脂筏对GABA_B受体的调控机制研究和GABA_B受体活性荧光探针开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂筏作为细胞膜上信号传导的平台目前受到越来越多的关注,尤其是大量的研究已经显示脂筏对G蛋白偶联受体功能具有重要的调节作用。前期的研究已经发现与G蛋白偶联的GABA_B受体定位之脂筏结构中,所以探究脂筏对GABA_B受体的影响对揭示GABA_B受体的调控机制具有新的启示作用。
     在本研究中,运用单点追踪技术追踪在异源HEK293细胞中实时追踪GABA_B受体在细胞膜上扩散运动,发现GABA_B受体的扩散特性主要由GABA_(B2)亚基决定。更进一步的,蔗糖密度梯度分析受体在脂筏中的定位显示GABA_(B2)亚基对受体扩散特性的决定作用取决于该亚基对受体在脂筏中定位的主导作用。因此,脂筏对限制GABA_B受体的侧向扩散具有关键的作用。
     但是,GABA_B受体同脂筏的偶联并不是固定不变的。在HEK293细胞中,激动剂GABA能显著的提高GABA_B受体的扩散系数,这与采用甲基-β-环糊精(Methyl-β-cyclodextrin,MCD)破坏脂筏的效应相似。与受体扩散特性的变化相对应,共聚焦成像观测受体定位和蔗糖密度离心分析GABA_B的梯度分布显示,在异源细胞和神经元细胞中GABA_B受体激活之后在脂筏中的定位程度显著下降。所有结果共同说明激活GABA_B受体会诱导受体转移出脂筏区域。
     随着GABA_B受体脂筏中定位程度的降低,受体所介导的G蛋白依赖的信号通路激活强度被削弱,例如下游G_(i/o)介导的ERK(Extracellular signal-regulated proteinkinases)磷酸化程度降低和G_(qi9)融合蛋白介导的IP_3(Inositol-1,4,5-trisphosphate)的产量减少,这些结果突显了脂筏正向促进GABA_B受体介导的G蛋白信号通路的重要作用。另外,脂筏还能协助调控参与GABA_B受体信号网络的信号分子的时空组织。信号分子随着活性的改变进入或者离开脂筏区域,从而决定了信号传递动态的启动和关闭。
     我们的研究掀开了从脂筏的角度诠释GABA_B受体在细胞膜上动态行为和信号转导的新视野,GABA_B受体的这种定位特性非常值得重视。
     为了在活细胞中直接观测GABA_B受体在细胞膜上的活性和功能并且直接在活细胞中标记GABA_B受体,基于GABA_B受体高亲和力的拮抗剂CGP64213的结构,本研究设计、合成并全面评价了一种活性导向的特异性标记细胞膜上GABA_B受体的小分子荧光探针即探针1。探针1由三个功能基团构成,即靶向定位基团、光亲和基团、荧光标记基团。探针可以用于光亲和性的标记在CHO细胞中瞬时表达的GABA_B受体。此外,探针能够特异性的识别GABA_(B1)亚基的配体结合口袋并表现出高效的光亲和性质,这使得探针对于在活细胞中研究GABA_B受体的定位和功能上具有重要应用价值。
Lipid raft domains have attracted much recent attention as platforms for plasma membrane signalling complexes. In particular, evidence is emerging that shows them to be key regulators of G protein coupled receptor function. Previous researches had shown that the G protein coupledγ-aminobutyric acid receptor B (GABA_B receptor) co-isolates with lipid raft domains from rat brain cerebellum, so exploring the effect that rafts play on GABA_B receptor may shed new light on understanding regulation mechanism of GABA_B receptor.
     In the present study, single particle tracking approach was applied to follow surface diffusion of GABA_B receptors in real time when expressed ectopically in HEK293 cells. We found that the surface mobility of GABA_B receptors depends on the GABA_B: sunbunit. Furthermore, sucrose density gradients display that GABA_B receptors which diffused slowly presented in raft fractions, while GABA_(B1)-ASA which diffused freely did not localized in rafts selectively. Therefore, location in rafts is critical for restricting the lateral diffusion of GABA_B receptors.
     However, the association between GABA_B receptors and rafts was not permanent. Treatment of tranfected HEK293 cells with agonist GABA significantly increased its diffusion coefficience, similar to the action of MCD (Methyl-β-cyclodextrin). In parallel with change on lateral mobility, confocal microscope imaging and sucrose density gradients both indicated the colocalization of GABA_B receptors with rafts decreased significantly upon activation in both heterogenous cells and neurons. Activation induced translocation of GABA_B receptor was convictively proved in this research.
     The implication of the translocation of GABA_B receptors to nonraft domain is highlighted by attenuated G protein-dependent signaling, such as agonist-induced ERK phosphorylation and IP_3 acccumulation mediated by chimeric G_(qi9), with the decrease in location within rafts. Moreover, lipid rafts facilitated the spatial organization of signal compotents involved in GABA_B-mediated network by including or excluding them to variable extents, so that the transduction was switched on or off dynamicly.
     Thus, a new perspective on surface behavior and signal transduction of GABA_B receptors modulated by rafts were proposed in the present study, so the intrinsic location property of the GABA_B receptors deserves more attentions on it.
     In order to label the surface GABA_B receptors on living cells, a trimodular activity-based fluorescent probe was designed, synthesized and characterized based on the structure of CGP64213, an antagonist of GABA_B receptor. This probe can be applied to photoaffinity label the GABA_B receptor transiently expressed in CHO (Chinese hamster ovary) cells. Moreover, it exhibits specific binding activity at the ligand-binding pocket of GABA_(B1) subunits and high specificity of photoaffinity labeling, which makes the probe valuable for studying the localization and function of GABA_B receptors on living cells.
引文
[1] Curtis DR, Johnston GA, Game CJ, McCulloch RM. Central action of bicuculline. J Neurochem 1974; 23 (3):605-606.
    [2] Bowery NG, Hill DR, Hudson AL et al. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 1980; 283 (5742):92-94.
    [3] Hill DR, Bowery NG.3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature 1981; 290 (5802):149-152.
    [4] Bowery NG, Doble A, Hill DR et al. Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur J Pharmacol 1981; 71 (1):53-70.
    [5] Kaupmann K, Malitschek B, Schuler V et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 1998; 396 (6712):683-687.
    [6] Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI. Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 1999; 405 (3):299-321.
    [7] Princivalle AP, Pangalos MN, Bowery NG, Spreafico R. Distribution of GABA(B(1a)), GABA(B(1b)) and GABA(B2) receptor protein in cerebral cortex and thalamus of adult rats. Neuroreport 2001; 12 (3):591-595.
    [8] Ong J, Kerr DI. GABA-receptors in peripheral tissues. Life Sci 1990; 46 (21):1489-1501.
    [9] Bridges TM, Lindsley CW. G-protein-coupled receptors: from classical modes of modulation to allosteric mechanisms. ACS Chem Biol 2008; 3 (9):530-541.
    [10] Pin JP, Kniazeff J, Liu J et al. Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J 2005; 272 (12):2947-2955.
    [11] Marshall FH, Jones KA, Kaupmann K, Bettler B. GABAB receptors - the first 7TM heterodimers. Trends Pharmacol Sci 1999; 20 (10):396-399.
    [12] Galvez T, Prezeau L, Milioti G et al. Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J Biol Chem 2000; 275 (52):41166-41174.
    [13] Nomura R, Suzuki Y, Kakizuka A, Jingami H. Direct detection of the interaction between recombinant soluble extracellular regions in the heterodimeric metabotropic gamma-aminobutyric acid receptor. J Biol Chem 2008; 283 (8):4665-4673.
    [14] Quiocho EA, Ledvina PS. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 1996; 20 (1):17-25.
    [15] Galvez T, Parmentier ML, Joly C et al. Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 1999; 274 (19):13362-13369.
    [16] Kunishima N, Shimada Y, Tsuji Y et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000; 407 (6807):971-977.
    [17] Kniazeff J, Galvez T, Labesse G, Pin JR No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci 2002; 22 (17):7352-7361.
    [18] Galvez T, Duthey B, Kniazeff J et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 2001; 20(9):2152-2159.
    [19] Robbins MJ, Calver AR, Filippov AK et al. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. J Neurosci 2001; 21 (20):8043-8052.
    [20] Havlickova M, Prezeau L, Duthey B et al. The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gamma-aminobutyrate B receptor. Mol Pharmacol 2002; 62 (2):343-350.
    [21] Binet V, Duthey B, Lecaillon J et al. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors. J Biol Chem 2007; 282 (16):12154-12163.
    [22] Urwyler S, Mosbacher J, Lingenhoehl K et al. Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol Pharmacol 2001; 60 (5):963-971.
    [23] Urwyler S, Pozza MF, Lingenhoehl K et al. N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther 2003; 307 (1):322-330.
    [24] Mukherjee RS, McBride EW, Beinborn M, Dunlap K, Kopin AS. Point mutations in either subunit of the GABAB receptor confer constitutive activity to the heterodimer. Mol Pharmacol 2006; 70 (4):1406-1413.
    [25] Kulik A, Vida I, Fukazawa Y et al. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J Neurosci 2006; 26 (16):4289-4297.
    [26] Margeta-Mitrovic M, Jan YN, Jan LY. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 2000; 27 (1):97-106.
    [27] Pagano A, Rovelli G, Mosbacher J et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 2001; 21 (4):1189-1202.
    [28] Brock C, Boudier L, Maurel D, Blahos J, Pin JR Assembly-dependent surface targeting of the heterodimeric GABAB Receptor is controlled by COPI but not 14-3-3. Mol Biol Cell 2005; 16 (12):5572-5578.
    [29] Gassmann M, Haller C, Stoll Y et al. The RXR-type endoplasmic reticulum-retention/retrieval signal of GABAB1 requires distant spacing from the membrane to function. Mol Pharmacol 2005; 68 (1):137-144.
    [30] Restituito S, Couve A, Bawagan H et al. Multiple motifs regulate the trafficking of GABA(B) receptors at distinct checkpoints within the secretory pathway. Mol Cell Neurosci 2005; 28 (4):747-756.
    [31] White JH, McUlhinney RA, Wise A et al. The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc Natl Acad Sci U S A 2000; 97 (25):13967-13972.
    [32] Nehring RB, Horikawa HP, El Far O et al. The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J Biol Chem 2000; 275 (45):35185-35191.
    [33] Sauter K, Grampp T, Fritschy JM et al. Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors. J Biol Chem 2005; 280 (39):33566-33572.
    [34] Couve A, Restituito S, Brandon JM et al. Marlin-1, a novel RNA-binding protein associates with GABA receptors. J Biol Chem 2004; 279 (14):13934-13943.
    [35] Bonifacino JS, Lippincott-Schwartz J. Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 2003; 4 (5):409-414.
    [36] Couve A, Thomas P, Calver AR et al. Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling. Nat Neurosci 2002; 5 (5):415-424.
    [37] Kanaide M, Uezono Y, Matsumoto M et al. Desensitization of GABA(B) receptor signaling by formation of protein complexes of GABA(B2) subunit with GRK4 or GRK5. J Cell Physiol 2007; 210 (1):237-245.
    [38] Metaye T, Gibelin H, Perdrisot R, Kraimps JL. Pathophysiological roles of G-protein-coupled receptor kinases. Cell Signal 2005; 17 (8):917-928.
    [39] Gonzalez-Maeso J, Wise A, Green A, Koenig JA. Agonist-induced desensitization and endocytosis of heterodimeric GABAB receptors in CHO-K1 cells. Eur J Pharmacol 2003; 481 (1):15-23.
    [40] Wilkins ME, Li X, Smart TG.Tracking Cell Surface GABAB Receptors Using an {alpha}-Bungarotoxin Tag. J Biol Chem 2008; 283 (50):34745-34752.
    [41] Fairfax BP, Pitcher JA, Scott MG et al. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. J Biol Chem 2004; 279 (13):12565-12573.
    [42] Grampp T, Sauter K, Markovic B, Benke D. Gamma-aminobutyric acid type B receptors are constitutively internalized via the clathrin-dependent pathway and targeted to lysosomes for degradation. J Biol Chem 2007; 282 (33):24157-24165.
    [43] Grampp T, Notz V, Broil I, Fischer N, Benke D. Constitutive, agonist-accelerated, recycling and lysosomal degradation of GABA(B) receptors in cortical neurons. Mol Cell Neurosci 2008; 39 (4):628-637.
    [44] Kornau HC. GABA(B) receptors and synaptic modulation. Cell Tissue Res 2006; 326(2):517-533.
    [45] Wu LG, Saggau P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 1997; 20 (5):204-212.
    [46] Brody DL, Yue DT. Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J Neurosci 2000; 20 (3):889-898.
    [47] Xu C, Zhao MX, Poo MM, Zhang XH. GABA(B) receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses. Nat Neurosci 2008; 11 (12):1410-1418.
    [48] Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 1997; 19 (3):687-695.
    [49] Kofuji P, Davidson N, Lester HA. Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers. Proc Natl Acad Sci U S A 1995; 92 (14):6542-6546.
    [50] Simonds WF. G protein regulation of adenylate cyclase. Trends Pharmacol Sci 1999; 20 (2):66-73.
    [51] Bowery NG, Bettler B, Froestl W et al. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 2002; 54 (2):247-264.
    [52] Sakaba T, Neher E. Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse. Nature 2003; 424 (6950):775-778.
    [53] Tu H, Rondard P, Xu C et al. Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cell Signal 2007; 19 (9):1996-2002.
    [54] Kaupmann K, Huggel K, Heid J et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 1997; 386 (6622):239-246.
    [55] Steiger JL, Bandyopadhyay S, Farb DH, Russek SJ. cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J Neurosci 2004; 24(27):6115-6126.
    [56] Rowley MJ, Nandakumar KS, Holmdahl R. The role of collagen antibodies in mediating arthritis. Mod Rheumatol 2008; 18 (5):429-441.
    [57] Blein S, Ginham R, Uhrin D et al. Structural analysis of the complement control protein (CCP) modules of GABA(B) receptor 1a: only one of the two CCP modules is compactly folded. J Biol Chem 2004; 279 (46):48292-48306.
    
    [58] Leaney JL, Tinker A. The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc Natl Acad Sci U S A 2000; 97 (10):5651-5656.
    
    [59] Ng GY, Bertrand S, Sullivan R et al. Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol Pharmacol 2001; 59(1):144-152.
    
    [60] Parker DA, Ong J, Marino V, Kerr DI. Gabapentin activates presynaptic GABAB heteroreceptors in rat cortical slices. Eur J Pharmacol 2004; 495 (2-3):137-143.
    [61] Vigot R, Barbieri S, Brauner-Osborne H et al. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 2006; 50 (4):589-601.
    [62] Shaban H, Humeau Y, Herry C et al. Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 2006; 9 (8): 1028-1035.
    [63] Ulrich D, Bettler B. GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 2007; 17 (3):298-303.
    [64] Tiao JY, Bradaia A, Biermann B et al. The Sushi Domains of Secreted GABAB1 Isoforms Selectively Impair GABAB Heteroreceptor Function. J Biol Chem 2008; 283(45):31005-31011.
    [65] Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JF. GABA(B(1)) receptor isoforms differentially mediate the acquisition and extinction of aversive taste memories. J Neurosci 2006; 26 (34):8800-8803.
    [66] Perez-Garci E, Gassmann M, Bettler B, Larkum ME. The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 2006; 50 (4):603-616.
    [67] Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JF. Specific roles of GABA(B(1)) receptor isoforms in cognition. Behav Brain Res 2007; 181 (1):158-162.
    
    [68] Pike LJ. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 2006; 47 (7): 1597-1598.
    [69] Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 2000; 275 (23): 17221-17224.
    [70] Hancock JF. Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 2006; 7 (6):456-462.
    [71] Liu P, Rudick M, Anderson RG.Multiple functions of caveolin-1. J Biol Chem 2002; 277 (44):41295-41298.
    [72] Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1 (1):31-39.
    [73] van Meer G, Simons K. Lipid polarity and sorting in epithelial cells. J Cell Biochem 1988; 36(1):51-58.
    [74] Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387 (6633):569-572.
    [75] Rinia HA, Snel MM, van der Eerden JP, de Kruijff B. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett 2001; 501 (1):92-96.
    
    [76] Parton RG.Caveolae and caveolins. Curr Opin Cell Biol 1996; 8 (4):542-548.
    [77] Lang DM, Lommel S, Jung M et al. Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol 1998; 37 (4):502-523.
    [78] Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 1999; 16 (2):145-156.
    [79] Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999; 1451 (1):1-16.
    [80] Rietveld A, Neutz S, Simons K, Eaton S. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 1999; 274 (17):12049-12054.
    [81] Scheiffele P, Roth MG, Simons K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 1997; 16 (18):5501-5508.
    [82] Chini B, Parenti M. G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats. J Mol Endocrinol 2009; 42 (5):371-379.
    [83] Harder T, Scheiffele P, Verkade P, Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 1998; 141 (4):929-942.
    [84] Rebois RV, Hebert TE. Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 2003; 9 (3):169-194.
    [85] Zheng H, Chu J, Qiu Y, Loh HH, Law PY. Agonist-selective signaling is determined by the receptor location within the membrane domains. Proc Natl Acad Sci U S A 2008; 105 (27):9421-9426.
    [86] Perez JB, Segura JM, Abankwa D et al. Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. J Mol Biol 2006; 363 (5):918-930.
    [87] Pucadyil TJ, Chattopadhyay A. Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus. Biochim Biophys Acta 2004; 1663 (1-2):188-200.
    [88] Monastyrskaya K, Hostettler A, Buergi S, Draeger A. The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. J Biol Chem 2005; 280 (8):7135-7146.
    [89] Xu W, Yoon SI, Huang P et al. Localization of the kappa opioid receptor in lipid rafts. J Pharmacol Exp Ther 2006; 317 (3):1295-1306.
    [90] Gines S, Ciruela F, Burgueno J et al. Involvement of caveolin in ligand-induced recruitment and internalization of A(1) adenosine receptor and adenosine deaminase in an epithelial cell line. Mol Pharmacol 2001; 59 (5):1314-1323.
    [91] Lai HH, Boone TB, Yang G et al. Loss of caveolin-1 expression is associated with disruption of muscarinic cholinergic activities in the urinary bladder. Neurochem Int 2004; 45 (8):1185-1193.
    [92] Yu P, Asico LD, Luo Y et al. D1 dopamine receptor hyperphosphorylation in renal proximal tubules in hypertension. Kidney Int 2006; 70 (6):1072-1079.
    [93] Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL. Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. J Biol Chem 2004; 279 (33):34614-34623.
    [94] Burgueno J, Enrich C, Canela EI et al. Metabotropic glutamate type 1alpha receptor localizes in low-density caveolin-rich plasma membrane fractions. J Neurochem 2003; 86 (4):785-791.
    [95] Francesconi A, Kumari R, Zukin RS. Regulation of group I metabotropic glutamate receptor trafficking and signaling by the caveolar/lipid raft pathway. J Neurosci 2009; 29 (11):3590-3602.
    [96] Doherty GJ, McMahon HT. Mechanisms of Endocytosis. Annu Rev Biochem 2009.
    [97] Rapacciuolo A, Suvarna S, Barki-Harrington L et al. Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates beta-1 adrenergic receptor endocytosis through different pathways. J Biol Chem 2003; 278 (37):35403-35411.
    [98] Self TJ, Oakley SM, Hill SJ. Clathrin-independent internalization of the human histamine H1-receptor in CH0-K1 cells. Br J Pharmacol 2005; 146 (4):612-624.
    [99] Allen JA, Yu JZ, Donati RJ, Rasenick MM. Beta-adrenergic receptor stimulation promotes G alpha s internalization through lipid rafts: a study in living cells. Mol Pharmacol 2005; 67 (5): 1493-1504.
    [100] Sabourin T, Bastien L, Bachvarov DR, Marceau F. Agonist-induced translocation of the kinin B(1) receptor to caveolae-related rafts. Mol Pharmacol 2002; 61 (3):546-553.
    [101] Dunphy JT, Greentree WK, Linder ME. Enrichment of G-protein palmitoyltransferase activity in low density membranes: in vitro reconstitution of Galphai to these domains requires palmitoyltransferase activity. J Biol Chem 2001; 276 (46):43300-43304.
    [102] Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 2001; 12 (3):685-698.
    [103] Waheed AA, Jones TL. Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem 2002; 277 (36):32409-32412.
    [104] Moffett S, Brown DA, Linder ME. Lipid-dependent targeting of G proteins into rafts. J Biol Chem 2000; 275 (3):2191-2198.
    [105] Li S, Okamoto T, Chun M et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 1995; 270 (26): 15693-15701.
    [106] Popova JS, Garrison JC, Rhee SG, Rasenick MM. Tubulin, Gq, and phosphatidylinositol 4,5-bisphosphate interact to regulate phospholipase Cbetal signaling. J Biol Chem 1997; 272 (10):6760-6765.
    [107] Pesanova Z, Novotny J, Cerny J, Milligan G, Svoboda P. Thyrotropin-releasing hormone-induced depletion of G(q)alpha/G(11)alpha proteins from detergent-insensitive membrane domains. FEBS Lett 1999; 464 (1-2):35-40.
    [108] Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 2000; 275 (52):41447-41457.
    [109] Miura Y, Hanada K, Jones TL. G(s) signaling is intact after disruption of lipid rafts. Biochemistry 2001; 40 (50):15418-15423.
    [110] Fagan KA, Graf RA, Tolman S, Schaack J, Cooper DM. Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J Biol Chem 2000; 275 (51):40187-40194.
    [111] Head BP, Patel HH, Roth DM et al. G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 2005; 280 (35):31036-31044.
    [112] Weerth SH, Holtzclaw LA, Russell JT. Signaling proteins in raft-like microdomains are essential for Ca2+ wave propagation in glial cells. Cell Calcium 2007;41(2):155-167.
    [113] Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972; 175 (23):720-731.
    [114] Becher A, White JH, Mcllhinney RA. The gamma-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. J Neurochem 2001; 79 (4):787-795.
    [115] Huo JZ, Cortez MA, Snead Iii OC. GABA receptor proteins within lipid rafts in the AY-9944 model of atypical absence seizures. Epilepsia 2008.
    [116] Axelrod, D., Thompson, N.L., and Burghardt, T.P., Total internal inflection fluorescent microscopy. J Microsc, 1983.129(Pt 1): 19-28.
    [117] Axelrod, D., Total internal reflection fluorescence microscopy in cell biology. Traffic, 2001. 2(11): 764-74.
    [118] Trache, A. and Meininger, GA., Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Microbiol, 2008. Chapter 2: Unit 2A 2 1-2A 2 22.
    [119] Oheim, M., Imaging transmitter release. II. A practical guide to evanescent-wave imaging. Lasers Med Sci, 2001. 16(3): 159-70.
    [120] Sako, Y., Minoghchi, S., and Yanagida, T, Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol, 2000. 2(3): 168-72.
    [121] Douglass, A.D. and Vale, R.D., Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell, 2005. 121(6): 937-50.
    [122] Schmoranzer, J., Kreitzer, G., and Simon, S.M., Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. J Cell Sci, 2003. 116(Pt 22): 4513-9.
    [123] Ohara-Imaizumi, M., Nishiwaki, C., Kikuta, T., et al., TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells. Biochem J, 2004. 381(Pt 1): 13-8.
    [124] Licht, S.S., Sonnleitner, A., Weiss, S., et al., A rugged energy landscape mechanism for trapping of transmembrane receptors during endocytosis. Biochemistry, 2003. 42(10): 2916-25.
    [125] Riven, I., Iwanir, S., and Reuveny, E., GIRK channel activation involves a local rearrangement of a preformed G protein channel complex. Neuron, 2006. 51(5): 561-73.
    [126] Tateyama, M., Abe, H., Nakata, H., et al., Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1 alpha. Nat Struct Mol Biol, 2004. 11(7): 637-42.
    [127] Saxton, M.J., Single-particle tracking: the distribution of diffusion coefficients. Biophys J, 1997. 72(4): 1744-53.
    [128] Saxton, M.J. and Jacobson, K., Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct, 1997. 26: 373-99.
    [129] Choquet, D. and Lounis, B., [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. Med Sci (Paris), 2008. 24(5): 548-50.
    [130] Deniz, A.A., Mukhopadhyay, S., and Lemke, E.A., Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface, 2008. 5(18): 15-45.
    [131] Triller, A. and Choquet, D., New concepts in synaptic biology derived from single-molecule imaging. Neuron, 2008. 59(3): 359-74.
    [132] Alivisatos, P., The use of nanocrystals in biological detection. Nat Biotechnol, 2004. 22(1): 47-52.
    [133] Garcia-Saez, A.J. and Schwille, P., Single molecule techniques for the study of membrane proteins. Appl Microbiol Biotechnol, 2007. 76(2): 257-66.
    [134] Rogers, S.S., Waigh, T.A., Zhao, X., et al., Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Phys Biol, 2007. 4(3): 220-7.
    [135] Schmidt, T., Schutz, G.J., Baumgartner, W., et al., Imaging of single molecule diffusion. Proc Natl Acad Sci U S A, 1996. 93(7): 2926-9.
    [136] Groc, L., Heine, M., Cousins, S.L., et al., NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci U S A, 2006. 103(49): 18769-74.
    [137] Kusumi, A., Sako, Y., and Yamamoto, M., Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J, 1993. 65(5): 2021-40.
    [138] Brown, D.A., Interactions between GPI-anchored proteins and membrane lipids. Trends Cell Biol, 1992. 2(11): 338-43.
    [139] Keppler, A., Pick, H., Arrivoli, C., et al., Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A, 2004.101(27): 9955-9.
    [140] Kindermann, M., George, N., Johnsson, N., et al., Covalent and selective immobilization of fusion proteins. J Am Chem Soc, 2003. 125(26): 7810-1.
    [141] Maurel, D., Comps-Agrar, L., Brock, C., et al., Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods, 2008. 5(6): 561-7.
    [142] Calver, A.R., Davies, C.H., and Pangalos, M., GABA(B) receptors: from monogamy to promiscuity. Neurosignals, 2002.11(6): 299-314.
    [143] Emson, P.C., GABA(B) receptors: structure and function. Prog Brain Res, 2007. 160: 43-57.
    [144] Ulrich, D., Besseyrias, V, and Bettler, B., Functional mapping of GABA(B)-receptor subtypes in the thalamus. J Neurophysiol, 2007. 98(6): 3791-5.
    [145] Chini, B. and Parenti, M., G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol, 2004. 32(2): 325-38.
    [146] Patel, H.H., Murray, F., and Insel, P.A., G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol, 2008(186): 167-84.
    [147] Mashanov, G.I., Tacon, D., Knight, A.E., et al., Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods, 2003. 29(2): 142-52.
    [148] Iino, R., Koyama, I., and Kusumi, A., Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J, 2001. 80(6): 2667-77.
    [149] Lingwood, D. and Simons, K., Detergent resistance as a tool in membrane research. Nat Protoc, 2007. 2(9): 2159-65.
    [150] Pooler, A.M. and McIlhinney, R.A., Lateral diffusion of the GABAB receptor is regulated by the GABAB2 C terminus. J Biol Chem, 2007. 282(35): 25349-56.
    [151] Murakoshi, H., Iino, R., Kobayashi, T., et al., Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci U S A, 2004. 101(19): 7317-22.
    [152] Serge, A., Fourgeaud, L., Hemar, A., et al., Active surface transport of metabotropic glutamate receptors through binding to microtubules and actin flow. J Cell Sci, 2003.116(Pt 24): 5015-22.
    [153] Shima, T., Nada, S., and Okada, M., Transmembrane phosphoprotein Cbp senses cell adhesion signaling mediated by Src family kinase in lipid rafts. Proc Natl Acad Sci U S A, 2003.100(25): 14897-902.
    [154] Oneyama, C., Hikita, T., Enya, K., et al., The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol Cell, 2008. 30(4): 426-36.
    [155] Janes, P.W., Ley, S.C., and Magee, A.I., Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol, 1999.147(2): 447-61.
    [156] Rozengurt, E., Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol, 2007. 213(3): 589-602.
    [157] Correa, S.A., Munton, R., Nishimune, A., et al., Development of GABAB subunits and functional GABAB receptors in rat cultured hippocampal neurons. Neuropharmacology, 2004. 47(4): 475-84.
    [158] Patel, P.A., Tilley, D.G., and Rockman, H.A., Beta-arrestin-mediated signaling in the heart. Circ J, 2008. 72(11): 1725-9.
    [159] Kim, J., Ahn, S., Rajapopal, K., et al., Independent beta -arrestin 2 and Gq/PKCzeta pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the EGFR. J Biol Chem, 2009.
    [160] Bettler, B. and Tiao, J.Y., Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther, 2006. 110(3): 533-43.
    [161] Filip, M. and Frankowska, M., GABA(B) receptors in drug addiction. Pharmacol Rep, 2008. 60(6): 755-70.
    [162] Goudet, C., Magnaghi, V., Landry, M., et al., Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev, 2009. 60(1): 43-56.
    [163] Harayama, N., Shibuya, I., Tanaka, K., et al., Inhibition of N- and P/Q-type calcium channels by postsynaptic GABAB receptor activation in rat supraoptic neurones. J Physiol, 1998. 509 ( Pt 2): 371-83.
    [164] Liu, J., Maurel, D., Etzol, S., et al., Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J Biol Chem, 2004. 279(16): 15824-30.
    [165] Evans, M.J. and Cravatt, B.F., Mechanism-based profiling of enzyme families. Chem Rev, 2006. 106(8): 3279-301.
    [166] Liu, Y., Patricelli, M.P., and Cravatt, B.F., Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci U S A, 1999. 96(26): 14694-9.
    [167] Yaqoob, P., The Nutritional Significance of Lipids Rafts. Annu Rev Nutr, 2009.
    [168] Allen, J.A., Halverson-Tamboli, R.A., and Rasenick, M.M., Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci, 2007. 8(2): 128-40.
    [169] Dufour, F., Liu, Q.Y., Gusev, P., et al., Cholesterol-enriched diet affects spatial learning and synaptic function in hippocampal synapses. Brain Res, 2006. 1103(1): 88-98.
    [170] Renner, M., Choquet, D., and Triller, A., Control of the postsynaptic membrane viscosity. J Neurosci, 2009. 29(9): 2926-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700