丙型肝炎病毒非结构蛋白5A对哺乳动物雷帕霉素靶蛋白信号通路的调节及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙型肝炎病毒(hepatitis C virus, HCV)是引起急、慢性肝炎的重要肝嗜性病毒之一。然而,目前对HCV感染慢性化和免疫逃逸的致病机理仍然缺乏全面深入的理解。要建立持续性感染,病毒必须调控参与细胞存活、生长、生物大分子合成和代谢的关键信号通路。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路即为这样的信号通路。已发现多种DNA病毒调控mTOR通路以促进持续性感染和致病。同时,凋亡作为维持细胞稳定性的重要生理机制,其功能失调常常见于持续性病毒感染。我们前期发表的结果表明HCV非结构蛋白5A (nonstructural protein 5A, NS5A)结合细胞蛋白FKBP38从而抑制细胞凋亡,但其机理不详。近期发现FKBP38为mTOR通路新成员,在营养或生长因子控制下,FKBP38结合并抑制mTOR激酶活性。为了进一步理解NS5A的生物学活性以及HCV持续性感染的致病机理,本实验研究了HCV NS5A对mTOR信号通路的调节及其对细胞存活的影响。
     在人肝癌细胞系Huh7中过表达HCV NS5A的结果表明,血清饥饿条件下NS5A以时间和剂量依赖方式增加mTOR下游靶点S6K1和4EBP1磷酸化水平。而在10%血清存在条件下,NS5A不能提高S6K1和4EBP1磷酸化水平。同样,在血清饥饿条件下,NS5A稳定表达的Huh7细胞(NS5A-Huh7)和HCV亚基因组复制子细胞中,S6K1和4EBP1磷酸化水平明显高于对照细胞(neo-Huh7)。mTOR特异性抑制剂雷帕霉素(rapamycin)或NS5A特异性的siRNA (siNS5A)可阻断NS5A对S6K1和4EBP1的磷酸化作用,提示NS5A特异性的活化mTOR信号通路。但是,在NS5A-Huh7细胞中,PI3K特异性抑制剂LY294002不能阻断NS5A对S6K1和4EBP1的磷酸化作用,表明NS5A活化mTOR通路不依赖于其上游组分PI3K。进一步运用NS5A突变体(NS5A-AI,不与FKBP38结合)、FKBP38突变体(FKBP38-Δ3×TPR,不与NS5A结合)以及FKBP38特异性siRNA (siFKBP38)研究发现,NS5A对mTOR通路的活化作用依赖于NS5A与FKBP38的结合。
     为了探索NS5A活化mTOR信号通路的机制,我们考察了NS5A、FKBP38、mTOR三者的结合情况。在过表达NS5A的Hela和Huh7细胞中,运用GST-pull down方法证明,在血清饥饿条件下,GST-FKBP38与mTOR的结合消失,而GST-FKBP38仍与NS5A结合。这些结果在NS5A-Huh7和HCV亚基因组复制子细胞中得到了一致的验证。更重要的是,在NS5A-Huh7和HCV亚基因组复制子细胞中,GST-FKBP38-Δ3×TPR可回复性结合mTOR。这些结果提示NS5A可破坏FKBP38与:mTOR的结合。与GST-pull down结果相同,在同时过表达FKBP38与NS5A的Huh7细胞中,免疫共沉淀实验表明,血清饥饿条件下FKBP38与mTOR的结合消失,FKBP38仍与NS5A结合。同时,有无血清并不影响NS5A-FKBP38的结合。单独过表达FKBP38且无血清存在时,FKBP38与mTOR结合,而有血清存在时两者结合消失。NS5A与mTOR之间不存在直接或间接结合。这些结果在neo-Huh7、NS5A-Huh7及HCV亚基因组复制子细胞中得到了进一步验证。另外,同时过表达NS5A-ΔI和FKBP38、或NS5A和FKBP38-Δ3×TPR时,可恢复mTOR与FKBP38的结合。共定位分析发现,血清饥饿条件下,NS5A-Huh7、HCV Replicon细胞中FKBP38与mTOR的共定位消失。这些结果提示NS5A是通过与mTOR竞争结合后者内源性抑制剂FKBP38,从而活化mTOR信号通路。
     以往研究表明mTOR信号通路活化可促进细胞存活。因此,我们进一步在无血清存在条件下利用凋亡诱导剂星孢菌素(stauroporine)考察了NS5A活化mTOR信号通路对细胞凋亡的影响。结果发现,无rapamycin预处理的NS5A-Huh7中,caspase3和PARP活化水平明显低于rapamycin预处理的NS5A-Huh7细胞、rapamycin处理或不处理的对照neo-Huh7细胞。Hoechst33342染色结果也表明,rapamycin未处理的NS5A-Huh7凋亡数量明显低于rapamycin处理的NS5A-Huh7细胞、以及rapamycin处理或不处理的对照neo-Huh7细胞。而且,NS5A特异性siRNA可明显恢复NS5A-Huh7细胞对staurosporine诱导凋亡的敏感性,表现为caspase3和PARP活化水平明显升高。这些结果提示NS5A通过mTOR信号通路特异性抑制细胞凋亡。进一步实验表明,同时过表达NS5A和FKBP38且无rapamycin预处理的Huh7细胞中,caspase3、PARP活化水平低于同时过表达NS5A和FKBP38-Δ3×TPR、或NS5A-ΔI和FKBP38且rapamycin预处理或不预处理的Huh7细胞。与此一致,用FKBP38特异性siRNA (siFKBP38)单独处理NS5A-Huh7、HCV亚基因组复制子细胞发现,其caspase3、PARP活化水平明显低于rapamycin联合siFKBP38处理或rapamycin单独处理的细胞。Hoechst33342染色也得到一致的结果。这些结果提示,NS5A通过mTOR信号通路抑制细胞凋亡依赖于NS5A-FKBP38结合。
     上述结果表明,HCV NS5A通过与mTOR竞争结合后者内源性抑制剂FKBP38,活化mTOR信号通路,从而抑制细胞凋亡、促进细胞存活。提示HCV编码的病毒蛋白可通过调控细胞关键信号通路,从而促进HCV持续性感染、参与HCV致病机制。
Hepatitis C virus (HCV) is one of important hepatotropic viruses that cause acute, chronic hepatitis. However, the mechanisms underlying HCV persistence, immune evasion and pathogenesis have been incompletely understood. To establish persistent infection, a virus must manipulate key cellular signaling pathways that control cellular survival, growth, macromolecular biosynthesis and metabolism. The mammalian target of rapamycin (mTOR) pathway is one such pathway. It has been found that many DNA viruses evolved strategies to regulate the mTOR pathway for persistent infections and pathogenesis. Meanwhile, apoptosis is a critically physiological mechanism for maintaining cellular homeostasis, its dysfunction is usually found in persistent viral infections. Our previously published results have proved that HCV nonstructural protein 5A (NS5A) bound to cellular FKBP38 and led to inhibiting apoptosis, but the detailed mechanism was not defined. Recent researches have discovered that as a new member of the mTOR pathway, FKBP38 interacted with mTOR and suppressed the latter's kinase activity dependent on nutrition and growth factors availability. Therefore, in order to further understand the biological activity of NS5A and the mechanism of HCV persistent infection and pathogenesis, we investigated the effect of hepatitis C virus nonstructural protein 5A on the mTOR Pathway and its corresponding role in cellular survival.
     Initially, we overexpressed HCV NS5A in Huh7 cells in the absence of serum, the results showed that NS5A significantly increased phosphorylation levels of two mTOR-controlled substrates, S6K1 and 4EBP1, in a time-and dose-dependent manner; but under serum-supplemented condition, NS5A was unable to promote S6K1 and 4EBP1 phosphorylations. Similarly, the phosphorylation levels of S6K1 and 4EBP1 in NS5A-Huh7 or HCV subgenomic replicon cells were obviously higher than those of control neo-Huh7 cells. siRNA special for NS5A or mTOR kinase inhibitor rapamycin blocked the increased S6K1 and 4EBP1 phosphorylations mediated by NS5A, suggesting that NS5A specifically activates the mTOR pathway. However, PI3K inhibitor LY294002 could not abolish NS5A-mediated phosphorylations of S6K1 and 4EBP1 in NS5A-Huh7 cells in the absence of serum, indicating that NS5A-upregulated mTOR activity is independent of PI3K, a component upstream of mTOR. Additionally, overexpression of deleted mutants (NS5A-AI with FKBP38-binding region deleted, FKBP38-Δ3×TPR with NS5A-binding region deleted) in Huh7, and knockdown of FKBP38 in NS5A-Huh7 and HCV replicon cells showed that NS5A-activated mTOR pathway was dependent on NS5A-FKBP38 binding.
     To exploit the mechanism of NS5A-activated mTOR pathway, we further investigated the binding among NS5A, FKBP38 and mTOR. GST pull-down experiments showed that in NS5A-overexpressed Hela and Huh7 cellls in the absence of serum, GST-FKBP38 was unable to pull down mTOR, while GST-FKBP38 could still pull down NS5A. These results were confirmed in NS5A-Huh7 and HCV subgenomic replicon cells. More importantly, GST-FKBP38-Δ3×TPR reversibly pulled down mTOR in NS5A-Huh7 and HCV subgenomic replicon cells. These results suggested that NS5A impairs mTOR-FKBP38 binding. In accordance with GST pull-down results, coimmunoprecipitation experiments showed that in Huh7 cells cotransfected with NS5A and FKBP38 with no serum culture, the mTOR-FKBP38 binding disappeared, while the NS5A-FKBP38 binding kept intact, in which presence or absence of serum did not affect the binding of NS5A to FKBP38. In FKBP38 alone overexpressed Huh7 cells, mTOR kept binding to FKBP38 under serum-deprived condition, while this interaction disappeared under serum-supplemented condition. These results were confirmed in neo-Huh7, NS5A-Huh7 and HCV subgenomic replicon cells. Furthermore, in Huh7 cells cotransfected with NS5A-AI and FKBP38, or NS5A and FKBP38-Δ3×TPR in the absence of serum, the association between mTOR and FKBP38 was recovered. Colocalization analyses showed that the colocalization of mTOR and FKBP38 disappeared in NS5A-Huh7 and HCV replicon cells in the absence of serum. Collectively, these results indicated that NS5 A activates the mTOR pathway via competing with mTOR for binding to its intrinsic antagonist FKBP38.
     Previous reports have showed that the activation of the mTOR pathway contributed to cellular survival. Based on these data, we further examined the effect of NS5A-activated mTOR pathway on apoptosis induced by staurosporine in the absence of serum. The results showed that the levels of cleaved caspase 3 and cleaved PARP in NS5A-Huh7 cells without rapamycin pretreatment were much lower than those in NS5A-Huh7 cells with rapamycin pretreatment and those in neo-Huh7 cells with or without rapamycin pretreatment. Consistently, Hoechst33342 staining showed that the numbers of apoptotic cells in NS5A-Huh7 cells without rapamycin pretreatment were fewer than those in NS5A-Huh7 cells with rapamycin pretreatment and those in neo-Huh7 cells with or without rapamycin pretreatment. Furthermore, siRNA special for NS5A recovered the sensitivity of NS5A-Huh7 cells to apoptosis induced by staurosporine, characterized by remarkable increase of cleaved caspase 3 and cleaved PARP. These results indicated that NS5A specifically represses apoptosis via the mTOR pathway. Finally, the levels of cleaved caspase 3 and cleaved PARP in the Huh7 cells cotransfected with wild type NS5A and FKBP38 without rapamycin pretreatment were lower than those in the Huh7 cells cotransfected with wild type NS5A and FKBP38-Δ3×TPR, or NS5A-ΔI and wild type FKBP38 with or without rapamycin pretreatment. Consistantly, FKBP38 knockdown dramatically decreased the leveles of cleaved caspase 3 and cleaved PARP in NS5A-Huh7 and HCV replicon cells, which were much lower than those in cells with a combined treatment of rapamycin and siFKBP38, or rapamycin treatment alone; also, Hoechst33342 staining produced similar results. These results suggested that the apoptotic repression via the NS5A-activated mTOR pathway is dependent on NS5A-FKBP38 binding.
     Taken together, HCV NS5A activates the mTOR pathway to inhibit apoptosis and contribute to cellular survival via competing with mTOR for binding to the latter's intrinsic antagonist FKBP38, which suggests that HCV-encoded viral protein can manipulate cellular key signaling pathway-the mTOR pathway-for HCV persistent infection and pathogenesis.
引文
1. Hoofnagle, J. H. Course and outcome of hepatitis C. Hepatology, (2002),36, S21-S29.
    2. Bowmen, D. G., Walker, C. M. The origin of quasispecies:cause or consequence of chronic hepatitis C viral infection?J. Hepatol. (2005),42,408-417.
    3. Brown Jr, R. S. Hepatitis C and liver transplantation. Nature,2005,436:973-978.
    4. Shimakami, T., Lanford, R. E., and Lemon, S. M. Hepatitis C:recent successes and continuing challenges in the development of improved treatment modalities. Curr. Opin. Pharmacol. 2009,9:537-544.
    5. Fried, M.W., Shiffman, M.L., Reddy, K.R., Smith, C., Marinos, G., Goncales Jr., F.L., Haussinger, D., Diago, M., Carosi, G., Dhumeaux, D., Craxi, A., Lin, A., Hoffman, J. and Yu, J. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. (2002) N. Engl. J. Med.347,975-982.
    6. Feld, J. J.and Hoofnagle, J. H. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. (2005) Nature 436,967-972.
    7. Sarasin-Filipowicz, M., Oakeley, E. J., Duong, F. H., Christen, V., Terracciano, L., Filipowicz, W., and Heim, M. H. Interferon signaling and treatment outcome in chronic hepatitis C. (2008)Proc. Natl.Acad. Sci. U. S.A.105,7034-7039.
    8. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. and Bartenschlager, R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. (1999) Science 285,110-113.
    9. Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Haberrmann, A., Krausslich, H. G., Mizokami, M., Bartenschlager, R. and Liang, T. J. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. (2005) Nat. Med.11,791-796.
    10. Knipe, D., Howley, P., Griffin, D. E., Martin, M. A., Lamb, R. A., Roizman, B., and Straus, S. E. (2007) Fields Virology,5th Ed., Lippincott Williams & Wilkins, Philadelphia.
    11. Enomoto, N., Sakuma I., Asahina, Y., Kurosaki, M., Murankami, T., Yamamoto, C., Izumi, N., Marumo, F., and Sato, C. Comparison of fulllength sequences of interferon-sensitive and resistant hepatitis C virus 1b. (1995) J. Clin. Investig.96,224-230.
    12. Enomoto, N., Sakuma, I., Asahina, Y., Kurosaki, M., Murakami, T., Yamamoto, C., Ogura, Y, Izumi, N., Maruno, F., and Sato, C.. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. (1996) N. Engl.J.Med.334,77-81.
    13. Iran, G. The role of hepatitis C virus in the pathogenesis of hepatocellular carcinoma. (2008) Bioscience Horizons,1,167-175.
    14. Tellinghuisen, T. L., Marcotrigiano, J, and Rice, C. M. Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. (2005) Nature 435, 374-379.
    15. Tellinghuisen, T. L., Foss, K. L., Treadaway, J. C., and Rice, C. M. Identification of Residues Required for RNA Replication in Domains Ⅱ and Ⅲ of the Hepatitis C Virus NS5A Protein. (2008)J. Virol. 82,1073-1083.
    16. Yi, M., and Lemon, S. M. Adaptive mutations producing efficient replication of genotype la hepatitis C virus RNA in normal Huh7 cells. (2004)J. Virol. 78,7904-7915.
    17. Hughes,M., Gretton, S., Shelton, H., Brown, D. D., McCormick, C. J., Angus A. G. N., Patel, A. H., Griffin, S., and Harris, M. A conserved proline between domains Ⅱ and Ⅲ of hepatitis C virus NS5A influences both RNA replication and virus assembly. (2009)J. Virol. 83,10788-10796.
    18. Appel, N., Zayas, M., Miller, S., Krijnse-Locker, J., Schaller, T., Friebe, P., Kallis, S., Engel, U., and Bartenschlager, R. Essential role of domain Ⅲ of nonstructural protein 5A for hepatitis C virus infectious particle assembly. (2008) PLoS Pathog.4, e1000035.
    19. Hughes, M., Griffin, S., and Harris, M. Domain Ⅲ of NS5A contributes to both RNA replication and assembly of hepatitis C virus particles. (2009) J. Gen. Virol. 90, 1329-1334.
    20. Masaki, T., Suzuki, R., Murakami, K., Aizaki, H., Ishii, K., Murayama, A., Date, T., Matsuura, Y., Miyamura, T., Wakita, T., and Suzuki, T. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. (2008)J. Virol. 82,7964-7976.
    21. Tellinghuisen, T. L., Foss, K. L., and Treadaway, J. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. (2008) PLoS Pathog.4, el000032.
    22. Arima, N., Kao, C. Y., Licht, T. Padmanabhan, R., Sasaguri, Y., and Padmanabhan, R. Modulation of cell growth by the hepatitis C virus nonstructural protein NS5A. (2001)J. Biol. Chem.276,12675-12684.
    23. Macdonald, A., Crowder, K., Street, A., McCormick, C., Saksela, K., and Harris, M. The hepatitis C virus nonstructural NS5A protein inhibits activating protein-1 function by perturbing ras-ERK pathway signaling. (2003) J. Biol. Chem.278,17775-17784.
    24. Kriegs, M., Burckstummer, T., Himmelsbach, K., Bruns, M., Frelin, L., Ahlen,G., Sallberg, M., and Hildt, E. The hepatitis C virus non-structural NS5A protein impairs both the innate and adaptive hepatic immune response in vivo. (2009) J. Biol. Chem.284, 28343-28351.
    25. Street, A., Macdonald, A., Crowder, K., and Harris, M. The Hepatitis C Virus NS5A Protein Activates a Phosphoinositide 3-Kinase-dependent Survival Signaling Cascade. (2004)J. Biol. Chem.279,12232-12241.
    26. Nanda, S.K., Herion, D., and Liang, T. J. Src homology 3 domain of Hepatitis C virus NS5A protein interacts with binl and is important for apoptosis and infectivity. (2006) Gastroenterology 130,794-809.
    27. Lan, K. H., Sheu, M. L., Hwang, S. J., Yen, S. H., Chen, S.Y., Wu, J. C., Wang, Y. J., Kato, N., Omata, M., Chang, F. Y., and Lee, S. D. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. (2002) Oncogene 21,4801-4811.
    28. Mankouria, J., Dallasb, M. L., Hughesa, M. E., Griffina, S. D. C., Macdonalda, A., Peersb, C., and Harris, M. Suppression of a pro-apoptotic K+ channel as a mechanism for hepatitis C virus persistence. (2009) Proc. Natl.Acad. Sci. U. S.A.106,15903-15908.
    29. Wang, J. D., Tong, W. Y., Zhang, X. N., Chen, L., Yi, Z. J., Pan, T. T., Hu, Y. W., Xiang, L., and Yuan, Z. H. Hepatitis C virus non-structural protein NS5A interacts with FKBP38 and inhibits apoptosis in Huh7 hepatoma cells. (2006) FEBS Lett.580,4392-4400.
    30. Kang, C. B., Ye, H., Dhe-Paganon, S., and Yoon, H. S. FKBP Family Proteins: Immunophilins with Versatile Biological Functions. (2008) Neurosignals 16,318-325.
    31. Shirane, M., and Nakayama, K. I. Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. (2003) Nat. Cell Biol. 5,28-37.
    32. Nakagawa, T., Shirane, M., Iemura, S., Natsume, T., and Nakayama, K. I. Anchoring of the 26S proteasome to the organellar membrane by FKBP38. (2007) Genes to Cells 12, 709-719.
    33. Bai, X, C., Ma, D, Z., Liu, A, L., Shen, X, Y., Wang, Q. J., Liu, Y, J., and Jiang, Y. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. (2007) Science 318, 977-980.
    34. Dunlop, E. A., Dodd, K. M., Seymour, L. A., and Tee, A. R. Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition. (2009) Cell. Signal.21,1073-1084.
    35. Buchkovich, N. J., Yu, Y. J., Zampieri, C. A., and Alwine, J. C. The TORrid affairs of viruses:effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. (2008) Nat. Rev. Microbiol. 6,265-275.
    36. Guertin, D. A., and Sabatini, D. M. Defining the Role of mTOR in Cancer. (2007) Cancer Cell 12,9-22.
    37. Okamoto, T., Nishimura, Y., Ichimura, T., Suzuki, K., Miyamura, T., Suzuki, T., Moriishi, K. and Matsuura, Y. Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. (2006) EMBO J.25,5015-5025.
    38. Pastor, M. D., Garcia-Yebenes, I., Fradejas, N., Perez-Ortiz, J. M., Mora-Lee, S., Tranque, P., Moro, M. A., Pende, M., and Calvo, S. mTOR/S6 Kinase Pathway Contributes to Astrocyte Survival during Ischemia. (2009) J. Biol. Chem. 284,22067-22078.
    39. Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno, P., Arrieumerlou, C., and Hall, M. N. PRAS40 and PRR5-Like Protein Are New mTOR Interactors that Regulate Apoptosis. (2007) PLoS ONE 2, el217.
    40. O'Sheal, C., Klupsch, K., Choi, S., Bagus, B., Soria, C., Shen, J., McCormick, F., and Stokoe, D. Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. (2005) EMBO J.24,1211-1221.
    41. Kudchodkar, S. B., Prete, G. Q. D., Maguire, T. G., and Alwine, J. C. AMPK-Mediated Inhibition of mTOR Kinase Is Circumvented during Immediate-Early Times of Human Cytomegalovirus Infection. (2007)J. Virol.81,3649-3651.
    42. Oh, K., Kalinina, A., Park, N., and Bagchi, S. Deregulation of eIF4E:4E-BP1 in Differentiated Human Papillomavirus-Containing Cells Leads to High Levels of Expression of the E7 Oncoprotein. (2006) J. Virol. 80,7079-7088.
    43. Castedo, M., Roumier, T., Blanco, J., Ferri K. F., Barretina, J., Tintignac, L. A, Andreau, K., Perfettini, J., Amendola, A., Nardacci, R., Leduc, P., Ingber, D. E., Druillennec, S., Roques, B., Leibovitch, S. A., Vilella-Bach, M., Chen, J., Este, J. A., Modjtahedi, N., Piacentini, M., and Kroemer, G. Sequential involvement of Cdkl, mTOR and p53 in apoptosis induced by the HIV-1 envelope. (2002) EMBO J.21,4070-4080.
    44. Mannova, P., and Beretta, L. Activation of the N-Ras-PI3K-Akt-mTOR Pathway by Hepatitis C Virus:Control of Cell Survival and Viral Replication. (2005)J. Virol.79, 8742-8749.
    45. Laplante, M., and Sabatini, D. M. mTOR signaling at a glance. (2009) J. Cell ScL 122, 3589-3594.
    46. Pazienza, V, Clement, S., Pugnale, P., Conzelman, S., Foti, M., Mangia, A., and Negro, F. The Hepatitis C Virus Core Protein of Genotypes 3a and lb Downregulates Insulin Receptor Substrate 1 through Genotype-specific Mechanisms. (2007) Hepatology 45, 1164-1171.
    47. He, Y. P., Nakao, H., Tan, S. L., Polyak, S. J., Neddermann, P., Vijaysri, S., Jacobs, B. L. and Katze, M. G. Subversion of Cell Signaling Pathways by Hepatitis C Virus Nonstructural 5A Protein via Interaction with Grb2 and P85 Phosphatidylinositol 3-Kinase. (2002)J. Virol.76,9207-9217.
    48. Wang, X. M., Fonseca, B. D., Tang, H., Liu, R., Elia, A., Clemens, M. J., Bommer, U., and Proud, C. G. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. (2008) J. Biol. Chem. 287,30482-30492.
    49. Clarke, P., and Tyler, K. L. Apoptosis in animal models of virus-induced disease. (2009) Nature 7,144-155.
    50. Cotter, T. G. Apoptosis and cancer:the genesis of a research field. (2009) Nat. Rev. Cancer 9,501-507.
    51.Mateu, G., Donis, R. O., Wakita, T., Bukh, J., and Grakoui, A. Introgenotypic JFH1 recombinant hepatitis C virus produces high levels of infectious particles but increased cell death. (2008) Virology 376:397-407.
    52. Deng, L., Adachi, T., Kitayama, K., Bungyoku, Y., Kitazawa, S., Ishido, S., Shoji, I., and Hotta, H. Hepatitis C virus induces apoptosis through a Bax-triggered, mithochondrion-mediated, caspase 3-dependent pathway. (2008)J. Virol.82: 10375-10358.
    53. Benali-Furet, N. L., Chami, M., Houel, L., De Giorgi, F., Vernejoul, F., Lagorce, D., Buscail, L., Bartenschlager, R., Ichas, F., Rizzuto, R., and Paterlini-Bre'chot, P.. Hepatitis C virus core triggers apoptosis in liver cells byinducing ER stress and ER calcium depletion. (2005) Oncogene 24:4921-4933.
    54. Ciccaglione, A. R., Marcantonio, C., Tritarelli, E., Equestre, M., Magurano, F., Costantino, A., Nicoletti, L., and Rapicetta, M.. The transmembrane domain of hepatitis C virus E1 glycoprotein induces cell death. (2004) Virus Res.104:1-9.
    55. Chiou, H. L., Hsieh, Y. S., Hsieh, M. R., and Chen, T. Y. HCV E2 may induce apoptosis of Huh-7 cells via a mitochondrial-related caspase pathway. (2006) Biochem. Biophys. Res. Commun.345:453-458.
    56. Erdtmann, L., Franck, N., Lerat, H., Le Seyec, J., Gilot, D., Cannie, I., Gripon, P., Hibner, U., and Guguen-Guillouzo, C. The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis. (2003) J. Biol. Chem.278:18256-18264.
    57. Tanaka, M., Nagano-Fujii, M., Deng, L., Ishido, S., Sada, K., and Hotta, H. Single-point mutations of hepatitis C virus that impair p53 interaction and anti-apoptotic activity of NS3. (2006) Biochem. Biophys. Res. Commun.340:792-799.
    58. Nomura-Takigawa, Y, Nagano-Fujii, M., Deng, L., Kitazawa, S., Ishido, S., Sada, K., and Hotta, H. Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. (2006)J. Gen. Virol.87:1935-1945.
    59. Harada, H., Adersen, J. S., Mann, M., Terada, N., and Korsmeyer, S. J. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. (2001) Proc. Natl. Acad. Sci. U. S. A.98,9666-9670.
    60. Rosner, M., Hofer, K., Kubista, M., and Hengstschlager, M. Cell size regulation by the human TSC tumor suppressor proteins depends on PI3K and FKBP38. (2003) Oncogene 22,4786-4798.
    61. Lemm, J. A., O'Boyle Ⅱ, D., Liu, M. P., Nower, P. T., Colonno, R., Deshpande, M. S., Snyder, L. B., Martin, S. W., Laurent, D. R. S., Serrano-Wu, M. H., Romine, J. L., Meanwell, N. A., and Gao, M. Identification of Hepatitis C Virus NS5A Inhibitors. (2010) J. Virol. 84,482-491.
    62. Gao, M., Nettles, R. E., Belema, M., Snyder, L. B., Nguyen, V. N., Fridell, R. A., Serrano-Wu, M. H., Langley, D. R., Sun J. H., O'Boyle Ⅱ, D. R., Lemm, J. A., Wang, C. F., Knipe, J. O., Chien, C., Colonno, R. J., Grasela, D. M., Meanwell, N. A., and Hamann, L. G. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. (2010) Nature, doi:10.1038/nature08960.
    1. Brown, E. J., M. W. Albers, T. B. Shin, K. Ichikawa, C. T. Keith, W. S. Lane, and S. L. Schreiber. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature,1994,369:756-758.
    2. Sabatini, D. M., Erdjument-Bromage, H., Lui M., Tempst, P., and Snyder, S. H. RAFTI: A Mammalian Protein That Binds to FKBP12 in a Rapamycin-Dependent Fashion and Is Homologous to Yeast TORs. Cell,1994,78:35-43.
    3. Sabers, C. J., Martin, M. M., Brunn, G. J., Williams, J. M., Dumont, F. J., Wiederrecht, G., and Abraham, R. T. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells.J. Biol. Chem.1995,270-815.
    4. Hay, N., and N. Sonenberg. Upstream and downstream of mTOR. Genes Dev.2004,18: 1926-1945.
    5. Yang, X., C. Yang, A. Farberman, T. C. Rideout, C. F. M. de Lange, J. France and M. Z. Fan. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.J. Anim. Sci,2008.86:E36-E50.
    6. Gary G. Chiang1 and Robert T. Abraham. Targeting the mTOR signaling network in cancer. Trends Mol. Med.2007,13:433-442.
    7. Chen J, Zheng XF, Brown EJ, and Schreiber SL. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl. Acad. Sci. U. S. A.1995,92:4947-4951.
    8. Choi J, Chen J, Schreiber SL, and Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science,1996,273:239-242.
    9. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., and Sabatini, D. M. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell,2002,110:163-175.
    10. Bader, A. G., and Vogt, P. K. An essential role for protein synthesis in oncogenic cellular transformation. Oncogene,2004,23:3145-3150.
    11. Kim, D. H. Sarbassov, D. D., Ali, S. M., Latek, R. R., Guntur, K. V., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient sensitive interaction between raptor and mTOR. Mol. Cell,2003,11:895-904.
    12. Haar, E.V., Lee, S. I., Bandhakavi, S., Griffin, T. J., and Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol.2007,9:316-323.
    13. Bai, X, C., Ma, D, Z., Liu, A, L., Shen, X, Y., Wang, Q. J., Liu, Y, J., and Jiang, Y. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science,2007,318: 977-980.
    14. Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M.. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor independent pathway that regulates the cytoskeleton. Curr. Biol.2004,14:1296-1302.
    15. Yang, Q., Inoki, K., Ikenoue, T., Guan, K. L.& Iaccheri, L. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev.2006,20:2820-2832.
    16. Shaw R. J., and Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature,2006,441:424-430.
    17. Cantrell, D. A. Phosphoinositide 3-kinase signalling pathways.J. Cell. Sci.2001,114 (Pt 8):1439-1445.
    18. Scheid, M. P., Marignani, P. A., and Woodgett, J. R. Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol. Cell.Biol. 2002,22(17): 6247-6260.
    19. Yang, J., Cron, P., Thompson, V., Good, V. M., Hess, D., Hemmings, B. A., and Barford, D. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell.2002,9(6):1227-1240.
    20. Frias, M. A., Thoreen, C. C., Jaffe, J. D., Schroder, W., Sculley, T., Carr, S. A., and Sabatini, D. M. mSinl is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol.2006,16(18):1865-1870.
    21. Sarbassov, D. D., Ali, S. M., Sengupta, S., Sheen, J. H., Hsu, P. P., Bagley, A. F., Markhard, A. L., and Sabatini, D. M. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol.Cell.2006,22(2):159-168.
    22. Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell. Biol. 2002,4(9):648-657.
    23. Potter, C. J., Pedraza, L. G., and Xu, T. Akt regulates growth by directly phosphorylating TSC2. Nat. Cell. Biol. 2002,4(9):658-665.
    24. Zhang, Y., Gao, X., Saucedo, L. J., Ru, B., Edgar, B. A., and Pan, D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell. Biol. 2003, 5(6):578-581.
    25. Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C., and Blenis, J. Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPase activating protein complex toward Rheb. Curr. Biol. 2003,13(15):1259-1268.
    26. Garami, A., Zwartkruis, F. J., Nobukuni, T., Joaquin, M., Roccio, M., Stocker, H., Kozma, S. C., Hafen, E., Bos, J. L., and Thomas, G. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signalling, is inhibited by TSC1 and 2. Mol. Cell.2003,11(6): 1457-1466.
    27. Nojima, H., Tokunaga, C., Eguchi, S., Oshiro, N., Hidayat, S., Yoshino, K. I., Hara, K., Tanaka, N., Avruch, J., and Yonezawa, K. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif.J. Biol. Chem.2003,278(18):15461-15464.
    28. Schalm, S. S., Fingar, D. C., Sabatini, D. M., and Blenis, J. TOS motifmediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 2003, 13(10):797-806.
    29. Beugnet, A.,Wang, X., and Proud, C. G. Target of rapamycin (TOR)-signaling and RAIP motifs play distinct roles in the mammalian TOR-dependent phosphorylation of initiation factor 4E-binding protein 1.J. Biol. Chem.2003,278(42):40717-40722.
    30. Shah, O. J., Wang, Z., Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS 1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 2004,14(18):1650-1656.
    31. Harrington, L. S., Findlay, G. M., Gray, A., Tolkacheva, T., Wigfield, S., Rebholz, H., Barnett, J., Leslie, N. R., Cheng, S., Shepherd, P. R., Gout, I., Downes, C. P., Lamb, R. F. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell. Biol.2004,166(2):213-223.
    32. Alessi, D. R., Sakamoto, K., and Bayascas, J. R. LKB1-dependent signaling pathways. Annu. Rev. Biochem.2006,75:137-163.
    33. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., and Cantley, L. C. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U. S. A. 2004,101:3329-3335.
    34. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., and Guan, K. L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell,2006,126:955-968.
    35. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell,2005,121:179-193.
    36. Roux, P. P., Ballif, B. A., Anjum, R., Gygi, S. P., and Blenis, J. Tumorpromoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. U. S. A.2004,101 (37):13489-13494.
    37. Cully, M. et al. Beyond PTEN mutations:the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer,2006,6:184-192.
    38. Byfield, M. P., Murray, J. T., Backer, J. M. hVps34 is a nutrientregulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem.2005,280:33076-33082.
    39. Nobukuni, T., Joaquin, M., Roccio, M., Dann, S. G., Kim, S. Y., Gulati, P., Byfield, M. P., Backer, J. M., Natt, F., Bos, J. L., Zwartkruis, F. J., Thomas, G. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. U. S. A.2005,102:14238-14243.
    40. Deyoung, M. P., Horak, P., Sofer, A., Sgroi, D., Ellisen, L. W. Hypoxia regulates TSC1/2 mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev.2008,22:239-251.
    41. Ellisen, L.W. Growth control under stress:mTOR regulation through the REDD1-TSC pathway. Cell Cycle,2005,4:1500-1502.
    42. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankuna,s K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., and Guan, K. L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell,2006,126:955-968.
    43. Sarbassov, D. D., Ali, S. M. and Sabatini, D. M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 2005,17:596-603.
    44. Reiling, J. H. and Sabatini, D. M. Stress and mTORture signaling. Oncogene,2006,25: 6373-6383.
    45. Mamane, Y., Petroulakis, E., LeBacquer, O. and Sonenberg, N. mTOR, translation initiation and cancer. Oncogene,2006,25:6416-6422.
    46. Mayer, C., and Grummt, I. Ribosome biogenesis and cell growth:mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene,2006,25(48): 6384-6391.
    47. Cotter, T. G. Apoptosis and cancer:the genesis of a research field. Nat. Rev. Cancer, 2009,9:501-507.
    48. Harada, Hisashi., Andersent, J. S., Mannt, M., Terada, Naohiro., and Korsmeyer, S. J. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc. Natl. Acad. Sci. U. S. A.2001,98:9666-9670.
    49. Polunovsky, V. A., Gingras, A. C., Sonenberg, N., Peterson, M., Tan, A., Rubins, J. B., Manivel, J. C., and Bitterman, P. B. Translational Control of the Antiapoptotic Function of Ras.J. Biol. Chem. 2000,275:24776-24780.
    50. Herbert, T.P., Fahraeus, R., Prescott, A., Lane, D. P., and Proud, C. G. Rapid induction of apoptosis mediated by peptides that bind initiation factor eIF4E. Curr. Biol.2000,10: 793-796.
    51.Wendel, H. G., De Stanchina, E., Fridman, J. S., Malina, A., Ray, S., Kogan, S., Cordon-Cardo, C., Pelletier, J., and Lowe, S. W. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature,2004,428:332-337.
    52. Peterson, T. R., Laplante, M., Thoreen, C. C., Sancak, Y., Kang, S. A., Kuehl, W. M., Gray, N. S., and Sabatini, D. M. DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival. Cell,2009, 137:1-14.
    53. Kathrin, T., Polak, P., Kim, M. L., Molle, K. D., Cohen, A., Jeno, P., Arrieumerlou, C., and Hall, M. N. PRAS40 and PRR5-Like Protein Are New mTOR Interactors that Regulate Apoptosis. PLOS One,2007,11:el217.
    54. Jung, C. H., Ro, S., Cao, J., Otto, N. M. and Kim, D. mTOR regulation of autophagy. FEBES Lett.2010,584:1287-1295.
    55. Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature,2008,451:1069-1075.
    56. Neufeld, T. P. TOR-dependent control of autophagy:biting the hand that feeds. Curr. Opin. Cell Biol. 2009,22:1-12.
    57. Matsuura, A., Tsukada, M., Wada, Y. and Ohsumi, Y. Apglp, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene,1997,192: 245-250.
    58. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M. and Ohsumi, Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell. Biol. 2000,150:1507-1513.
    59. Scott, R.C., Schuldiner, O. and Neufeld, T.P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell,2004,7:167-178.
    60. Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H. and Levine, B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science,2003,301:1387-1391.
    61. Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T. and Ohsumi, Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell, 2008,19:2039-2050.
    62. Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M. and Ohsumi, Y. Atg17 functions in cooperation with Atgl and Atg13 in yeast autophagy. Mol. Biol. Cell, 2005,16:2544-2553.
    63. Jung, C.H., Jun, C.B., Ro, S.H., Kim, Y.M., Otto, N.M., Cao, J., Kundu, M. and Kim, D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell,2009,20:1992-2003.
    64. Ganley, I.G., Lam du, H., Wang, J., Ding, X., Chen, S. and Jiang, X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009,284:12297-12305.
    65. Hosokawa, N. Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., Guan, J. L., Oshiro, N., and Mizushima, N.. Nutrient-dependent mTORCl association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell,2009,20:1981-1991.
    66. Mercer, C. A., Kaliappan, A. and Dennis, P. B. A novel, human Atgl3 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy,2009,5: 649-662.
    67. Hosokawa, N., Sasaki, T., Iemura, S., Natsume, T., Hara, T. and Mizushima, N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy,2009,5: 973-979.
    68. Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L. and Mizushima, N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells.J. Cell Biol. 2008,181:497-510.
    69. Kusaba, H., Ghosh, P., Derin, R., Buchholz, M., Sasaki, C., Madara, K., and Longo, D. L. Interleukin-12-induced Interferon-y Production by Human Peripheral Blood T Cells Is Regulated by Mammalian Target of Rapamycin (mTOR). J. Biol. Chem. 2005,280: 1037-1043.
    70. Cao, W. P., Manicassamy, S., Tang, H., Kasturi, S. P., Pirani, A., Murthy, N. and Pulendran, B. Toll-like receptor-mediated induction of type Ⅰ interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat. Immunol. 2008,9:1157-1164.
    71. Colina, R., Costa-Mattioli, M., Dowling, R. J. O., Jaramillo, M., Tai, L. H., Breitbach, C. J., Martineau, Y., Larsson, O., Rong, L.W., Svitkin, Y. V., Makrigiannis, A. P., Bell, J. C., and Sonenberg, N. Translational control of the innate immune response through IRF-7. Nature,2008, doi:10.1038/nature06730,1-6.
    72. Kaur, S., Sassano, A., Dolniak, B., Joshi, S., Majchrzak-Kita, B., Baker, D. P., Hay, N., Fish, E. N., and Platanias, L. C. Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc. Natl. Acad. Sci. U. S. A.2008,105:4808-4813.
    73. Kaur, S., Lal, L., Sassano, A., Majchrzak-Kita, B., Srikanth, M., Baker, D. P., Petroulakis, E., Hay, N., Sonenberg, N., Fish, E. N., and Platanias, L. C. Regulatory Effects of Mammalian Target of Rapamycinactivated Pathways in Type Ⅰ and Ⅱ Interferon Signaling. J. Biol. Chem. 2007,282:1757-1768.
    74. Damoiseaux, J. G., Defresne, m. P., Reutelingsperger, C. P. and Van Breda Vriesman, P. J. Cyclosporin-A differentially affects apoptosis during in vivo rat thymocyte maturation. Scand. J. Immunol.2002,56:353-360.
    75. Mondino, A., and Mueller, D. L. mTOR at the crossroads of T cell proliferation and tolerance. Semin. Immunol.2007,19:162-172.
    76. Song, J., Salek-Ardakani, S., So, T., and Croft, M. The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nat. Immunol.2007,8: 64-73.
    77. Song, K., Wang, H., Krebs, T. L. and Danielpour, D. Novel roles of Akt and mTOR in suppressing TGF-β/ALK5-mediated Smad3 activation. EMBO J.2006,25:58-69.
    78. Sauer, St., Bruno, L., Hertweck, A., Finlay, D., Leleu, M., Spivakov, M., Knight, Z. A., Cobb, B. S., Cantrell, D., O'Connor, E., Shokat, K. M., Fisher, A. G., and Merkenschlager, M. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. U. S. A.2008,105:7797-7802.
    79. Finlay, D., and Cantrell, D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann. N.Y. Acad. Sci.2010,1183:149-157.
    80. Menon, S., and Manning, B. D. Common corruption of the mTOR signaling network in human tumors.2009, Oncogene,27:S43-S51.
    81. Chalhoub, N., and Baker, S. J. PTEN and the PI3-Kinase Pathway in Cancer. Annu. Rev. Pathol. Mech. Dis.2009.4:127-150.
    82. Shayesteh, L., Lu, Y., Kuo, W. L., Baldocchi, R., Godfrey, T., Collins, C., Pinkel, D., Powell, B., Mills, G. B., and Gray, J. W. PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet.1999,21:99-102.
    83. Li, S. Y., Rong, M., Grieu, F., Iacopetta, B. PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res. Treat. 2006,96:91-95.
    84. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S. H., Giovanella, B. C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M. H., and Parsons, R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997,275: 1943-1947.
    85. Risinger, J. I., Hayes, A. K., Berchuck, A., Barrett, J. C. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res.1997,57:4736-4738.
    86. Steck, P. A., Pershouse, M. A., Jasser, S. A., Yung, W. K., Lin, H., Ligon, A. H., Langford, L. A., Baumgard, M. L., Hattier, T., Davis, T., Frye, C., Hu, R., Swedlund, B., Teng, D. H., and Tavtigian, S. V. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997,15:356-362.
    87. Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., DePinho, R. A., and Cantley, L. C. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell,2004,6:91-99.
    88. Young, J., and Povey, S. The genetic basis of tuberous sclerosis. Mol. Med. Today,1998, 4:313-319.
    89. Lee, D. F., Kuo, H. P., Chen, C. T., Hsu, J. M., Chou, C. K., Wei, Y. K., Sun, H. L., Li, L. Y., Ping, B., Huang, W. C., He, X. H., Hung, J. Y., Lai, C. C., Ding, Q. Q., Su, J. L., Yang, J. Y., Sahin, A. A., Hortobagyi, G. N., Tsai, F. J., Tsai, C. H., and Hung, M. C. IKKb Suppression of TSC1 Inflammation and Tumor Angiogenesis via the mTOR Pathway. Cell,2007,130:440-455.
    90. Zhou, H. Y., and Wong, A. S. Activation of p70S6K Induces Expression of Matrix Metalloproteinase 9 Associated with Hepatocyte Growth Factor-Mediated Invasion in Human Ovarian Cancer Cells. Endocrinology,2006,147:2557-2566.
    91. Couch, F. J., Wang, X. Y., Wu, G. J., Qian, J., Jenkins, R. B., James, C. D. Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res.1999,59:1408-1411.
    92. Armengol, G., Rojo, F., Castellv J., Iglesias, C., Cuatrecasas, M., Pons, B., Baselga, J., and Cajal, S. R.4E-Binding Protein 1:A Key Molecular "Funnel Factor" in Human Cancer with Clinical Implications. Cancer Res.2007,67:7551-7555.
    93. Easton, J. B., and Houghton, P. J. mTOR and cancer therapy. Oncogene,2006,25: 6436-6446.
    94. Pang, R. W. C., and Poon, R. T. P. From Molecular Biology to Targeted Therapies for Hepatocellular Carcinoma:The Future Is Now. Oncology,2007,72 (suppl 1):30-44.
    95. Dufour, J. F., Huber, O., Kozma, S. C., Lu, X., and Toftgard, R. Tumour suppressors in liver carcinogenesis. J. Hepatol.2007,47:860-867.
    96. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell,2000,100:57-70.
    97. Buchkovich, N. J., Yu, Y. J., Zampieri, C. A., and Alwine, J. C. The TORrid affairs of viruses:effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat. Rev. Microbiol.2008,6:265-275.
    98. O'Shea, C., Klupsch, K., Choil, S., Bagus, B., Soria, C., Shen, J., McCormick, F., and Stokoe, D. Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. EMBO J.2005,24:1211-1221.
    99. Kudchodkar, S. B., Yu, Y., Maguire, T. G., and Alwine, J. C. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J. Virol.2004,78:11030-11039.
    100. Kudchodkar, S. B., Yu, Y., Maguire, T. G., and Alwine, J. C. Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor-and rictor-containing complexes. Proc. Natl.Acad. Sci. U. S.A.2006,103:14182-14187.
    101. Kudchodkar, S. B., Del Prete, G. Q., Maguire, T. G., and Alwine, J. C. AMPK-Mediated Inhibition of mTOR Kinase Is Circumvented during Immediate-Early Times of Human Cytomegalovirus Infection.J. Virol.2007,81:3649-3651.
    102. Moorman, N. J., and Shenk, T. Rapamycin-Resistant mTORC1 Activity is Required for Herpesvirus Replication. J. Virol.2010, doi:10.1128/JVI.02733-09.
    103. Minami, K., Tambe, Y., Watanabe, R., Isono, T., Haneda, M., Isobe, K., Kobayashi, T., Hino, O., Okabe, H., Chano, T., and Inoue, H. Suppression of Viral Replication by Stress-Inducible GADD34 Protein via the Mammalian Serine/Threonine Protein Kinase mTOR Pathway. J. Virol.2007,81:11106-11115.
    104. Guo, H. T., Zhou, T. L., Jiang, D., Cuconati, A., Xiao, G. H., Block, T. M., and Guo, J. T. Regulation of Hepatitis B Virus Replication by the Phosphatidylinositol 3-Kinase-Akt Signal Transduction Pathway. J. Virol. 2007,81:10072-10080.
    105. Munger, K., Baldwin, A., Edwards, K. M., Hayakawa, H., Nguyen, C. L., Owens, M., Grace, M., and Hug, K. W. Mechanisms of human papillomavirus-induced oncogenesis.J. Virol.2004,78:11451-11460.
    106. Oh, K. J., Kalinina, A., Park, N. H., and Bagchi, S. Deregulation of eIF4E:4E-BP1 in Differentiated Human Papillomavirus-Containing Cells Leads to High Levels of Expression of the E7 Oncoprotein.J. Virol. 2006,80:7079-7088.
    107. Moody, C. A., Scott, R. S., Amirghahari, N., Nathan, C. A., Youn, L. S., Dawson, C. W., and Sixbey, J. W. Modulation of the Cell Growth Regulator mTOR by Epstein-Barr Virus-Encoded LMP2A.J. Virol. 2005,79:5499-5506.
    108. Sodhi, A., Chaisuparat, R., Hu, J., Ramsdell, A. K., Manning, B. D., Sausville, E. A., Sawai, E. T., Molinolo, A., Gutkind, J. S., and Montaner, S. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell,2006,10:133-143.
    109. Maeda, N., Fu, W. X., Ortin, A., de las Heras, M., and Fan, H. Roles of the Ras-MEK-Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase-Akt-mTOR Pathways in Jaagsiekte Sheep Retrovirus-Induced Transformation of Rodent Fibroblast and Epithelial Cell Lines.J. Virol. 2005,79:4440-4450.
    110. Castedo, M., Ferri, K. F., Blanco, J., Roumier, T., Larochette, N., Barretina, J., Amendola, A., Nardacci, R., Metivier, D., Este, J. A., Piacentini, M., and Kroemer, G. Human Immunodeficiency Virus 1 Envelope Glycoprotein Complex-induced Apoptosis Involves Mammalian Target of Rapamycin/FKBP12-Rapamycin-associated Protein-mediated p53 Phosphorylation.J. Exp. Med.2001,194:1097-1110.
    111. Castedo, M., Roumier, T., Blanco, J. A., Ferri, K. F., Barretina, J., Tintignac, L. A., Andreau, K., Perfettini, J. L., Alessandra, A., Nardacci, R., Leduc, P., Ingber, D. E., Druillennec, S., Roques, B., Leibovitch, S. A., Vilella-Bach, M., Chen, J., Este, J. A., Modjtahedi, N., Piacentini, M., and Kroemer, G. Sequential involvement of Cdkl, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J.2002,21:4070-4080.
    112. Chisari, F. V. Unscrambling hepatitis C virus-host interactions. Nature,2005,436: 930-932.
    113. Tran, G. The role of hepatitis C virus in the pathogenesis of hepatocellular carcinoma. Bioscience Horizons,2008,1:167-175.
    114. He, Y. P., Nakao, H., Tan, S. L., Polyak, S. J., Neddermann, P., Vijaysri, S., Jacobs, B. L., and Katze, M. G. Subversion of Cell Signaling Pathways by Hepatitis C Virus Nonstructural 5A Protein via Interaction with Grb2 and P85 Phosphatidylinositol 3-Kinase. J. Virol. 2002,76:9207-9217.
    115. Street, A., Macdonald, A., Crowder, K., and Harris, M. The Hepatitis C Virus NS5A Protein Activates a Phosphoinositide 3-Kinase-dependent Survival Signaling Cascade.J. Biol. Chem. 2004,279,12232-12241.
    116. Mannova, P., and Beretta, L. Activation of the N-Ras-PI3K-Akt-mTOR Pathway by Hepatitis C Virus:Control of Cell Survival and Viral Replication. J. Virol.2005,79, 8742-8749.
    117. Pazienza, V., Clement, S., Pugnale, P., Conzelman, S., Foti, M., Mangia, A., and Negro, F. The Hepatitis C Virus Core Protein of Genotypes 3a and lb Downregulates Insulin Receptor Substrate 1 through Genotype-specific Mechanisms. Hepatology,2007,45: 1164-1171.
    118. Banerjee, S., Saito, K., Ait-Goughoulte, M., Meyer, K., Ray, R. B., and Ray, R. Hepatitis C Virus Core Protein Upregulates Serine Phosphorylation of Insulin Receptor Substrate-1 and Impairs the Downstream Akt/Protein Kinase B Signaling Pathway for Insulin Resistance.J. Virol.2008,82:2606-2612.
    119. Ehrhardt, C., Kardinal, C., Wurzer, W. J., Wolff, T., von Eichel-Streiber, C., Pleschka, S., Planz, O., and Ludwig, S. Racl and PAK1 are upstream of IKK-ε and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Lett.2004,567:230-238.
    120. Ishida, H., Li, K., Yi, M. K., and Lemon, S. M. p21-activated Kinase 1 Is Activated through the Mammalian Target of Rapamycin/p70 S6 Kinase Pathway and Regulates the Replication of Hepatitis C Virus in Human Hepatoma Cells.J. Biol. Chem.2007,282: 11836-11848.
    121. Coito, C., Diamond, D. L., Neddermann, P., Korth, M. J., and Katze, M. G.. High-Throughput Screening of the Yeast Kinome:Identification of Human Serine/Threonine Protein Kinases That Phosphorylate the Hepatitis C Virus NS5A Protein. J.Virol.2004,78:3502-3513.
    122. Matsumoto, Azusa., Ichikawa, T., Nakao, K., Miyaaki, H., Hirano, K., Fujimito, M., Akiyama, M., Miuma, S., Ozawa, E., Shibata, H., Takeshita, Sh., Yamasaki, H., Ikeda, M., Kato, N., and Eguchi, K. Interferon-a-induced mTOR activation is an anti-hepatitis C virus signal via the phosphatidylinositol 3-kinase-Akt-independent pathway.J. Gastroenterol.2009, DOI 10.1007/s00535-009-0075-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700