内质网应激在双氢青蒿素诱导人肝癌HepG2细胞凋亡中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分DHA对肝癌HepG2、前列腺癌PC-3、胃癌SGC7901及结肠癌Caco2细胞增殖抑制的研究
     目的:比较双氢青蒿素(DHA)对四种肿瘤细胞的体外生长抑制作用,以筛选出最敏感的细胞株进行作用机制的研究。
     方法:噻唑蓝(MTT)比色法评价DHA对人肝癌HepG2,前列腺癌PC-3,胃癌SGC7901及结肠癌Caco2细胞的增殖抑制作用;流式细胞术检测DHA对上述四种细胞凋亡率的影响。
     结果:四种细胞的各对照组与DMSO组之间细胞增殖比较无统计学差异(P>0.05);DHA对每种细胞的抑制率与DHA浓度和作用时间正相关(P<0.05),相同时间,HepG2各浓度组的抑制率与其他三种细胞相应浓度组比较有明显差异(P<0.01,除外25μmol/L DHA 24h组P<0.05);作用24h后,每种细胞株各DHA浓度组的细胞凋亡率均明显高于对照组(P<0.01)。四种细胞株中,DHA对HepG2细胞的抑制作用最强,其中DHA(200μmol/L)作用48h时达最高增殖抑制率(86.46±19.65)% , DHA(100μmol/L)作用24时达最高凋亡率(31.74±2.80)%。
     结论:DHA明显抑制四种细胞株的增殖并诱导其凋亡,其中HepG2最为敏感。
     第二部分DHA诱导人肝癌HepG2细胞凋亡启动因素的研究
     目的:探讨DHA诱导人肝癌HepG2细胞凋亡的启动因素。
     方法:用0、50、100和200μmol/L DHA作用HepG2细胞6h、24h后,采用荧光探针2’,7’-二氯二氢荧光黄双乙酸钠(DCFH-DA)及Fluo-3AM装载检测细胞内活性氧(ROS)含量及Ca2+浓度;采用流式细胞仪检测线粒体膜电位(ΔΨm)变化及透射电镜观察DHA作用HepG2后细胞超微结构的变化。
     结果:与对照组相比,DHA作用细胞后,细胞内荧光度值显著增加(P<0.01),且具有明显的浓度与时间依赖性,而具有浓度依赖的胞浆游离Ca2+浓度增加及线粒体膜电位降低均出现在DHA作用24h组;DHA100μmol/L作用24h透射电镜观察,可见大量凋亡细胞及内质网显著扩张。抗氧化剂NAC(5mmol/L)可明显抑制DHA的上述作用。
     结论:DHA明显增加细胞中ROS水平及Ca2+浓度,降低线粒体膜电位,ROS的产生可能位于上游环节。
     第三部分DHA诱导人肝癌HepG2细胞内质网应激凋亡信号转导机制的研究
     目的:研究DHA诱导人肝癌HepG2细胞凋亡的内在作用机制。
     方法:用DHA、DHA+NAC及DHA+SP600125作用HepG2细胞, MTT比色法检测细胞增殖抑制的效果;流式细胞术检测细胞凋亡的情况;扫描电镜观察DHA作用后细胞超微结构的变化;逆转录-聚合酶链反应(RT-PCR)检测CHOP, XBP1及ATF4 mRNA的表达,蛋白印迹技术(Western Blot)及免疫细胞化学检测CHOP, p-JNK, Bax及Bcl-2蛋白的表达。
     结果:DHA对HepG2细胞的增殖抑制率与DHA浓度和作用时间相关(P<0.05),NAC在24h及48h均可抑制DHA的作用,除JNK的特异性抑制剂SP600125在48h高浓度组(50,100,200μmol/L)对DHA的作用没有明显影响外,在其他组中可部分抑制DHA的作用;DHA组24h细胞凋亡率明显高于对照组,且与DHA浓度正相关(P<0.05),NAC及SP600125均可抑制DHA的作用;电镜观察显示,DHA作用后细胞表面微绒毛减少和消失,凋亡细胞可见大小不等球状的突起及凋亡小体,坏死细胞的细胞膜破裂,胞浆外溢;RT-PCR检测发现DHA可上调CHOP, XBP1u、XBP1s及ATF4 mRNA的表达,Western Blot及免疫细胞化学检测发现DHA上调CHOP及Bax蛋白的表达,下调Bcl-2表达,NAC可抑制DHA对上述相关基因与蛋白的调节;Western-Blot在DHA作用6h时检测出JNK的磷酸化,NAC及SP600125均可抑制p-JNK的表达。
     结论:DHA激活UPR的三条信号通路(PERK、ATF6、IRE1),通过激活CHOP, JNK而诱导内质网应激凋亡途径,ROS在这一过程中具有重要的作用。
     第四部分DHA对裸鼠人肝癌HepG2细胞移植瘤生长抑制的研究
     目的:研究DHA对裸鼠人肝癌HepG2移植瘤生长的抑制作用。
     方法:采用皮下接种肝癌HepG2细胞悬液的方法构建裸鼠的移植瘤模型,观察DHA在体内对HepG2细胞的生长抑制作用;逆转录-聚合酶链反应(RT-PCR)及免疫组化检测CHOP、Bax、Bcl-2及p-JNK的表达情况;透射电镜观察肝癌组织超微结构的改变。
     结果:与对照组相比,瘤体积及瘤重量明显降低(P<0.05),抑瘤率达50.91%,而对照组与DHA组裸鼠体重无明显差异(P>0.05);RT-PCR及免疫组化显示DHA可上调肿瘤组织中CHOP、Bax的表达水平,下调Bcl-2的表达,差异有统计学意义(P<0.05),p-JNK在两组中均无表达;透射电镜观察,DHA治疗后,移植瘤组织可见细胞凋亡形态学改变,内质网腔明显扩张、线粒体肿胀。
     结论:DHA可抑制裸鼠人肝癌HepG2细胞移植瘤的生长,内质网应激凋亡途径可能参与了DHA的这一作用。
PART ONE STUDIES ON THE PROLIFERATION INHIBITORY EFFECTS OF DHA ON HUMAN HepG2, PC-3, SGC7901 AND Caco2 CELL LINES
     OBJECTIVE:To compare the inhibitory effects of dihydroartemisinin (DHA) on four human carcinoma cell lines in vitro, and select the most sensitive cell lines for further investigation.
     METHODS: The proliferation inhibition of DHA on human HepG2, PC-3, SGC7901 and Caco2 cell lines was evaluated using MTT chromatometry; Flow cytometry analysis was used to detect the apoptosis of the four cell lines.
     RESULTS: There was no significant difference in proliferation of control and DMSO group of four cell lines (P>0.05). Proliferation inhibitory rate of each cell lines was positively correlated to DHA concentration and treatment time(P<0.05), and inhibitory rates of various DHA concentration groups of HepG2 had significant difference compared with that of other three cell lines at the same treatment time(P<0.01, except for 25μmol/L DHA 24h treatment time P<0.05). The apoptotic rates of each DHA concentration groups after 24h treatment were markedly higher than that of the control groups in four cell lines (P<0.01). DHA had the stongest effect on HepG2 among the four cell lines, with the highest inhibitory rate of (86.46±19.65) % at DHA 200μmol/L for 48 h, and the highest apoptotic rate of (31.74±2.80) % at DHA 100μmol/L for 24 h.
     CONCLUSION: DHA can efficiently inhibit proliferation and induce apoptosis of HepG2, PC-3, SGC7901 and Caco2 cell lines; HepG2 is the most sensitive to DHA among the four cell lines.
     PART TWO STUDIES ON THE INITIATORS OF APOPTOTIC INDUCTION OF DHA ON HUMAN HepG2 CELL LINES
     OBJECTIVE:To investigate the initiators of apoptotic induction of DHA on HepG2 cell lines.
     METHODS: HepG2 cells were treated with 0, 50,100 and 200μmol/L DHA for 6, 24 h. The fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and Fluo-3AM were employed to detecte the levels of reactive oxygen species(ROS) and intracellular calcium concentration, respectively; Flow cytometer was used to measure the mitochondrial membrane potential (ΔΨm), and the ultrastructural changes of HepG2 cells treated with DHA were observed using transmission electron microscope (TEM).
     RESULTS:Compared with control group, intracellular fluorescent intensity markedly increased (P<0.01) after DHA treatment in a time- and concentration-dependent manne; However, the increase of [Ca2+]i and the reduction ofΔΨm, which were concentration-dependent, occurred only in 24h treatment group(P<0.01). After 24h treatment of DHA 100μmol/L, a lot of apoptotic cells as well as significant distention of endoplasmic reticulum lumina were obserbed using TEM. The above effects of DHA could be markedly attenuated by antioxidant N-acetylcysteine (NAC) 5mmol/L.
     CONCLUSION: DHA significantly increases ROS generation and [Ca~(2+)]_i, reduces the level ofΔΨm. ROS generation is probably upstream event.
     PART THREE STUDIES ON ENDOPLASMIC RETICULUM STRESS-INDUCED APOPTOTIC SIGNAL TRANSDUCTION MEDIATED BY DHA IN HUMAN HepG2 CELL LINES
     OBJECTIVE : To study the molecular mechanism of apoptosis induced by DHA in HepG2 cell lines
     METHODS: Human HepG2 cells were treated with DHA, DHA+NAC and DHA+SP600125. The inhibitory effect on cell proliferation was assayed by MTT; Apoptotic induction was measured by Flow cytometry; Ultrastructural changes of HepG2 cells treated with DHA were observed with scanning electron microscope (SEM); The expression of CHOP, XBP1 and ATF4 mRNA were detected using reverse transcription-polymerase chain reaction (RT-PCR); Levels of CHOP, p-JNK, Bax and Bcl-2 protein expression were determined using Western Blot and immunocytochemistry.
     RESULTS: Proliferation inhibitory rate of HepG2 cells treated with DHA correlated with DHA treatment time and concentration (P<0.05). NAC blocked the effect of DHA treatment for both 24h and 48h, which could also be partially attenuated by JNK specific inhibitor SP600125 except for DHA at high concentration ( 50, 100, 200μmol/L) 48h groups; Compared to the control group, the apoptotic rates of HepG2 cells in DHA group were significantly higher and had a positive correlation with DHA concentration(P<0.05). Both NAC and SP600125 could attenuate the DHA effect. SEM showed decreasing and even deminish of microvilli on the cellular surface after DHA treatment, varying sized of ball-shaped membrane blebbing on the cellular surface of apoptotic cells, apoptosis body, broken plasma membranes and cytoplasma outflow in necrotic cells; RT-PCR showed up-regulation of mRNA expression of CHOP, XBP1u, XBP1s and ATF4 by DHA while Western-Blot and immunocytochemistry showed up-regulation of protein expression of CHOP and Bax, and down-regulation of Bcl-2, NAC inhibited the effects of DHA on these genes and protein expression; Phosphorylation of JNK was detected at 6h DHA treatment time by Western-Blot, both NAC and SP600125 blocked the phosphorylation of JNK induced by DHA.
     CONCLUSION: DHA could activate the three signal transduction pathways of UPR (PERK、ATF6、IRE1), and induce the endoplasmic reticulum stress-mediated apoptotic pathway via CHOP and JNK activation. ROS plays an important role in this mechanism.
     PART FOUR STUDIES ON INHIBITION OF HepG2 XENOGRAFT TUMOR IN NUDE MICE
     OBJECTIVE:To investigate the inhibitory effect of DHA on growth of HepG2 xenograft tumor in nude mice.
     METHODS: The nude mice model of human hepatocarcinoma was established by subcutaneous injection with HepG2 cell suspension, and growth inhibition of the xenograft tumor induced by DHA was observed in vivo; Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry were employed to evaluate CHOP, Bax, Bcl-2 and p-JNK expression; Ultrastructural changes of xenograft tumor tissues were observed by transmission electron microscope (TEM).
     RESULTS: Compared to control group, the volume and weight of tumor of DHA group were significantly decreased (P<0.05), and the inhibitory rate was 50.91%. No significant difference in body weight between control and DHA group was recorded; RT-PCR and immunohistochemistry showed the expression of CHOP and Bax were up-regulated, while that of Bcl-2 was down-regulated, and the differences were statistically significant (P<0.05), and no expression of p-JNK in both groups; TEM indicated apoptosis morphological changes including significant distension of endoplasmic reticulum lumina and swelling of mitochondria in xenograft tumor histocytes after DHA treatment.
     CONCLUSION: DHA can inhibit the growth of HepG2 xenograft tumor in nude mice, and endoplasmic reticulum stress-induced apoptosis pathway may be involved in this action of DHA.
引文
[1] O'Regan P, Drummond E. Cancer information needs of people with intellectual disability: a review of the literature [J]. Eur J Oncol Nurs. 2008 Apr;12(2):142-147.
    [2] Higginson IJ, Costantini M. Dying with cancer, living well with advanced cancer [J]. Eur J Cancer. 2008 Jul;44(10):1414-1424.
    [3] Arias JL, López-Viota M, Gallardo V, Adolfina Ruiz M. Chitosan nanoparticles as a new delivery system for the chemotherapy agent tegafur[J]. Drug Dev Ind Pharm. 2010 Mar 27.
    [4] Harijanto PN. Malaria treatment by using artemisinin in indonesia. Acta Med Indones. 2010 Jan;42(1):51-56.
    [5] Kumar N, Singh R, Rawat DS. Tetraoxanes: Synthetic and medicinal chemistry perspective[J]. Med Res Rev. 2009 Dec 21.
    [6] Atemnkeng MA, De Cock K, Plaizier-Vercammen J. Quality control of active ingredients in artemisinin-derivative antimalarials within Kenya and DR Congo. Trop Med Int Health[J]. 2007 Jan;12 (1):68-74.
    [7] Zhou HJ, Wang Z, Li A. Dihydroartemisinin induces apoptosis in human leukemia cells HL60 via downregulation of transferrin receptor expression[J]. Anticancer Drugs. 2008 Mar;19(3):247-255.
    [8] Lu YY, Chen TS, Qu JL, Pan WL, Sun L, Wei XB. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells[J]. J Biomed Sci. 2009 Feb 2; 16:16.
    [9] Willoughby JA Sr, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression[J]. J Biol Chem. 2009 Jan 23; 284(4):2203-2213.
    [10] Sundar SN, Marconett CN, Doan VB, Willoughby JA Sr, Firestone GL. Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells[J]. Carcinogenesis. 2008 Dec;29(12):2252-2258.
    [11] Lai H, Nakase I, Lacoste E, Singh NP, Sasaki T. Artemisinin-transferrin conjugateretards growth of breast tumors in the rat[J]. Anticancer Res. 2009 Oct;29 (10):3807-3810.
    [12] Chen H, Sun B, Pan S, Jiang H, Sun X. Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo[J]. Anticancer Drugs. 2009 Feb;20(2):131-140.
    [13] Disbrow GL, Baege AC, Kierpiec KA, Yuan H, Centeno JA, Thibodeaux CA, Hartmann D, Schlegel R. Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo. Cancer Res[J]. 2005 Dec 1;65 (23):10854-10861.
    [14] Woodrow CJ, Haynes RK, Krishna S. Artemisinins[J]. Postgrad Med J. 2005 Feb;81(952):71-78.
    [15] Longo M, Zanoncelli S, Della Torre P, Rosa F, Giusti A, Colombo P, Brughera M, MazuéG, Olliaro P. Investigations of the effects of the antimalarial drug dihydroartemisinin (DHA) using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) [J]. Reprod Toxicol. 2008 Aug; 25 (4):433-441.
    [16] Lu JJ, Meng LH, Shankavaram UT, Zhu CH, Tong LJ, Chen G, Lin LP, Weinstein JN, Ding J. Dihydroartemisinin accelerates c-MYC oncoprotein degradation and induces apoptosis in c-MYC-overexpressing tumor cells[J]. Biochem Pharmacol. 2010 Mar 3.
    [17] Mercer AE, Maggs JL, Sun XM, Cohen GM, Chadwick J, O'Neill PM, Park BK. Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds[J]. J Biol Chem. 2007; 282(13):9372-9382.
    [18] Tan XW, Xia H, Xu JH, Cao JG. Induction of apoptosis in human liver carcinoma HepG2 cell line by 5-allyl-7-gen-difluoromethylenechrysin[J]. World J Gastroenterol. 2009 ; 15(18):2234-2239
    [19] Namba T, Hoshino T, Tanaka K, Tsutsumi S, Ishihara T, Mima S, Suzuki K, Ogawa S, Mizushima T. Up-regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric carcinoma cells. Mol Pharmacol[J]. 2007; 71(3):860-870.
    [20]邓定安,蔡俊超.具有抗肿瘤活性的青蒿酸衍生物.有机化学[J],1991年11卷5期:540-543
    [21] Efferth T, Briehl MM, Tome ME. Role of antioxidant genes for the activity ofartesunate against tumor cells[J]. Int J Oncol, 2003, (4):1231-1235.
    [22] Singh NP, Lai HC. Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells[J]. Anticancer Res, 2005, 25(6B):4325-4331.
    [23] Lai H, Sasaki T, Singh NP. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds[J]. Expert Opin Ther Targets, 2005, 9(5):995-1007.
    [24] Nakase I, Lai H, Singh NP, Sasaki T. Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation[J]. Int J Pharm. 2008 Apr 16;354(1-2):28-33.
    [25] Chen HH, Zhou HJ, Fang X. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro[J]. Pharmacol Res. 2003 Sep;48 (3):231-236.
    [26] Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line[J]. Nature. 1979 Dec 6;282 (5739):615-616.
    [27] Dannenberg LO, Edenberg HJ. Epigenetics of gene expression in human hepatoma cells: expression profiling the response to inhibition of DNA methylation and histone deacetylation[J]. BMC Genomics. 2006 Jul 19; 7:181.
    [28] Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old and new lines--part 1[J]. J Urol. 2005 Feb;173 (2):342-359.
    [29]郭玉庆,董临江,吴茂成,杨清秀,高世同,朱兆华.胃癌细胞株SGC-790l及MGC-803中SURVIVIN基因转录与表达的鉴定[J].西安交通大学学报:医学版2003,24(2):154-156,163
    [30] Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice[J]. J Natl Cancer Inst. 1977 Jul;59(1):221-226.
    [31] Malicki S, Winiarski M, Matlok M, Kostarczyk W, Guzdek A, Konturek PC. IL-6 and IL-8 responses of colorectal cancer in vivo and in vitro cancer cells subjected to simvastatin[J]. J Physiol Pharmacol. 2009 Dec; 60(4):141-146.
    [32] Dai JY, Yang JL, Li C. Transport and metabolism of flavonoids from Chinese herbal remedy Xiaochaihu- tang across human intestinal Caco-2 cell monolayers[J]. Acta Pharmacol Sin. 2008 Sep;29 (9):1086-1093.
    [33] Fabregat I. Dysregulation of apoptosis in hepatocellular carcinoma cells[J]. WorldJ Gastroenterol. 2009 Feb 7;15 (5):513-520.
    [34] Kim SJ, Kim MS, Lee JW, Lee CH, Yoo H, Shin SH, Park MJ, Lee SH. Dihydroartemisinin enhances radiosensitivity of human glioma cells in vitro[J]. J Cancer Res Clin Oncol. 2006 Feb;132 (2):129-135.
    [35] Hosoya K, Murahari S, Laio A, London CA, Couto CG, Kisseberth WC. Biological activity of dihydroartemisinin in canine osteosarcoma cell lines[J]. Am J Vet Res. 2008 Apr;69 (4):519-526.
    [36] Wu XH, Zhou HJ, Lee J. Dihydroartemisinin inhibits angiogenesis induced by multiple myeloma RPMI8226 cells under hypoxic conditions via downregulation of vascular endothelial growth factor expression and suppression of vascular endothelial growth factor secretion[J]. Anticancer Drugs. 2006 Aug;17(7):839-848.
    [37] Efferth T. Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin--from bench to bedside[J]. Planta Med. 2007 Apr;73(4):299-309.
    [1] Taranto AG, de Mesquita Carneiro JW, de Araujo MT. DFT study of the reductive decomposition of artemisinin[J]. Bioorg Med Chem. 2006 Mar 1;14(5):1546-1557.
    [2] Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FC, Chollet J, Dong Y, Dorn A, Hunziker D, Matile H, McIntosh K, Padmanilayam M, Santo Tomas J, Scheurer C, Scorneaux B, Tang Y, Urwyler H, Wittlin S, Charman WN. Identification of an antimalarial synthetic trioxolane drug development candidate[J]. Nature. 2004 Aug 19;430(7002):900-904.
    [3] Tahar R, Ringwald P, Basco LK. Molecular epidemiology of malaria in Cameroon. XXVIII. In vitro activity of dihydroartemisinin against clinical isolates of Plasmodium falciparum and sequence analysis of the P. falciparum ATPase 6 gene[J]. Am J Trop Med Hyg. 2009 Jul;81(1):13-18.
    [4] Stockwin LH, Han B, Yu SX, Hollingshead MG, ElSohly MA, Gul W, Slade D, Galal AM, Newton DLArtemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction[J]. Int J Cancer. 2009 Sep 15;125(6):1266-1275.
    [5] Toovey S, Bustamante LY, Uhlemann AC, East JM, Krishna S Effect of artemisinins and amino alcohol partner antimalarials on mammalian sarcoendoplasmic reticulum calcium adenosine triphosphatase activity[J]. Basic Clin Pharmacol Toxicol. 2008 Sep;103(3):209-213.
    [6] Chen Y, Gibson SB. Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy[J]. 2008 Feb 16;4(2):246-248.
    [7] Hool LC. Reactive oxygen species in cardiac signalling: from mitochondria to plasma membrane ion channels[J]. Clin Exp Pharmacol Physiol. 2006 Jan-Feb;33(1-2):146-151.
    [8] Tabner BJ, El-Agnaf OM, Turnbull S, German MJ, Paleologou KE, Hayashi Y,Cooper LJ, Fullwood NJ, Allsop D. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia[J]. J Biol Chem. 2005 Oct 28;280(43):35789-35792.
    [9] Khaitan D, Dwarakanath BS. Endogenous and induced oxidative stress in multi-cellular tumour spheroids: implications for improving tumour therapy[J]. Indian J Biochem Biophys. 2009 Feb;46(1):16-24.
    [10] Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention [J]. Hear Res. 2007 Apr;226(1-2):157-167.
    [11] Tsai-Turton M, Luderer U. Opposing effects of glutathione depletion and follicle-stimulating hormone on reactive oxygen species and apoptosis in cultured preovulatory rat follicles. Endocrinology[J]. 2006 Mar;147(3):1224-1236.
    [12] Suzuki Y, Inoue T, Ra C. L-type Ca2+ channels: a new player in the regulation of Ca2+ signaling, cell activation and cell survival in immune cells[J]. Mol Immunol. 2010 Jan;47(4):640-648.
    [13] Cerella C, Diederich M, Ghibelli L.The dual role of calcium as messenger and stressor in cell damage, death, and survival[J]. Int J Cell Biol. 2010;2010:546163.
    [14] Jin S, Zhang QY, Kang XM, Wang JX, Zhao WH. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway[J]. Ann Oncol. 2010 Feb;21(2):263-268.
    [15] Tuan TC, Hsu TG, Fong MC, Hsu CF, Tsai KK, Lee CY, Kong CW. Deleterious effects of short-term, high-intensity exercise on immune function: evidence from leucocyte mitochondrial alterations and apoptosis[J]. Br J Sports Med. 2008 Jan;42(1):11-15.
    [16] Das A, Banik NL, Ray SK. Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells[J]. Cancer. 2007; 110(5):1083-1095.
    [17] Namba T, Hoshino T, Tanaka K, Tsutsumi S, Ishihara T, Mima S, Suzuki K, Ogawa S, Mizushima T. Up-regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric carcinoma cells[J]. Mol Pharmacol. 2007; 71(3):860-870.
    [18] Mima S, Tsutsumi S, Ushijima H, Takeda M, Fukuda I, Yokomizo K, Suzuki K,Sano K, Nakanishi T, Tomisato W, Tsuchiya T, Mizushima T. Induction of claudin-4 by nonsteroidal anti-inflammatory drugs and its contribution to their chemopreventive effect[J]. Cancer Res. 2005; 65(5):1868-1876.
    [19] Shang XJ, Yao G, Ge JP, Sun Y, Teng WH, Huang YF. Procyanidin induces apoptosis and necrosis of prostate cancer cell line PC-3 in a mitochondrion-dependent manner[J]. J Androl. 2009 Mar-Apr;30(2):122-126.
    [20] Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening[J]. J Biol Chem. 2009; 284(31):20796-20803.
    [21] Weiland ME, McArthur AG, Morrison HG, Sogin ML, Sv?rd SG. Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia[J]. Int J Parasitol. 2005 May;35(6):617-626.
    [22] Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, Ekala MT, Bouchier C, Esterre P, Fandeur T, Mercereau-Puijalon O. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6[J]. Lancet. 2005 Dec 3;366(9501):1960-1963.
    [23] Sarciron ME, Saccharin C, Petavy AF, Peyron F. Effects of artesunate, dihydroartemisinin, and an artesunate-dihydroartemisinin combination against Toxoplasma gondii[J]. Am J Trop Med Hyg. 2000 Jan;62(1):73-76.
    [24] Ittarat W, Sreepian A, Srisarin A, Pathepchotivong K. Effect of dihydroartemisinin on the antioxidant capacity of P. falciparum-infected erythrocytes. Southeast Asian J Trop Med Public Health[J]. 2003 Dec;34(4):744-750.
    [25] Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ[J]. 2006 Mar;13(3):363-373.
    [26] Wakana Y, Takai S, Nakajima K, Tani K, Yamamoto A, Watson P, Stephens DJ, Hauri HP, Tagaya M. Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated Degradation. Mol Biol Cell[J]. 2008 May;19(5):1825-1836.
    [27] Chami M, Oulès B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Bréchot P. Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress[J]. Mol Cell. 2008; 32(5):641-651.
    [28] Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus[J]. Endocr Rev. 2008; 29(1):42-61.
    [29] Mu D, Zhang W, Chu D, Liu T, Xie Y, Fu E, Jin F. The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells[J]. Cancer Chemother Pharmacol. 2008; 61(4):639-645.
    [30] Lebiedzinska M, Szabadkai G, Jones AW, Duszynski J, Wieckowski MR. Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles[J]. Int J Biochem Cell Biol. 2009 Oct;41(10):1805-1816.
    [31] Hassan HT. Ajoene (natural garlic compound): a new anti-leukaemia agent for AML therapy[J]. Leuk Res. 2004 Jul;28(7):667-671.
    [32] McGill A, Frank A, Emmett N, Turnbull DM, Birch-Machin MA, Reynolds NJ. The anti-psoriatic drug anthralin accumulates in keratinocyte mitochondria, dissipates mitochondrial membrane potential, and induces apoptosis through a pathway dependent on respiratory competent mitochondria[J]. FASEB J. 2005 Jun;19(8):1012-1014.
    [33] Wu J, Kaufman RJ. From acute ER stress to physiological roles of the Unfolded Protein Response[J]. Cell Death Differ. 2006 Mar;13(3):374-384.
    [34] Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-529.
    [35] Kawaai K, Hisatsune C, Kuroda Y, Mizutani A, Tashiro T, Mikoshiba K. 80K-H interacts with inositol 1,4,5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity[J]. J Biol Chem. 2009 Jan 2;284(1):372-380.
    [36] Wozniak AL, Wang X, Stieren ES, Scarbrough SG, Elferink CJ, Boehning D. Requirement of biphasic calcium release from the endoplasmic reticulum for Fas-mediated apoptosis[J]. J Cell Biol. 2006 Dec 4;175(5):709-714.
    [1] Schattenberg JM, Galle PR, Schuchmann M. Apoptosis in liver disease[J]. Liver Int. 2006 Oct;26(8):904-911.
    [2] Formigli L, Conti A, Lippi D."Falling leaves": a survey of the history of apoptosis[J]. Minerva Med. 2004 Apr;95(2):159-164.
    [3] Schoenberger J, Bauer J, Moosbauer J, Eilles C, Grimm D.Innovative strategies in in vivo apoptosis imaging[J]. Curr Med Chem. 2008;15(2):187-194.
    [4] Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson ME, Tabas I. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways[J]. J Clin Invest. 2009 Oct;119(10):2925-41. doi: 10.1172/JCI38857.
    [5] Kuwano K. Epithelial cell apoptosis and lung remodeling[J]. Cell Mol Immunol. 2007 Dec;4(6):419-429.
    [6] Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program[J]. Cell Death Differ. 2004 Apr;11(4):372-380.
    [7] Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis[J].Circulation. 2004 Aug 10;110(6):705-12.
    [8] Isodono K, Takahashi T, Imoto H, Nakanishi N, Ogata T, Asada S, Adachi A, Ueyama T, Oh H, Matsubara H.PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes[J].PLoS One. 2010 Mar 18;5(3):e9746.
    [9] Fu HY, Minamino T, Tsukamoto O, Sawada T, Asai M, Kato H, Asano Y, Fujita M, Takashima S, Hori M, Kitakaze M.Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition[J]. Cardiovasc Res. 2008 Sep 1;79(4):600-610.
    [10] Lu YY, Chen TS, Qu JL, Pan WL, Sun L, Wei XB. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1cells[J]. J Biomed Sci. 2009 Feb 2;16:16.
    [11] Disbrow GL, Baege AC, Kierpiec KA, Yuan H, Centeno JA, Thibodeaux CA, Hartmann D, Schlegel R. Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo[J]. Cancer Res. 2005 Dec 1;65(23):10854-10861.
    [12] He Q, Shi J, Shen XL, An J, Sun H, Wang L, Hu YJ, Sun Q, Fu LC, Sheikh MS, Huang Y. Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells[J]. Cancer Biol Ther. 2010 May 18;9(10).
    [13] He Q, Shi J, Jones S, An J, Liu Y, Huang Y, Sheikh MS.Smac deficiency affects endoplasmic reticulum stress-induced apoptosis in human colon cancer cells[J]. Mol Cell Pharmacol (Windsor Mill). 2009;1(1):23-28.
    [14] Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis[J]. Science. 2003 Apr 4;300(5616):135-9.
    [15] Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FC, Chollet J, Dong Y, Dorn A, Hunziker D, Matile H, McIntosh K, Padmanilayam M, Santo Tomas J, Scheurer C, Scorneaux B, Tang Y, Urwyler H, Wittlin S, Charman WN. Identification of an antimalarial synthetic trioxolane drug development candidate[J]. Nature. 2004 Aug 19;430(7002):900-904.
    [16] Tahar R, Ringwald P, Basco LK. Molecular epidemiology of malaria in Cameroon. XXVIII. In vitro activity of dihydroartemisinin against clinical isolates of Plasmodium falciparum and sequence analysis of the P. falciparum ATPase 6 gene[J]. Am J Trop Med Hyg. 2009 Jul;81(1):13-18.
    [17] Lee GH, Kim HK, Chae SW, Kim DS, Ha KC, Cuddy M, Kress C, Reed JC, Kim HR, Chae HJ. Bax inhibitor-1 regulates endoplasmic reticulum stress-associated reactive oxygen species and heme oxygenase-1 expression[J]. J Biol Chem. 2007 Jul 27;282(30):21618-21628.
    [18] Mercer AE, Maggs JL, Sun XM, Cohen GM, Chadwick J, O'Neill PM, Park BK. Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds[J]. J Biol Chem. 2007; 282(13):9372-9382.
    [19] Tan XW, Xia H, Xu JH, Cao JG. Induction of apoptosis in human liver carcinomaHepG2 cell line by 5-allyl-7-gen-difluoromethylenechrysin[J]. World J Gastroenterol. 2009 ; 15(18):2234-2239.
    [20] Namba T, Hoshino T, Tanaka K, Tsutsumi S, Ishihara T, Mima S, Suzuki K, Ogawa S, Mizushima T. Up-regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric carcinoma cells[J]. Mol Pharmacol. 2007; 71(3):860-870.
    [21] Leung YF, Tam PO, Lee WS, Lam DS, Yam HF, Fan BJ, Tham CC, Chua JK, Pang CP. The dual role of dexamethasone on anti-inflammation and outflow resistance demonstrated in cultured human trabecular meshwork cells[J]. Mol Vis. 2003 Sep 5;9:425-439.
    [22] Davenport EL, Moore HE, Dunlop AS, Sharp SY, Workman P, Morgan GJ, Davies FE. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells[J]. Blood. 2007 Oct 1;110(7):2641-2649.
    [23] Szczesna-Skorupa E, Chen CD, Liu H, Kemper B. Gene expression changes associated with the endoplasmic reticulum stress response induced by microsomal cytochrome p450 overproduction[J]. J Biol Chem. 2004 Apr 2;279(14):13953-13961.
    [24] Ramos-Casta?eda J, Park YN, Liu M, Hauser K, Rudolph H, Shull GE, Jonkman MF, Mori K, Ikeda S, Ogawa H, Arvan P. Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress[J]. J Biol Chem. 2005 Mar 11;280(10):9467-9473.
    [25] Mertani HC, Zhu T, Goh EL, Lee KO, Morel G, Lobie PE. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival[J]. J Biol Chem. 2001; 276(24):21464-21475.
    [26] Kim SJ, Kim MS, Lee JW, Lee CH, Yoo H, Shin SH, Park MJ, Lee SH. Dihydroartemisinin enhances radiosensitivity of human glioma cells in vitro[J]. J Cancer Res Clin Oncol. 2006; 132(2):129-135.
    [27] Mu D, Zhang W, Chu D, Liu T, Xie Y, Fu E, Jin F. The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells[J]. Cancer Chemother Pharmacol. 2008; 61(4):639-645.
    [28] Kim J, Choi TG, Ding Y, Kim Y, Ha KS, Lee KH, Kang I, Ha J, Kaufman RJ, Lee J, Choe W, Kim SS. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress[J]. J Cell Sci. 2008; 121(Pt 21):3636-3648.
    [29] Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus[J]. Endocr Rev. 2008; 29(1):42-61.
    [30] Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha[J]. Science. 2006 Apr 28;312(5773):572-576.
    [31] Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P. IRE1 signaling affects cell fate during the unfolded protein response[J]. Science. 2007 Nov 9;318(5852):944-949.
    [32] Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ. 2004 Apr;11(4):381-389.
    [33] Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response[J].Physiology (Bethesda). 2007 Jun;22:193-201.
    [34] Xue Y, Daly A, Yngvadottir B, Liu M, Coop G, Kim Y, Sabeti P, Chen Y, Stalker J, Huckle E, Burton J, Leonard S, Rogers J, Tyler-Smith C.Spread of an inactive form of caspase-12 in humans is due to recent positive selection[J].Am J Hum Genet. 2006 Apr;78(4):659-670.
    [35] Bian ZM, Elner SG, Elner VM. Regulated expression of caspase-12 gene in human retinal pigment epithelial cells suggests its immunomodulating role[J]. Invest Ophthalmol Vis Sci. 2008 Dec;49(12):5593-5601.
    [36] Wu J, Kaufman RJ. From acute ER stress to physiological roles of the Unfolded Protein Response[J]. Cell Death Differ. 2006 Mar;13(3):374-384.
    [37] Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-529.
    [38] Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control[J]. Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11.
    [39] Klann E, Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity[J]. Nat Rev Neurosci. 2004 Dec;5(12):931-942.
    [40] Thuerauf DJ, Morrison L, Glembotski CC. Opposing roles for ATF6alpha andATF6beta in endoplasmic reticulum stress response gene induction[J]. J Biol Chem. 2004 May 14;279(20):21078-21084.
    [41] Dale E. Bredesen, Rammohan V. Rao & Patrick MehlenCell death in the nervous system[J]. Nature 443, 796-802(19 October 2006)
    [42] Baltzis D, Pluquet O, Papadakis AI, Kazemi S, Qu LK, Koromilas AE. The eIF2alpha kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53[J]. J Biol Chem. 2007 Oct 26;282(43):31675-31687.
    [43] Pillai S. Birth pangs: the stressful origins of lymphocytes[J]. J Clin Invest. 2005 Feb;115 (2):224-227.
    [44] Zhou J, Liu CY, Back SH, Clark RL, Peisach D, Xu Z, Kaufman RJ. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response[J]. Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14343-14348.
    [45] Ma Y, Hendershot LM. The role of the unfolded protein response in tumour development: friend or foe? [J] Nat Rev Cancer. 2004 Dec;4(12):966-977.
    [46] Gotoh T, Mori M.Nitric oxide and endoplasmic reticulum stress[J]. Arterioscler Thromb Vasc Biol. 2006 Jul;26(7):1439-1446.
    [47] Su RY, Chi KH, Huang DY, Tai MH, Lin WW. 15-deoxy-Delta12,14-prostaglandin J2 up-regulates death receptor 5 gene expression in HCT116 cells: involvement of reactive oxygen species and C/EBP homologous transcription factor gene transcription[J]. Mol Cancer Ther. 2008; 7(10):3429-3440.
    [48] Mak BC, Wang Q, Laschinger C, Lee W, Ron D, Harding HP, Kaufman RJ, Scheuner D, Austin RC, McCulloch CA. Novel function of perk as a mediator of force-induced apoptosis[J]. J Biol Chem. 2008 Jun 11.
    [49] Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P. Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation[J]. J Biol Chem. 2004 Feb 13;279(7):5288-5297.
    [50] Endo M, Oyadomari S, Suga M, Mori M, Gotoh T.The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice[J]. J Biochem. 2005 Oct;138(4):501-7.
    [51] Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmicreticulum stress-induced apoptosis[J]. EMBO Rep. 2006 Sep;7(9):880-885.
    [52] Schapansky J, Olson K, Van Der Ploeg R, Glazner G. NF-kappaB activated by ER calcium release inhibits Abeta-mediated expression of CHOP protein: enhancement by AD-linked mutant presenilin 1[J]. Exp Neurol. 2007 Dec;208(2):169-176.
    [53] Schafer B, Quispe J, Choudhary V, Chipuk JE, Ajero TG, Du H, Schneiter R, Kuwana T. Mitochondrial outer membrane proteins assist Bid in Bax-mediated lipidic pore formation[J]. Mol Biol Cell. 2009 Apr;20(8):2276-2285.
    [54] Criddle DN, Gerasimenko JV, Baumgartner HK, Jaffar M, Voronina S, Sutton R, Petersen OH, Gerasimenko OV. Calcium signalling and pancreatic cell death: apoptosis or necrosis? [J] Cell Death Differ. 2007 Jul;14(7):1285-1294.
    [55] Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum[J]. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):105-110.
    [56] Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo H. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1[J]. Mol Cell Biol. 2007 Dec;27(23):8152-8163.
    [57] Takeda K, Shimozono R, Noguchi T, Umeda T, Morimoto Y, Naguro I, Tobiume K, Saitoh M, Matsuzawa A, Ichijo H. Apoptosis signal-regulating kinase (ASK) 2 functions as a mitogen-activated protein kinase kinase kinase in a heteromeric complex with ASK1[J]. J Biol Chem. 2007 Mar 9;282(10):7522-7531.
    [58] Li L, Feng Z, Porter AG. JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells[J]. J Biol Chem. 2004 Feb 6;279(6):4058-4065.
    [1] Llovet JM, Lok A. Hepatitis B virus genotype and mutants: risk factors for hepatocellular carcinoma[J]. J Natl Cancer Inst. 2008 Aug 20;100(16):1121-1123.
    [2]汤钊猷肝癌临床研究之我见.中华肝脏病杂志, 2006,14(7):481-482.
    [3] Tanwar S, Khan SA, Grover VP, Gwilt C, Smith B, Brown A. Liver transplantation for hepatocellular carcinoma. World J Gastroenterol. 2009 Nov 28;15(44):5511-6.
    [4] Jain S, Singhal S, Lee P, Xu R. Molecular genetics of hepatocellular neoplasia[J]. Am J Transl Res. 2010 Jan 23;2(1):105-118.
    [5]汤钊猷.肝癌临床研究的展望.中国现代普通外科进展.2009,12(4):277-278.
    [6] Caldwell S, Park SH. The epidemiology of hepatocellular cancer: from the perspectives of public health problem to tumor biology[J]. J Gastroenterol. 2009;44 Suppl 19:96-101.
    [7] Nam W, Tak J, Ryu JK, Jung M, Yook JI, Kim HJ, Cha IH. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells[J]. Head Neck. 2007 Apr;29(4):335-340.
    [8] Nakase I, Gallis B, Takatani-Nakase T, Oh S, Lacoste E, Singh NP, Goodlett DR, Tanaka S, Futaki S, Lai H, Sasaki T. Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis[J]. Cancer Lett. 2009 Feb 18;274(2):290-298.
    [9] Lu YY, Chen TS, Qu JL, Pan WL, Sun L, Wei XB. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells[J].J Biomed Sci. 2009 Feb 2;16:16
    [10] Michaelis M, Kleinschmidt MC, Barth S, Rothweiler F, Geiler J, Breitling R, Mayer B, Deubzer H, Witt O, Kreuter J, Doerr HW, Cinatl J, Cinatl J Jr. Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines.Biochem Pharmacol[J]. 2010 Jan 15;79(2):130-136.
    [11] Lai H, Sasaki T, Singh NP. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds[J]. Expert Opin Ther Targets, 2005, 9(5):995-1007.
    [12] Woodrow CJ, Haynes RK, Krishna S. Artemisinins[J]. Postgrad Med J. 2005Feb;81(952):71-78.
    [13] Huang XJ, Li CT, Zhang WP, Lu YB, Fang SH, Wei EQ. Dihydroartemisinin potentiates the cytotoxic effect of temozolomide in rat C6 glioma cells[J]. Pharmacology. 2008;82(1):1-9.
    [14] Zhang S, Gerhard GS. Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target[J]. PLoS One. 2009 Oct 28;4(10):e7472.
    [15] Disbrow GL, Baege AC, Kierpiec KA, Yuan H, Centeno JA, Thibodeaux CA, Hartmann D, Schlegel R. Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo[J]. Cancer Res. 2005 Dec 1;65(23):10854-10861.
    [16] Chen T, Li M, Zhang R, Wang H. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy[J]. J Cell Mol Med. 2009 Jul;13(7):1358-1370.
    [17] Du JH, Zhang HD, Ma ZJ, Ji KM. Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo[J]. Cancer Chemother Pharmacol. 2010 Apr;65(5):895-902.
    [18] Singh RP, Deep G, Blouin MJ, Pollak MN, Agarwal R.Silibinin suppresses in vivo growth of human prostate carcinoma PC-3 tumor xenograft[J]. Carcinogenesis. 2007 Dec;28(12):2567-2574.
    [19] Wiedemann GJ, Siemens HJ, Mentzel M, Biersack A, W?ssmann W, Knocks D, Weiss C, Wagner T.Effects of temperature on the therapeutic efficacy and pharmacokinetics of ifosfamide[J]. Cancer Res. 1993 Sep 15;53(18):4268-4272.
    [20]王顺官,王筱婧,李琳,徐江平.灵芝孢子粉对人肝癌细胞HepG2及裸鼠移植瘤生长的抑制作用[J].世界华人消化杂志, 2008,16(10):1114-1118.
    [21] Willoughby JA Sr, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression[J]. J Biol Chem. 2009 Jan 23; 284(4):2203-2213.
    [22] Lai H, Nakase I, Lacoste E, Singh NP, Sasaki T. Artemisinin-transferrin conjugate retards growth of breast tumors in the rat[J]. Anticancer Res. 2009 Oct;29 (10):3807-3810.
    [23] Chen H, Sun B, Pan S, Jiang H, Sun X. Dihydroartemisinin inhibits growth ofpancreatic cancer cells in vitro and in vivo[J]. Anticancer Drugs. 2009 Feb;20(2):131-140.
    [24] Woodrow CJ, Haynes RK, Krishna S. Artemisinins[J]. Postgrad Med J. 2005 Feb;81(952):71-78.
    [25] Longo M, Zanoncelli S, Della Torre P, Rosa F, Giusti A, Colombo P, Brughera M, MazuéG, Olliaro P. Investigations of the effects of the antimalarial drug dihydroartemisinin (DHA) using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) [J]. Reprod Toxicol. 2008 Aug; 25 (4):433-441.
    [26] Taranto AG, de Mesquita Carneiro JW, de Araujo MT. DFT study of the reductive decomposition of artemisinin[J]. Bioorg Med Chem. 2006 Mar 1;14(5):1546-1557.
    [27] Lai H, Sasaki T, Singh NP. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds[J]. Expert Opin Ther Targets, 2005, 9(5):995-1007.
    [28] Nakase I, Lai H, Singh NP, Sasaki T. Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation[J]. Int J Pharm. 2008 Apr 16;354(1-2):28-33.
    [1] Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death[J]. Cell Death Differ. 2006 Mar;13(3):363-373.
    [2] Wakana Y, Takai S, Nakajima K, Tani K, Yamamoto A, Watson P, Stephens DJ, Hauri HP, Tagaya M. Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated Degradation[J]. Mol Biol Cell. 2008 May;19(5):1825-1836.
    [3] Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response.Physiology (Bethesda) [J]. 2007 Jun;22:193-201.
    [4] Guérin R, Arseneault G, Dumont S, Rokeach LA. Calnexin is involved in apoptosis induced by endoplasmic reticulum stress in the fission yeast[J]. Mol Biol Cell. 2008 Oct;19(10):4404-4420.
    [5] Townsend DM. S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response[J]. Mol Interv. 2007 Dec;7(6):313-324.
    [6] Gotoh T, Mori M.Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol[J]. 2006 Jul;26(7):1439-1446.
    [7] Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis[J]. EMBO Rep. 2006 Sep;7(9):880-885.
    [8] Mak BC, Wang Q, Laschinger C, Lee W, Ron D, Harding HP, Kaufman RJ, Scheuner D, Austin RC, McCulloch CA. Novel function of perk as a mediator of force-induced apoptosis[J]. J Biol Chem. 2008 Jun 11.
    [9] Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease[J]. Physiol Rev. 2006 Oct;86(4):1133-1149.
    [10] Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ. 2004 Apr;11(4):381-389.
    [11] Shen Y, Hendershot LM. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates[J]. Mol Biol Cell. 2005 Jan;16(1):40-50.
    [12] Wu J, Kaufman RJ. From acute ER stress to physiological roles of the Unfolded Protein Response[J]. Cell Death Differ. 2006 Mar;13(3):374-384.
    [13] Ma Y, Hendershot LM. The role of the unfolded protein response in tumour development: friend or foe? [J] Nat Rev Cancer. 2004 Dec;4(12):966-977.
    [14] Klann E, Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity[J]. Nat Rev Neurosci. 2004 Dec;5(12):931-942.
    [15] Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control[J]. Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11.
    [16] Proud CG. eIF2 and the control of cell physiology[J]. Semin Cell Dev Biol. 2005 Feb;16(1):3-12.
    [17] Ito T, Marintchev A, Wagner G. Solution structure of human initiation factor eIF2alpha reveals homology to the elongation factor eEF1B[J]. Structure. 2004 Sep;12(9):1693-1704.
    [18] Roll-Mecak A, Alone P, Cao C, Dever TE, Burley SK. X-ray structure of translation initiation factor eIF2gamma: implications for tRNA and eIF2alpha binding[J]. J Biol Chem. 2004 Mar 12;279(11):10634-10642.
    [19] Dey M, Cao C, Sicheri F, Dever TE. Conserved intermolecular salt bridge required for activation of protein kinases PKR, GCN2, and PERK[J]. J Biol Chem. 2007 Mar 2;282(9):6653-6660.
    [20] Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-529.
    [21] Pillai S. Birth pangs: the stressful origins of lymphocytes[J]. J Clin Invest. 2005 Feb;115(2):224-227.
    [22] Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells[J]. Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-11274.
    [23] Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum[J]. Genes Dev. 2004 Dec 15;18(24):3066-3077.
    [24] Minami K, Tambe Y, Watanabe R, Isono T, Haneda M, Isobe K, Kobayashi T, Hino O, Okabe H, Chano T, Inoue H. Suppression of viral replication by stress-inducible GADD34 protein via the mammalian serine/threonine protein kinase mTOR pathway[J]. J Virol. 2007 Oct;81(20):11106-11115.
    [25] Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D. Stress-induced gene expression requires programmed recovery from translational repression[J]. EMBO J. 2003 Mar 3;22(5):1180-1187.
    [26] Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response[J]. J Cell Biol. 2004 Oct 11;167(1):27-33.
    [27] Shen J, Prywes R. ER stress signaling by regulated proteolysis of ATF6[J]. Methods. 2005 Apr;35(4):382-389.
    [28] Thuerauf DJ, Morrison L, Glembotski CC. Opposing roles for ATF6alpha and ATF6beta in endoplasmic reticulum stress response gene induction[J]. J Biol Chem. 2004 May 14;279(20):21078-21084.
    [29] Gjymishka A, Su N, Kilberg MS. Transcriptional induction of the human asparagine synthetase gene during the unfolded protein response does not require the ATF6 and IRE1/XBP1 arms of the pathway[J]. Biochem J. 2009 Feb 1;417(3):695-703.
    [30] Dale E. Bredesen, Rammohan V. Rao & Patrick MehlenCell death in the nervous system[J]. Nature 443, 796-802
    [31] Groenendyk J, Michalak M. Endoplasmic reticulum quality control and apoptosis[J]. Acta Biochim Pol. 2005;52(2):381-395.
    [32] Baltzis D, Pluquet O, Papadakis AI, Kazemi S, Qu LK, Koromilas AE. The eIF2alpha kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53[J]. J Biol Chem. 2007 Oct 26;282(43):31675-31687.
    [33] Zhou J, Liu CY, Back SH, Clark RL, Peisach D, Xu Z, Kaufman RJ. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response[J]. Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14343-14348.
    [34] Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K. A time-dependent phase shift in the mammalian unfolded protein response[J]. Dev Cell. 2003 Feb;4(2):265-271.
    [35] Nagai H, Noguchi T, Takeda K, Ichijo H. Pathophysiological roles of ASK1-MAP kinase signaling pathways[J]. J Biochem Mol Biol. 2007 Jan 31;40(1):1-6.
    [36] Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis[J]. J Cell Biol. 2000 Aug 21;150(4):887-894.
    [37] Oono K, Yoneda T, Manabe T, Yamagishi S, Matsuda S, Hitomi J, Miyata S,Mizuno T, Imaizumi K, Katayama T, Tohyama M. JAB1 participates in unfolded protein responses by association and dissociation with IRE1[J]. Neurochem Int. 2004 Oct;45(5):765-772.
    [38] Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P. Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation[J]. J Biol Chem. 2004 Feb 13;279(7):5288-5297.
    [39] Smith MI, Deshmukh M. Endoplasmic reticulum stress-induced apoptosis requires bax for commitment and Apaf-1 for execution in primary neurons[J]. Cell Death Differ. 2007 May;14(5):1011-1019.
    [40] Ortis F, Cardozo AK, Crispim D, St?rling J, Mandrup-Poulsen T, Eizirik DL. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-kappaB activation[J]. Mol Endocrinol. 2006 Aug;20(8):1867-1879.
    [41] Su RY, Chi KH, Huang DY, Tai MH, Lin WW. 15-deoxy-Delta12,14- prostaglandin J2 up-regulates death receptor 5 gene expression in HCT116 cells: involvement of reactive oxygen species and C/EBP homologous transcription factor gene transcription[J]. Mol Cancer Ther. 2008; 7(10):3429-3440.
    [42] Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far[J]. Ann N Y Acad Sci. 2003 Dec;1010:186-194.
    [43] Schapansky J, Olson K, Van Der Ploeg R, Glazner G. NF-kappaB activated by ER calcium release inhibits Abeta-mediated expression of CHOP protein: enhancement by AD-linked mutant presenilin 1[J]. Exp Neurol. 2007 Dec;208(2):169-176.
    [44] Schafer B, Quispe J, Choudhary V, Chipuk JE, Ajero TG, Du H, Schneiter R, Kuwana T. Mitochondrial outer membrane proteins assist Bid in Bax-mediated lipidic pore formation[J]. Mol Biol Cell. 2009 Apr;20(8):2276-2285.
    [45] Criddle DN, Gerasimenko JV, Baumgartner HK, Jaffar M, Voronina S, Sutton R, Petersen OH, Gerasimenko OV. Calcium signalling and pancreatic cell death: apoptosis or necrosis? [J] Cell Death Differ. 2007 Jul;14(7):1285-1294.
    [46] Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum[J]. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):105-110.
    [47] Anding AL, Chapman JS, Barnett DW, Curley RW Jr, Clagett-Dame M. The unhydrolyzable fenretinide analogue 4-hydroxybenzylretinone induces the proapoptotic genes GADD153 (CHOP) and Bcl-2-binding component 3 (PUMA) and apoptosis that is caspase- dependent and independent of the retinoic acid receptor[J]. Cancer Res. 2007 Jul 1;67(13):6270-6277.
    [48] Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death[J]. EMBO J. 2005 Mar 23;24(6):1243-1255.
    [49] Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis[J]. J Cell Biol. 2009 Sep 21;186(6):783-792.
    [50] Yasuda T, Yoshida T, Goda AE, Horinaka M, Yano K, Shiraishi T, Wakada M, Mizutani Y, Miki T, Sakai T. Anti-gout agent allopurinol exerts cytotoxicity to human hormone-refractory prostate cancer cells in combination with tumor necrosis factor-related apoptosis-inducing ligand[J]. Mol Cancer Res. 2008 Dec;6(12):1852-1860.
    [51] Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells[J]. J Biol Chem. 2004 Oct 29;279(44):45495-45502.
    [52] Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell. 2000 Oct 13;103(2):239-252.
    [53] Guo C, Whitmarsh AJ. The beta-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus[J]. J Biol Chem. 2008 Jun 6;283(23):15903-15911.
    [54] Wei L, Zhu Z, Wang J, Liu J. JNK and p38 mitogen-activated protein kinase pathways contribute to porcine circovirus type 2 infection[J]. J Virol. 2009 Jun;83(12):6039-6047.
    [55] Sundaramurthy P, Gakkhar S, Sowdhamini R. Analysis of the impact of ERK5, JNK, and P38 kinase cascades on each other: A systems approach[J]. Bioinformation. 2009;3(6):244-249.
    [56] Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K, Ichijo H. Thioredoxin and TRAF family proteins regulate reactive oxygenspecies-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1[J]. Mol Cell Biol. 2007 Dec;27(23):8152-8163.
    [57] Takeda K, Shimozono R, Noguchi T, Umeda T, Morimoto Y, Naguro I, Tobiume K, Saitoh M, Matsuzawa A, Ichijo H. Apoptosis signal-regulating kinase (ASK) 2 functions as a mitogen-activated protein kinase kinase kinase in a heteromeric complex with ASK1[J]. J Biol Chem. 2007 Mar 9;282(10):7522-7531.
    [58] Li L, Feng Z, Porter AG. JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells[J]. J Biol Chem. 2004 Feb 6;279(6):4058-4065.
    [59] Yin ZM, Sima J, Wu YF, Zhu J, Jiang Y. The effect of C-terminal fragment of JNK2 on the stability of p53 and cell proliferation[J]. Cell Res. 2004 Oct;14(5):434-438.
    [60] Topisirovic I, Gutierrez GJ, Chen M, Appella E, Borden KL, Ronai ZA. Control of p53 multimerization by Ubc13 is JNK-regulated[J]. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12676-12681.
    [61] Shi R, Huang Q, Zhu X, Ong YB, Zhao B, Lu J, Ong CN, Shen HM. Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization[J]. Mol Cancer Ther. 2007 Apr;6(4):1338-47.
    [62] Herdman ML, Marcelo A, Huang Y, Niles RM, Dhar S, Kiningham KK. Thimerosal induces apoptosis in a neuroblastoma model via the cJun N-terminal kinase pathway[J]. Toxicol Sci. 2006 Jul;92(1):246-253.
    [63] Kuo CT, Chen BC, Yu CC, Weng CM, Hsu MJ, Chen CC, Chen MC, Teng CM, Pan SL, Bien MY, Shih CH, Lin CH. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells[J]. J Biomed Sci. 2009 May 1;16:43.
    [64] Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A, Kushnareva Y, Kuwana T, Ellisman MH, Newmeyer DD. Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization[J]. Mol Cell. 2008 Aug 22;31(4):557-569.
    [65] Wang Y, Ausman LM, Russell RM, Greenberg AS, Wang XD. Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated withc-Jun NH2-terminal kinase activation and elevated proapoptotic Bax[J]. J Nutr. 2008 Oct;138(10):1866-1871.
    [66] Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson ME, Tabas I. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways[J]. J Clin Invest. 2009 Oct;119(10):2925-2941.
    [67] Grondin M, Marion M, Denizeau F, Averill-Bates DA. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria[J]. Toxicol Appl Pharmacol. 2007 Jul 1;222(1):57-68.
    [68] Lamkanfi M, Kalai M, Vandenabeele P. Caspase-12: an overview[J]. Cell Death Differ. 2004 Apr;11(4):365-368.
    [69] Nakano T, Watanabe H, Ozeki M, Asai M, Katoh H, Satoh H, Hayashi H. Endoplasmic reticulum Ca2+ depletion induces endothelial cell apoptosis independently of caspase-12[J]. Cardiovasc Res. 2006 Mar 1;69(4):908-15.
    [70] Jun DY, Kim JS, Park HS, Han CR, Fang Z, Woo MH, Rhee IK, Kim YH. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria-dependent or -independent caspase cascade[J]. Carcinogenesis. 2007 Jun;28(6):1303-1313.
    [71] Shiraishi H, Okamoto H, Yoshimura A, Yoshida H. ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1[J]. J Cell Sci. 2006 Oct 1;119(Pt 19):3958-3966.
    [72] Bian ZM, Elner SG, Elner VM. Regulated expression of caspase-12 gene in human retinal pigment epithelial cells suggests its immunomodulating role[J]. Invest Ophthalmol Vis Sci. 2008 Dec;49(12):5593-5601.
    [73] Xue Y, Daly A, Yngvadottir B, Liu M, Coop G, Kim Y, Sabeti P, Chen Y, Stalker J, Huckle E, Burton J, Leonard S, Rogers J, Tyler-Smith C.Spread of an inactive form of caspase-12 in humans is due to recent positive selection[J].Am J Hum Genet. 2006 Apr;78(4):659-670.
    [74] Bian ZM, Elner SG, Elner VM. Regulated expression of caspase-12 gene in human retinal pigment epithelial cells suggests its immunomodulating role[J]. Invest Ophthalmol Vis Sci. 2008 Dec;49(12):5593-5601.
    [75] Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T,Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death[J]. J Cell Biol. 2004 May 10;165(3):347-356.
    [76] Chami M, Oulès B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Bréchot P. Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress[J]. Mol Cell. 2008; 32(5):641-651.
    [77] Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus[J]. Endocr Rev. 2008; 29(1):42-61.
    [78] Kawaai K, Hisatsune C, Kuroda Y, Mizutani A, Tashiro T, Mikoshiba K. 80K-H interacts with inositol 1,4,5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity[J]. J Biol Chem. 2009 Jan 2;284(1):372-380.
    [79] Wozniak AL, Wang X, Stieren ES, Scarbrough SG, Elferink CJ, Boehning D. Requirement of biphasic calcium release from the endoplasmic reticulum for Fas-mediated apoptosis[J]. J Cell Biol. 2006 Dec 4;175(5):709-714.
    [80] Taylor CW, Prole DL, Rahman T. Ca(2+) channels on the move[J]. Biochemistry. 2009 Dec 29;48(51):12062-12080.
    [81] Grunnet LG, Aikin R, Tonnesen MF, Paraskevas S, Blaabjerg L, St?rling J, Rosenberg L, Billestrup N, Maysinger D, Mandrup-Poulsen T. Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells[J]. Diabetes. 2009 Aug;58(8):1807-1815.
    [82] Báthori G, Csordás G, Garcia-Perez C, Davies E, Hajnóczky G. Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC) [J]. J Biol Chem. 2006 Jun 23;281(25):17347-17358.
    [83] Croall DE, Ersfeld K. The calpains: modular designs and functional diversity. Genome Biol[J]. 2007;8(6):218.
    [84] Azuma M, Shearer TR. The role of calcium-activated protease calpain in experimental retinal pathology[J]. Surv Ophthalmol. 2008 Mar-Apr;53(2): 150-163.
    [85] Ozaki T, Yamashita T, Ishiguro S. Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria[J]. Biochim Biophys Acta. 2009 Dec;1793(12):1848-1859.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700