p.16952-7.
    56. Kamikubo, Y., et al., Post synoptic GABAB receptor signalling enhances LTD in mouse cerebellar Purkinje cells, J Physiol,2007.585(Pt 2):p.549-63.
    57. Ige, A.O., et al.. Cellular and sub-cellular localisation of GABA(B1) and GABA(B2) receptor proteins in the rat cerebellum. Brain Res Mol Brain Res,2000.83(1-2):p. 72-80.
    58. Billinton. A., et al., GABA(B) receptor heterodimer-component localisation in human brain. Brain Res Mol Brain Res.2000.77(1):p.111-24.
    59. Nehring. R.B., et al.. The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J Biol (Them,2000.275(45):p.35185-91.
    60. White, J.H.. et al.. The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc Natl Acad Sci USA,2000.97(25):p. 13967-72.
    61. Vernon. E.. et al., GABA(B) receptors couple directly to the transcription factor ATF4. Mol Cell Neurosci,2001.17(4):p.637-45.
    62. Heese, K.. et al., GABA(B) receptor antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of rats. Neuropharmacology,2000.39(3):p.449-62.
    63. Sinha. N., N. Adhikari, and K.S. D. Effect of endosulfan during fetal gonadal differentiation on spermatogenesis in rats. Environ Toxicol Pharmacol,2001.10(1-2): p.29-32.
    64. Couve, A., et al., Association of GAB A (B) receptors and members of the 14-3-3 family of signaling proteins. Mol Cell Neurosci,2001.17(2):p.317-28.
    65. Benzing, T.. et al..14-3-3 interacts with regulator of G protein signaling proteins and modulates their activity. J Biol Chem,2000.275(36):p.28167-72.
    66. Prezeau, L., et al., The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes. J Biol Chem, 1999.274(19):p.13462-9.
    67. Pontier, S.M., et al., Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. Embo J,2006.25(12):p.2698-709.
    68. Kittler. J.T., et al., The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci,2001.18(1):p.13-25.
    69. Kitano. J.. et al.. Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic gluiamaie receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci,2002.22(4):p.1280-9.
    70. Harris. B.Z. and W.A. Lim, Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci,2001.114(Pt 18):p.3219-31.
    71. Kornau, H.C., et al., Domain interaction between NMDA receptor suhunits and the postsynaptic density protein PSD-95. Science,1995.269(5231):p.1737-40.
    72. Kukkonen, J.P., J. Nasman, and K.E. Akerman, Modelling of promiscuous receptor-Gi/Gs-protein coupling and effector response. Trends Pharmacol Sci,2001. 22(12):p.616-22.
    73. Maurice. P., et al., Molecular organization and dynamics of the melatonin MT receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J,2010.29(21):p.3646-59.
    74. Lowes. V.L., N.Y. Ip, and Y.H. Wong, Integration of signals from receptor tyrosine kinases and g protein-coupled receptors. Neurosignals,2002.11(1):p.5-19.
    75. Eguchi, S., et al., Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin Ⅱ-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem,1998.273(15):p.8890-6.
    76. Tsai, W., A.D. Morielli, and E.G. Peralta, The ml muscarinic acetylcholine receptor transactivates the EGF receptor to modulate ion channel activity. Embo J,1997. 16(15):p.4597-605.
    77. Frank, G.D. and S. Eguchi, Activation of tyrosine kinases by reactive oxygen species in vascular smooth muscle cells:significance and involvement of EGF receptor transactivation by angiotensin Ⅱ. Antioxid Redox Signal,2003.5(6):p.771-80.
    78. Frank, G.D., et al., Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells:role of metalloprotease and protein kinase C-delta. Mol Cell Biol.2003.23(5):p.1581-9.
    79. Ohtsu. H., et al., Redox-dependent protein kinase regulation by angiotensin Ⅱ: mechanistic insights and its pathophysiology. Antioxid Redox Signal,2005.7(9-10): p.1315-26.
    80. Lee, F.S. and M.V. Chao, Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A.2001.98(6):p.3555-60.
    81. Wiese, S., et al., Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci USA,2007. 104(43):p.17210-5.
    82. Lee, F.S., et al., Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activatingpolypeptides. J Biol Chem,2002.277(11):p.9096-102.
    83. Iwakura, Y., et al., Dopamine Dl receptor-induced signaling through TrkB receptors in striatal neurons. J Biol Chem,2008.283(23):p.15799-806.
    84. Pyne, N.J., et al., Receptor tyrosine kinase-G-protein coupled receptor complex signaling in mammalian cells. Advances in Enzyme Regulation.2007.47(1):p. 271-280.
    85. Alderton, F., et al., Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. J Biol Chem,2001.276(30):p.28578-85.
    86. Waters, C., et al., Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGF beta receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle cells. J Biol Chem,2003.278(8):p.6282-90.
    87. Waters, C.M., et al., c-Src is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells. Cell Signal,2005. 17(2):p.263-77.
    88. Luttrell, L.M., et al., G beta gamma subunits mediate mitogen-activated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J Biol Chem.1995.270(28):p.16495-8.
    89. Dalle. S., et al., Insulin and insulin-like growth factor I receptors utilize different G protein signaling components. J Biol Chem,2001.276(19):p.15688-95.
    90. Poppleton. H., et al., Activation of Gsalpha by the epidermal growth factor receptor involves phosphorylation. J Biol Chem,1996.271(12):p.6947-51.
    91. Shan. D., et al.. The G protein G alpha(13) is required for growth factor-induced cell migration. Dev Cell,2006.10(6):p.707-18.
    92. Dhanasekaran. D.N., Transducing the signals:a G protein takes a new identity. Sci STKE,2006.2006(347):p. pe31.
    93. Povsic. T.J.. T.A. Kohout. and R.J. Lefkowitz. Beta-arrestinl mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinosilol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem,2003.278(51):p.51334-9.
    94. Akekawatchai. C., et al., Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1 R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem,2005.280(48):p.39701-8.
    95. Delcourt, N., et al., PACAP type Ⅰ receptor transactivalion is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons. EMBO J,2007.26(6):p. 1542-51.
    96. Contestabile, A., Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum,2002.1(1):p.41-55.
    97. Dahmane, N. and A. Ruiz i Altaba, Sonic hedgehog regulates the growth and patterning of the cerebellum. Development,1999.126(14):p.3089-100.
    98. Kenney, A.M. and D.H. Rowitch, Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol,2000.20(23):p.9055-67.
    99. Schwartz, P.M., et al., Abnormal cerebellar development and foliation in BDNF-mice reveals a role for neurotrophins in CNS patterning. Neuron,1997.19(2):p. 269-81.
    100. Cheng, Y., et al., A single peripheral injection of basic fibroblast growth factor (bFGF) stimulates granule cell production and increases cerebellar growth in newborn rats. J Neurobiol,2001.46(3):p.220-9.
    [101]Chrysis, D., et al., Insulin-like growth factor-Ⅰ overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. J Neurosci,2001.21(5):p.1481-9.
    102. Vaudry. D., et al., PACAP acts as a neurotrophic factor during histogenesis of the rat cerebellar cortex. Ann N Y Acad Sci,2000.921:p.293-9.
    103. Selimi, F., et al., Bax and p53 are differentially involved in the regulation of caspase-3 expression and activation during neurodegeneration in Lurcher mice. C R Acad Sci Ⅲ,2000.323(11):p.967-73.
    104. Selimi, F., M.W. Vogel, and J. Mariani, Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons. J Neurosci, 2000.20(14):p.5339-45.
    105. Gallo,V., et al., The role of depolarization in the survival and differentiation of cerebellar granule cells in culture J Neurosci,1987.7(7):p.2203-13.
    106. D'Mello, S.R., R. Anelli, and P. Calissano, Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons. Exp Cell Res. 1994.211(2):p.332-8.
    107. Balazs, R., N. Hack, and O.S. Jorgensen. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci Lett, 1988.87(1-2):p.80-6.
    108. Copani, A., et al., The metabotropic glutamate receptor mGlu5 controls the onset of developmental apoptosis in cultured cerebellar neurons. Eur J Neurosci,1998.10(6): p.2173-84.
    109. Burgoyne, R.D., M.E. Graham, and M. Cambray-Deakin, Neurotrophic effects of NMDA receptor activation on developing cerebellar granule cells. J Neurocytol. 1993.22(9):p.689-95.
    110. Brunet, A., et al., Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell,1999.96(6):p.857-68.
    111. Zheng, W.H., S. Kar, and R. Quirion, Insulin-like growth factor-1-induced phosphorylation of the forkhead family transcription factor FKHRL1 is mediated by Akt kinase in PC12 cells. J Biol Chem,2000.275(50):p.39152-8.
    112. Cheng, J.Q., et al., AKT2, α putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases. is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A,1992.89(19):p.9267-71.
    113. Brodbeck, D., P. Cron, and B.A. Hemmings. A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem,1999.274(14):p.9133-6.
    114. Peterson. R.T. and S.L. Schreiber. Kinase phosphorylation:Keeping it all in the family. Curr Biol,1999.9(14):p. R521-4.
    115. Andjelkovic. M., et al., Role of translocation in the activation and function of protein kinase B. J Biol Chem,1997.272(50):p.31515-24.
    116. Franke, T.F., et al., The protein kinase encoded by the Aktproto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell,1995.81(5):p.727-36.
    117. Burgering, B.M. and P.J. Coffer, Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature,1995.376(6541):p. 599-602.
    118. Cross, D.A., et al., Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature,1995.378(6559):p.785-9.
    119. Kohn, A.D., K.S. Kovacina, and R.A. Roth, Insulin stimulates the kinase activity of RAC-PK, α pleckstrin homology domain containing ser/thr kinase. EMBO J,1995. 14(17):p.4288-95.
    120. Maehama. T. and J.E. Dixon, The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem,1998.273(22):p.13375-8.
    121. Stambolic. V., et al., Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell,1998.95(1):p.29-39.
    122. Song, G., G. Ouyang. and S. Bao, The activation of Akt/P KB signaling pathway and cell survival J Cell Mol Med,2005.9(1):p.59-71.
    123. D R Alessi. M.A., B Caudwell, P Cron, N Morrice, P Cohen, and B A Hemmings. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J,.1996 15(23):p.6541-6551.
    124. Alessi, D.R., et al., Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J,1996.15(23):p.6541-51.
    125. Huse, M. and J. Kuriyan. The conformational plasticity of protein kinases. Cell,2002. 109(3):p.275-82.
    126. Obata, T., et al., Peplide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem,2000.275(46):p.36108-15.
    127. Downward, J., How BAD phosphorylation is good for survival. Nat Cell Biol,1999. 1(2):p. E33-5.
    128. del Peso, L., et al., Interleiikin-3-induced phosphorylation of BAD through the protein kinase Akt. Science.1997.278(5338):p.687-9.
    129. Datta, S.R., et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell,1997.91(2):p.231-41.
    130. Trencia, A., et al., Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol Cell Biol,2003.23(13):p.4511-21.
    131. Cardone, M.H., et al., Regulation of cell death protease caspase-9 by phosphorylation. Science,1998.282(5392):p.1318-21.
    132. Johnson. G.L. and R. Lapadat, Mitogen-aclivatedproiein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science.2002.298(5600):p.1911-2.
    133. Kim. A.H., et al., Akt phosphorylates and negatively regulates apoplosis signal-regulating kinase 1. Mol Cell Biol.2001.21(3):p.893-901.
    134. Paradis, S. and G. Ruvkun, Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAE-16 transcription factor. Genes Dev,1998.12(16):p.2488-98.
    135. Paradis, S., et al., A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhahditis elegans. Genes Dev. 1999.13(11):p.1438-52.
    136. Rena, G, et al., Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem,1999.274(24):p.17179-83.
    137. Biggs. W.H.,3rd, et al., Protein kinase B/Akt-medialed phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A.1999.96(13):p.7421-6.
    138. Wolfrum. C., et al., Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci USA,2003.100(20):p.11624-9.
    139. Kops, G.J., et al., Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature,1999.398(6728):p.630-4.
    140. Burgering, B.M. and R.H. Medema. Decisions on life and death:FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol,2003. 73(6):p.689-701.
    141. Ozes, O.N., et al., NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature,1999.401(6748):p.82-5.
    142. Du, K. and M. Montminy, CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem,1998.273(49):p.32377-9.
    143. Ciruela, F., Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol.2008.19(4):p.338-43.
    144. Milligan. G., Applications of bioluminescence-and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur J Pharm Sci,2004. 21(4):p.397-405.
    145. Pfleger, K.D. and K.A. Eidne. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods,2006.3(3): p.165-74.
    146. Degorce, F., et al.. HTRF:A technology tailored for drug discovery-a review of theoretical aspects and recent applications. Curr Chem Genomics,2009.3:p.22-32.
    147. Bazin, H., E. Trinquet, and G. Mathis, Time resolved amplification of cryptate emission:a versatile technology to trace biomolecular interactions. J Biotechnol, 2002.82(3):p.233-50.
    148. Mathis. G., Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem.1993.39(9):p.1953-9.
    149. Kuramoto, N., et al., Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron,2007. 53(2):p.233-47.
    150. Costa, C., et al., Coactivation of GABA(A) and GABA(B) receptor results in neuroprotection during in vitro ischemia. Stroke,2004.35(2):p.596-600.
    151. Dave, K.R., et al., Ischemic preconditioning ameliorates excitotoxicily by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res.2005. 82(5):p.665-73.
    152. Zhang, F., et al., Activation of GABA receptors attenuates neuronal apoplosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. Neuroscience,2007.150(4):p.938-49.
    153. Xu, J., et al.,Additive neuroprolection of GABA A and GABA B receptor agonists in cerebral ischemic injury via PI-3K/Akt pathway inhibiting the ASK1-JNK cascade. Neuropharmacology.2008.54(7):p.1029-40.
    154. Han. D.,et al., Co-aclivalion of GABA receptors inhibits the JNK3 apoptotic pathway via the disassembly of the GluR6-PSD95-MLK3 signaling module in cerebral ischemic-reperfusion. FEBS Lett,2008.582(9):p.1298-306.
    155. Hanada. M., J. Feng, and B.A. Hemmings, Structure, regulation and function of PKB/AKT-α major therapeutic target. Biochim Biophys Acta,2004.1697(1-2):p. 3-16.
    156. Bilimoria, P.M. and A. Bonni, Cultures of Cerehellar Granule Neurons. CSH Protoc. 2008.13:p.5107.
    157. D'Mello. S.R., et al.. Induction of apoptosis in cerebellar granule neurons by low potassium:inhibition of death by insulin-like growth factor Ⅰ and cAMP. Proc Natl Acad Sci U S A,1993.90(23):p.10989-93.
    158. Subramaniam.,S., J. Strelau, and K. Unsicker, Growth differentiation factor-15 prevents low potassium-induced cell death of cerebellar granule neurons by differential regulation of Akt and ERK pathways. J Biol Chem.2003.278(11):p. 8904-12.
    159. Shah, B.H. and K.J. Catt, GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci,2004.27(1):p.48-53.
    160. Shinohara, Y., Y. Nakajima, and S. Nakanishi, Glutamate induces focal adhesion kinase tyrosine phosphorylation and actin rearrangement in heterologous mGluRl-expressing CHO cells via calcium/calmodulin signaling. J Neurochem, 2001.78(2):p.365-73.
    161. Watanabe, N., et al., Dual tyrosine kinase inhibitor for focal adhesion kinase and insulin-like growth factor-Ⅰ receptor exhibits anticancer effect in esophageal adenocarcinoma in vitro and in vivo. Clin Cancer Res,2008.14(14):p.4631-9.
    162. Zheng. D., et al., Targeting of the protein interaction site between FAK and IGF-1R. Biochem Biophys Res Commun,2009.388(2):p.301-5.
    163. Subramaniam, S., et al., ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol.2004.165(3):p.357-69.
    164. Subramaniam. S., et al.. Insulin-like growth factor Ⅰ inhibits extracellular signal-regulated kinase to promote neuronal survival via the phosphatidylinositol 3-kinase/protein kinase A/c-Rafpathway. J Neurosci,2005.25(11):p.2838-52.
    165. Bockaert. J. and J.P. Pin, Molecular tinkering of G protein-coupled receptors:an evolutionary success. EMBO J,1999.18(7):p.1723-9.
    166. Waters, C.. S. Pyne, and N.J. Pyne, The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Semin Cell Dev Biol,2004.15(3):p.309-23.
    167. Zahradka, P., et al., Transactivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin 11 type 1 receptor to phosphatidylinositol 3-kinase. Endocrinology,2004.145(6):p.2978-87.
    168. Gilman. A.G.. G proteins:transducers of receptor-generated signals. Annu Rev Biochem.1987.56:p.615-49.
    169. Bourne, H.R., How receptors talk to trimeric G proteins. Curr Opin Cell Biol,1997. 9(2):p.134-42.
    170. Cabrera-Vera, T.M., et al.. Insights into G protein structure, function, and regulation. Endocr Rev,2003.24(6):p.765-81.
    171. Gales, C. et al., Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol,2006.13(9):p. 778-86.
    172. Richer. M., et al., GABA-B(1) receptors are coupled to the ERK1/2 MAP kinase pathway in the absence of GABA-B(2) subunits. J Mol Neurosci,2009.38(1):p. 67-79.
    173. Vilardaga, J.P.. et al.. GPCR and G proteins:drug efficacy and activation in live cells. Mol Endocrinol.2009.23(5):p.590-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700