转化生长因子-β2对体外培养的人角膜内皮细胞增殖活性和形态的影响及其分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角膜内皮细胞是存在于角膜靠近于房水面的六角形镶嵌排列的单层细胞,对维持角膜的透明有着关键作用。成年人角膜内皮细胞(HCEC)缺乏增殖能力,局部细胞受到损伤后,只能通过邻近细胞体积的增大和移行来填补缺损区,所以六角形HCEC的数量逐年减少,角膜透明度逐渐降低。现有研究结果表明,HCEC停留在细胞周期的早G1期,仍然保持有增殖的潜能。但关于HCEC停留在G1期的具体的细胞与分子机制,至今仍不清楚。
     转化生长因子β(TGF-β)属于TGF-β超家族的成员,具有调控细胞的增殖、分化、凋亡及组织的损伤后修复等作用。TGF-β2是存在于人房水中的主要的TGF-β类型,可促进小鼠角膜上皮层和基质层的正常发育及内皮层的形成,抑制体外培养的大鼠、兔和牛角膜内皮细胞的增殖、调控牛角膜内皮细胞外基质蛋白的合成以及角膜内皮细胞的损伤后修复。有关TGF-β2对HCEC增殖活性和形态的影响及相关的分子机理,至今还未见到相关的报道。
     为了探明TGF-β2对HCEC增殖活性的影响及相关的细胞和分子机理,本文利用体外培养的人角膜内皮细胞系,使用不同浓度的TGF-β2在含10%FBS的DMEM/F12的培养条件下处理HCEC,发现1-15ng/mL的TGF-β2对HCEC的增殖均有抑制作用,在1~9ng/mL的浓度范围内,TGF-β2对HCEC增殖的抑制作用具有浓度依赖性,其中9ng/mL为TGF-β2对HCEC增殖的峰值抑制浓度;9ng/mL的TGF-β2处理HCEC的细胞计数结果显示,TGF-β2处理12h即可抑制HCEC的增殖,抑制作用具有时间依赖性;流式细胞仪检测结果显示,9ng/mL TGF-β2处理后,处于G1/G0期HCE细胞的数量显著增加(P<0.05),并具有时间依赖性。荧光定量PCR结果显示,9ng/mLTGF-β2处理24 h后,HCEC对p27kip1的表达量显著增加,48 h后P27kip1和p21cip1的表达量均显著增加,也具有时间依赖性。以上结果说明,TGF-β2对HCEC具有显著的增殖抑制作用,并具有浓度和时间依赖性,其抑制作用机理很可能是通过先后诱导p27kip1和p21cip1表达量的增加进而将细胞拘留在G1/G0期来实现的。
     为了探明TGF-β2对HCEC形态的影响及相关的分子机理,本文首先采用1~15ng/mL的TGF-β2在含10%FBS的DMEM/F12的培养条件下处理HCEC,光学显微镜下观察的结果显示,3~15ng/mL的TGF-β2处理72h可明显增加细胞的贴瓶面积,在3-9 ng/mL的浓度范围内,TGF-β2对HCEC形态改变具有浓度依赖性,其中9ng/mL为TGF-β2对HCEC形态的峰值改变浓度;9ng/mL的TGF-β2处理HCEC的光镜观察结果显示,TGF-β2处理HCEC 24h即可增加单个细胞的铺展面积,促进细胞由上皮细胞样变为成纤维细胞样,形态的改变具有时间依赖性;细胞贴附实验表明,9ng/mL TGF-β2处理24h-72h均可明显的增强HCEC贴附能力(P<0.05)。荧光双染色结果显示,9ng/mL TGF-β2处理24h,可增加HCEC胞质中F-肌动蛋白丝和微管的长度,降低细胞中心体区域的荧光强度;处理72h则明显增加HCEC胞质中微丝束的数量和长度,并促进微管遍布于整个胞质空间;HCECⅠ型和Ⅳ型胶原的免疫荧光染色的结果显示,9ng/mL TGF-β2处理72h,可明显增加HCEC单个细胞胞外Ⅳ型胶原的铺展面积,降低其荧光强度;Western blot结果显示,9ng/mL TGF-β2处理24h和72h对HCEC I型胶原和Ⅳ型胶原的表达量均没有显著的影响。以上结果说明,TGF-β2通过增加平行于细胞长轴方向的F-肌动蛋白丝的数量、延长F-肌动蛋白丝和微管的长度以及增加Ⅳ型胶原的铺展面积,从而促进HCEC由上皮细胞样向成纤维细胞样的转变、增大单个细胞的铺展面积和增强细胞的贴附能力。
     本文研究了TGF-β2对体外培养的人角膜内皮细胞的增殖活性和形态影响作用,旨在探明TGF-β2在人角膜内皮细胞的增殖和形态改变中的作用及其相关的细胞和分子机理,为深入研究人角膜内皮细胞增殖调控的机理提供重要的理论支持,对了解TGF-β2在角膜内皮细胞的损伤修复过程中的作用具有重要的理论意义。
Corneal endothelial cells are single layer of cornea near the aqueous humor, which is the key of keeping cornea transparency and normal thickness. Adult human corneal endothelial cell don't normally replicate in vivo at a rate sufficient to replace dead and injured cells. And in vivo repair of the monolayer occurs mainly by cell enlargement and migration in response to cell loss. So the number of hexagonal cells and the transparency of cornea are reduced year by year. It is proved that the cell cycle status of HCEC is early G1 phase and the cells still have proliferation potential. But there is no idea about the reason now.
     Transforming growth factor-β(TGF-β) is belong to the TGF-βfamily, and regulates cell proliferation、differentiation、apoptosis and tissue repair after injury. TGF-β2 is present in the aqueous humor of the major human TGF-βtype, promotes mouse normal development of corneal epithelium and stroma and the formation of corneal endothelium,inhibits the proliferation of cultured rat, rabbit and bovine corneal endothelial cells, and regulates the extracellular matrix protein synthesis of bovine corneal endothelial cells and wound repair of corneal endothelium. And the molecular mechanism of TGF-β2 on HCEC proliferation and morphology has not yet been reported.
     In order to clarify cellular and molecular mechanisms of TGF-β2 on HCEC proliferation activity, this paper using different concentrations of TGF-β2 to treat HCEC, which is non-transduced human corneal endothelial cells belong to our lab, in DMEM/F12 containing 10% FBS.The results showed that 1~15 ng/mL of TGF-β2 had an inhibitory effect on proliferation of HCEC, and the inhibitory effect on proliferation was dose-dependent within 1~9ng/mL concentration range. The result of cell counting showed that the proliferation of HCEC was inhibited after 12h treatment by 9ng/mL TGF-β2 and the inhibition effect depended on the treated time. Flow cytometry:the proportion of HCEC G0/G1 phase cells was significantly increased after treatment by TGF-β2 for 24h-72h (P<0.05).Real-time PCR:Relative expression of G1 cell cycle kinase inhibitor P27kip1 increased after treatment by 9ng/mL TGF-β2 for 24 hours; and relative expression of P27kip1 and P21cip1 all increased after 48 hours and was time-dependent.These results suggest that, TGF-β2 significantly inhibited the proliferation of HCEC in a dose-and time-dependent manner. And the inhibition mechanism is likely to increase the expression of p27kip1 and p21cip1 one after another and arrest the cell at G1/G0 phase.
     In order to clarify the molecular mechanism of TGF-β2-on HCEC morphology, this paper used 1~15 ng/mL TGF-β2 treat HCEC in DMEM/F12 containing 10% FBS. The result showed that 3~15ng/mL of TGF-β2 could significantly increase attachment area of HCEC to the flask and promoted cells more fibroblast-like. Within 3-9ng/mL concentration range, the changes of HCEC shape was concentration-dependent. And was the the peak concentration of TGF-β2 for changing HCE cell shape.9ng/mL TGF-β2 could increase the attachment area of HCEC to the flask and promote cells more fibroblast-like in time-dependent manner. Immunofluorescence for F-actin and microtubules:the length of F-actin and microtubules was increased and fluorescence intensity centrosome area around the nuclear was decreased after treatment by TGF-P2 for 24 hours. And after 72 hours the number and length of microfilaments and microtubules were significantly increased and microtubules spread over the cytoplasmic space.The adhesion ability was enhanced by treatment by TGF-β2 for 24 or 72hours (P<0.05).The result of Immunofluorescence for collagen type I and collagen typeⅣshowed that 9ng/mL TGF-β2 could increase the spreading area of collagen typeⅣat the extracellular bottom of HCEC and decrease its fluorescence intensity. Western blot:Treatment by TGF-β2 for 24h or 72h had no significantly effect on the expression of collagen typeⅠand collagen typeⅣ.These results showed that TGF-β2 promoted HCEC more fibroblast-like, increased the attachment area of HCEC to the flask and enhanced adhering ability by increasing the number of F-actin、the length of F-actin and microtubule and the spreading area of collagen typeⅣbelow cell's bottom.
     This is the first time to study the effect of TGF-β2 on human corneal endothelial cell proliferation and morphology in vitro. The Objective was to clarify the effect and mechanism of TGF-β2 on human corneal endothelial cell proliferation and cell morphology, which provides important theoretical guidance value to study the mechanism of human corneal endothelial cell proliferation regulation,and has important theoretical significance for understanding the function of TGF-β2 on the repair of corneal endothelium after injury.
引文
[]]王启伟,朴英杰.Smad蛋白与TGF-β超家族.解剖科学进展,2003,9(4):339~342
    [2]Kang JS, Liu C,Derynck R. New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol,2009,19(8):385~394
    [3]Heldin CH, Landstrom M, Moustakas A.Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol,2009, 21(2):166~176
    [4]Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski-Oja J.Latency, activation, and binding proteins of TGF-beta. Microsc Res Tech.,2001,52(4):354~362
    [5]Lawrence DA, Pircher R, Kryceve-Martinerie C, Jullien P. Normal embryo fibroblasts release transforming growth factors in a latent form.J Cell Physiol,1984,121(1):184~188
    [6]Derynck R, Jarrett JA, Chen EY, Eaton DH,Bell JR, Assoian RK, Roberts AB,Sporn MB, Goeddel DV. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature,1985,316(6030):701~705
    [7]Gentry LE, Lioubin MN, Purchio AF, Marquardt H. Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol,1988,8(10):4162~4168
    [8]Gray AM, Mason AJ.Requirement for activin A and transforming growth factor-beta 1 pro-regions in homodimer assembly. Science,1990,247(4948):1328~1330
    [9]Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R. Processing of transforming growth factor-betal precursor by human furin convertase. J Biol Chem,1995, 270:10618~10624
    [10]Rifkin, DB.Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem,2005,280(9):7409~7412
    [11]Miyazono K, Olofsson A, Colosetti P, Heldin CH. A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1.EMBO J,1991,10(5):1091~1101
    [12]Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engstro"m U, Heldin CH. Transforming growth factor-beta 1,-beta 2, and-beta 3 secreted by a human glioblastoma cell line Identification of small and different forms of large latent complexes. J Biol Chem,1992, 267:19482~19488
    [13]Dallas SL, Park-Snyder S, Miyazono K, Twardzik D, Mundy GR, Bonewald LF. Characterization and autoregulation of latent transforming growth factor b (TGF-beta) complexes in osteoblast-like cell lines. Production of a latent complex lacking the latent TGFbbinding protein. J Biol Chem,1994,269:6815~6821
    [14]Taipale J, Miyazono K, Heldin CH,Keski-Oja J. Latent transforming growth factor-betal associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol, 1994,124(1-2):171~181
    [15]Koli K, Keski-Oja J.1,25-dihydroxyvitamin D3 enhances the expression of transforming growth factor-beta1 and its latent form binding protein in cultured breast carcinoma cells. Cancer Res,1995,55(7):1540~1546
    [16]Annes JP, Munger JS, Rifkin DB.Rifkin, Making sense of latent TGF-beta activation, J Cell Sci,2003,116(Pt 2):217~224
    [17]Sterner-Kock A,Thorey IS, Koli K, Wempe F, Otte J, Bangsow T, Kuhlmeier K, Kirchner T, Jin S, Keski-Oja J, von Melchner H. Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev,2002.16(17):2264~2273
    [18]Saharinen J, Hyytiainen M, Taipale J, Keski-Oja J. Latent transforming growth factor-beta binding proteins (LTBPs)-structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Review,1999,10(2):99~117
    [19]Saharinen J, Keski-Oja J. Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell,2000,11(8):2691~2704
    [20]Ten Dijke P, Hill CS. New insights into TGF-beta-Smad signaling. Trends Biochem Sci, 2004,29(5):265~273
    [21]Stetler-Stevenson WG,Aznavoorian S, Liotta LA.Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol,1993,9:541~573
    [22]Barcellos-Hoff MH, Dix TA.Redox-mediated activation of latent transforming growth factor-beta 1.Mol Endocrinol,1996,10(9):1077~1083
    [23]Wipff PJ, Hinz B.Integrins and the activation of latent transforming growth factor beta1-an intimate relationship. Eur J Cell Biol,2008,87(8-9):601~615
    [24]Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev,2000, 14(2):163~176
    [25]周京旭,杨希山,周殿元.TGF-β及其受体与肿瘤关系研究进展.肿瘤,1998,18(4):304~306
    [26]Sporn MB, Roberts AB. Transforming growth factor-beta:recent progress and new challenges. J Cell Biol,1992,119 (5):1017~1021
    [27]Blobe GC, Schierm ann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med,2000,342(18):1350~1358
    [28]徐新保,何振.TGF-beta, Smad家族与器官移植免疫和器官纤维化.国外医学,2001,21(5):403~404
    [29]Moustakas A, Heldin CH.Non-Smad TGF-β signals. J Cell Sci,2005,118:(Pt 16)3573~3584
    [30]Kang JS, Liu C, Derynck R. New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol,2009,19(8):385~394
    [31]Shi Y, Massague J.Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell,2003,113(6):685~700
    [32]吴克复.细胞通讯与疾病.北京:科学出版社,2006.223~230
    [33]刘纯杰,张兆山.转化生长因子-beta的生物学特性、功能及其临床应用前景.生物技术通讯,2001,12(4):297~299
    [34]牛秀珑,王越,梁国庆.转化生长因子-beta的研究进展.医学综述,2004,10(4):209~210
    [35]Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K.Two major Smad pathways in TGF-beta superfamily signaling. Genes Cells,2002,7(12):1191~1204
    [36]Laiho M, Weis FMB, Boyd FT, Ignotz RA, Massague'J. J Biol Chem,1991, 266:9108~9112.
    [37]Rahimi RA,Leof EB.TGF-beta signaling:A Tale of two responses. J Cell Biol,2007, 102(3):593~608
    [38]Massague J.A very private TGF-beta receptor embrace. Mol Cell,2008,29(2):149~150
    [39]Massague J.TGF-beta signal transduction. Annu Rev Biochem,1998,67:753~791
    [40]Miyazono K, Ten Dijke P, Heldin CH.TGF-beta signaling by Smad proteins. Adv Immunol,2000,75:115~157.
    [41]Raftery LA, Twombly V, Wharton K, Gelbart WM.Genetic screens to identify elements the decapentaplegic pathway in Drosophila. Genetics,1995,139(1):241~254
    [42]Sekelsky JJ, Newfeld SJ, Raftery LA,Chartoff EH, Gelbart WM. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics,1995,139(3):1347~1358
    [43]Derynck R, Gelbart WM, Harland RM, Heldin CH, Kern SE, Massague J, Melton DA, Mlodzik M, Padgett RW, Roberts AB, Smith J, Thomsen GH, Vogelstein B, Wang XF. Nomenclature:vertebrate mediators of TGFβ family signals, Cell.1996,87(2):173
    [44]Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J,2000,19(8):1745~1754
    [45]Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J,1998,17(11):3091~3100
    [46]Kim J, Johnson K, Chen HJ, Carroll S, Laμghon A.Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature,1997, 388(6639):304~308
    [47]Liu F, Pouponnot C, Massague J.Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev,1997,11(23):3157~3167
    [48]Shi Y, Hata A, Lo RS, Massague J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad4.Nature,1997,388(6637):87~93
    [49]Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B,Kern SE. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell,1998,1(4): 611~617
    [50]Wrana JL, Attisano L. The Smad pathway. Cytokine Growth Factor Rev,2000, 11(1~2):5~13
    [51]Hill CS.Nucleocytoplasmic shuttling of Smad proteins. Cell Res,2009,19(1):36~46
    [52]Hata A,Lo RS, Wotton D, Lagna G, Massague J. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature,1997,388(6637):82~87
    [53]Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM, Massague J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature,1996, 381(6583):620~623
    [54]Wu G, Chen YG,Ozdamar B,Gyuricza CA,Chong PA, Wrana JL, Massague J, Shi Y. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science, 2000,287(5450):92~9
    [55]Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol,2001, 8(3):248~253
    [56]Wu RY, Zhang Y, Feng XH, Derynck R. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol Cell Biol,1997,17(5):2521~2528
    [57]Wu JW,Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massague J, Shi Y. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell,2001,8(6):1277~1289
    [58]Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev,2005,19(23): 2783~2810
    [59]Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev,1999,13(7):804~816
    [60]Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature,1999, 400(6745):687~693
    [61]Ross S, Hill CS. How the Smads regulate transcription.Int J Biochem Cell Biol,2008, 40(3):383~408
    [62]Macias-Silva M,Abdollah S,Hoodless PA,Pirone R,Attisano L,Wrana JL. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell,1996,87(7):1215~1224
    [63]Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem, 1997,272(44):28107~28115
    [64]Masuyama N, Hanafusa H, Kusakabe M, Shibuya H, Nishida E. Identification of two Smad4 proteins in Xenopus. Their common and distinct properties. J Biol Chem,1999, 274(17):12163~12170
    [65]Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell,2000,6(6):1365~1375
    [66]Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K. Smurfl interacts with transforming growth factor-beta type I receptor throμgh Smad7 and induces receptor degradation. J Biol Chem,2001,276(16):12477~12480
    [67]Shi W,Sun C, He B, Xiong W,Shi X, Yao D, Cao X. GADD34-PP1c recruited by Smad7 dephosphorylates TGFβ type Ⅰ receptor. J Cell Biol,2004,164(2):291~300
    [68]Hata A, Lagna G, Massague J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smadl signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev,1998, 12(2):186~197
    [69]Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. Smad6 inhibits ignaling by the TGF-beta superfamily. Nature,1997,389(6651):622~626
    [70]Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng XH, Meng A, Chen YG. Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol,2007,27(12):4488~4499
    [71]林海燕,王红梅,祝诚.转化生长因子-β信号传导的Smad通路.中国科学(C),2003,33(2):98~109
    [72]Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature,1997,389(6646):85~89
    [73]Wakefield LM, Piek E, Bottinger EP.TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia,2001,6(1):67~82
    [74]Itoh S, Itoh F, Goumans MJ, Ten Dijke P.Signaling of transforming growth factor-beta family members throμgh Smad proteins. Eur J Biochem,2000,267(24):6954~6967
    [75]Yue J, Mulder KM.Activation of the mitogen-activated protein kinase pathway by transforming growth factor-β. Methods Mol. Biol,2000,142:125~131
    [76]Yu L, Hebert MC, Zhang YE.TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J,2002,21:3749~3759
    [77]Massague J, Gomis RR. The logic of TGF-beta signaling. FEBS Lett,2006,580(12): 2811~2820
    [78]Alexandrow MG,Moses HL.Transforming growth factor-beta and cell cycle regulation. Cancer Res,1995,55(7):1452~1457
    [79]Chen CR, Kang Y, Massague J. Defective repression of c-myc in breast cancer cells:A loss at the core of the transforming growth factor beta growth arrest program.Proc Natl Acad Sci,2001,98(3):992~999
    [80]Kang Y, Chen CR, Massague J.A self-enabling TGF-beta response coupled to stress signaling:Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell,2003,11(4):915~926
    [81]Hannon GJ,Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature,1994,371(6494):257~261
    [82]Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor beta induces the Cyclin-dependent kinase inhibitor p21 throgh a p53-independent mechanism. Proc Natl Acad Sci,1995,92(12):5545~5549
    [83]Scandura JM, Boccuni P, Massague J, Nimer SD. Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc. Proc Natl Acad Sci,2004,101(42):15231~15236
    [84]Polyak K, Lee MH,Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27Kip1,a Cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell,1994,78(1),59~66
    [85]Lee MH, Reynisdottir I, Massague J. Cloning of p57KIP2, a Cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev,1995, 9(6):639~649
    [86]Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 CDK-interacting protein Cip1 is a potent inhibitor of G1 Cyclin-dependent kinases. Cell,1993, 75(4):805~816
    [87]Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of Cyclin D/CDK4.Nature,1993,66(6456):704~707
    [88]Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O'Keefe CL, Matera AG, Xiong Y. Growth suppression by p18, a p16INK4/MTS1-and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes,1994,8(24):2939~2952
    [89]Chan FK, Zhang J, Cheng L, Shapiro DN, Winoto A. Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4. Mol Cell Biol,1995, 15(5):2682-2688
    [90]Jeffrey PD, Tong L, Pavletich NP. Structural basis of inhibition of CDK-Cyclin complexes by INK4 inhibitors. Genes Dev,2000,14(24):3115~3125
    [91]Reynisdottir I, Polyak K, Iavarone A, Massague J.Kip/Cip and Ink4 CDK inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev,199, 9(15):1831~1845
    [92]Wieser RJ, Faust D, Dietrich C, Oesch F. p16INK4 mediates contact-inhibition of growth. Oncogene,1999,18(1):277~281
    [93]Hasty P, Bradley A,Morris JH, Edmondson DG,Venuti JM, Olson EN, Klein WH.Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature,1993,364(6437):501~506
    [94]Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J,Hannon GJ,Beach D, Lassar AB.Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science,1995,267(5200):1018~1021
    [95]Parker SB, Eichele G, Zhang P, Rawls A,Sands AT, Bradley A, Olson EN,Harper JW, Elledge SJ.P53-independent expression of p21Cipl in muscle and other terminally differentiating cells. Science,1995,267(5200):1024~1027
    [96]el-Deiry WS, Harper JW,O'Connor PM,Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res,1994,54(5):1169~1174
    [97]Katayose D, Wersto R, Cowan KH, Seth P.Effects of a recombinant adenovirus expressing WAF1/Cipl on cell growth, cell cycle, and apoptosis. Cell Growth Differ,1995, 6(10):1207~1212
    [98]Dulic V, Stein GH, Far DF, Reed SI.Nuclear accumulation of p21Cip1 at the onset of mitosis:a role at the G2/M-phase transition. Mol Cell Biol,1998,18(1):546~557
    [99]Coffman FD, Studzinski GP.Differentiation-related mechanisms which suppress DNA replication. Exp Cell Res,1999,248(1):58~73
    [100]Polyak, K., Kato, J.Y., Solomon, M.J., Sherr, C.J., Massague, J., Roberts, J.M., Koff, A., 1994.p27Kip1,a Cyclin-CDK inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev.8,9-22.
    [101]Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A.p27Kip1,a Cyclin-CDK inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev,1994,8(1):9~22
    [102]Levenberg S, Yarden A, Kam Z, Geiger B.p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene,1999,18(4):869~876
    [103]Bae I, Fan S, Bhatia K, Kohn KW, Fornace AJ Jr, O'Connor PM. Relationships between G1 arrest and stability of the p53 and p21Cip1/Waf1 proteins following gamma-irradiation of human lymphoma cells. Cancer Res,1995,5(11)5:2387~2393
    [104]Chen J, Willingham T, Shuford M, Nisen PD. Tumor suppression and inhibition of aneuploid cell accumulation in human brain tumor cells by ectopic overexpression of the Cyclindependent kinase inhibitor p27kip1. J Clin Invest.1996,97(8):1983~1988
    [105]Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell,1996,85(5):707~720
    [106]Rivard N, L'Allemain G, Bartek J, Pouyssegur J.Abrogation of p27Kipl by cDNA antisense suppresses quiescence (GO state) in fibroblasts. J Biol Chem,1996, 271(31):18337~18341
    [107]Reynisdottir I, Polyak K, Iavarone A,Massague J. Kip/Cip and Ink4 CDK inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev,1995, 9(15):1831~1845
    [108]Hu PP, Datto MB,Wang XF. Molecular mechanisms of transforming growth factor-beta signaling. Endocr Rev.1998,19(3):349~363
    [109]Joyce NC. Cell cycle status in human corneal endothelium. Exp Eye Res,2005, 81(6):629~638
    [110]Weinberg RA.The retinoblastoma protein and cell cycle control.Cell,1995, 81(3):323~330
    [111]DeGregori J, Leone G,Miron A, Jakoi L, Nevins JR. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci,1997,94(14):7245~7250
    [112]Sherr CJ, Roberts JM. Inhibitors of mammalian G1 Cyclin-dependent kinases. Genes Dev,1995,9(10):1149~1163
    [113]Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM. Functional interactions of the retinoblastoma protein with mammalian D-type Cyclins. Cell,1993, 73(3):487~497
    [114]Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of Cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the Cyclin D-dependent kinase CDK4. Genes Dev,1993,7(3):331~342
    [115]Kortlever RM, Nijwening JH, Bernards R. Transforming growth factor-beta requires its target plasminogen activator inhibitor-1 for cytostatic activity. J Biol Chem,2008,283(36): 24308~24313
    [116]Conery AR, Cao Y, Thompson EA, Townsend CM Jr, Ko TC, Luo K. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-b induced apoptosis. Nat Cell Biol 2004,6(4):366~372
    [117]Remy I, Montmarquette A,Michnick SW. PKB/Akt modulates TGF-beta ignaling throμgh a direct interaction with Smad3.Nat Cell Biol 2004,6(4):358~365
    [118]Song K, Wang H, Krebs TL, Danielpour D. Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J.2006,25(1):58~69
    [119]Heldin CH, Landstrom M, Moustakas A.Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol,2009, 21(2):166~176
    [120]Ramesh S, Qi XJ, Wildey GM, Robinson J, Molkentin J, Letterio J, Howe PH.TGF beta-mediated BIM expression and apoptosis are regulated throμgh SMAD3-dependent expression of the MAPK phosphatase MKP2.EMBO Rep,2008,9(10):990~997
    [121]Wang J, Yang L, Yang J, Kuropatwinski K, Wang W,Liu XQ, Hauser J, Brattain MG. Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/ignaling pathway in colon cancer cells. Cancer Res,2008,68:3152~3160
    [122]Yamashita M, Fatyol K, Jin C, Wang X,Liu Z, Zhang YE. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell,2008,31(6):918~924
    [123]Sorrentino A,Thakur N, Grimsby S, Marcusson A,von Bulow V, Schuster N,Zhang S, Heldin CH, Landstrom M.The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol,2008,10(10):1199~1207
    [124]Thiery JP, Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003,15:740~746
    [125]Thiery JP.Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002,2(6):442~454
    [126]Kang Y, Massague J.Epithelial-mesenchymal transitions:twist in development and metastasis. Cell,2004,118(3):277~279
    [127]Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci,2007,1512~1520
    [128]Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype? Nat Rev Cancer,2007,7(6):415~428
    [129]Illman SA, Lehti K, Keski-Oja J, Lohi J. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci.2006 Sep 15;119(Pt 18):3856-65.Epub 2006 Aμg 29.
    [130]Wyatt L, Wadham C, Crocker LA, Lardelli M, Khew-Goodall Y. The protein tyrosine phosphatase Pez regulates TGFbeta,epithelial-mesenchymal transition, and organ development. J Cell Biol.2007,178(7):1223~1235
    [131]Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol,2009, 21(2):166~176
    [132]Cross KJ, Mustoe TA.Growth factors in wound healing. Surg Clin North Am.2003, 83(3):531~45
    [133]Clark RAF. Overview and general consideration of wound repair. The Molecular and Cellular Biology of Wound Repair. Edited by Clark RAF. Plenum Press, New York,1996, pp 3~50
    [134]Wahl SM, Hunt DA,Wakefield NM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB:Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci,1987,84:5788~5792
    [135]Roberts AB, Sporn MB,Assoian RK, Smith J, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS. Transforming growth factor type b:rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci,1986,83:4167~4171
    [136]Clark RAF, McCoy GA,Folkvord JM, McPherson JM:TGF-bl stimulates cultured human fibroblasts to proliferate and produce tissue-like ignaling ng:a fibronectin matrix-dependent event. J Cell Physiol,1997,170:69~80
    [137]Mustoe TA,Pierce GF, Thomason A,Gramates P, Sporn MB,Deuel TF. Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science, 1987,237:1333~1336
    [138]Quaglino DJ, Nanney LB, Ditesheim JA,Davidson JM. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model.J Invest Dermatol,1991,97:34~42
    [139]Russell SB, Trupin KM, Rodriguez-Eaton S, Russell JD, Trupin JS.Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth.Proc Natl Acad Sci,1988,85:587~591
    [140]Ghahary A,Shen YJ, Scott PG, Gong Y, Tredget EE. Enhanced expression of mRNA for transforming growth factor-b, type I and type III procollagen in human post-burn hypertrophic scar tissue. J Lab Clin Med 1993,122:465~473
    [141]Border WA, Okuda S, Languino LR, Sporn MB,Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor b1. Nature 1990,346:371~374
    [142]Castilla A, Prieto J, Fausto N:Transforming growth factor b and a in chronic liver disease. N Engl J Med,1991,324:933~940
    [143]Broekelmann TJ, Limper AH, Colby TV, McDonald JA.Transforming growth factor betal is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci,1991,88:6642~6646
    [144]Shah M, Foreman DM, Ferguson MWJ.Control of scarring in adult wounds by ignaling ng antibody to transforming growth factor beta. Lancet,1992,339:213~214
    [145]Shah M, Foreman DM, Ferguson MWJ:Neutralising antibody to TGFbl,2 reduces cutaneous scarring in adult rodents. J Cell Sci,1994,107:1137~57
    [146]Shah M, Foreman DM, Ferguson MWJ. Neutralisation of TGF-b1 and TGF-b2 or exogenous addition of TGF-b3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995, 108:985-1002
    [147]31.Krummel TM,Michna BA, Thomas BL, Sporn MB, Nelson JM, Salzberg AM, Cohen IK, Diegelmann RF:Transforming growth factor beta (TGF-b) induces fibrosis in a fetal wound model. J Paediatr Surg 1988,23:647-652
    [148]32. Hoμghton PE, Keefer KA, Krummel TM.The role of transforming growth factor-b in the conversion from "scarless" healing to healing with scar formation. Wound Rep Regul 1995,3:229-236
    [149]谢立信.角膜移植学.北京:人民卫生出版社,2000.17~37
    [150]Wulle KG,Lerche W. Electron microscopic observations of the early development of the human corneal endothelium and Descemet's membrane. Ophthalmologica,1969, 157(6):451~461
    [151]Nuttall RP. DNA synthesis during the development of the chick cornea. J Exp Zool,1976, 198(2):193~208
    [152]Adamis AP, Molnar ML, Tripathi BJ, Emmerson MS, Stefansson K, Tripathi RC. Neuronal-specific enolase in human corneal endothelium and posterior keratocytes.Exp Eye Res,1985,41(5):665~668
    [153]樊廷俊,赵君,李凌,杨秀霞,于苗苗,王晶.人角膜内皮细胞体外氧化损伤及黄酮抗氧化保护作用的机制.国际眼科杂志,2008,8(8):1536~1541
    [154]Waring GO 3rd, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology,1982, (6):531~590
    [155]Joyce NC.Proliferative capacity of the corneal endothelium. Prog Retin Eye Res,2003, 22(3):359~389
    [156]Barry PA, Petroll WM, Andrews PM, Cavanagh HD, Jester JV.The spatial organization of corneal endothelial cytoskeletal proteins and their relationship to the apical junctional complex. Invest Ophthalmol Vis Sci,1995,36(6):1115~1124
    [157]Levy SG,Moss J, Sawada H, Dopping-Hepenstal PJ, McCartney AC. The composition of wide-spaced collagen in normal and diseased Descemet's membrane. Curr Eye Res,1996, 15(1):45~52
    [158]Sawada H, Konomi H, Hirosawa K.Characterization of the collagen in the hexagonal lattice of Descemet's membrane:its relation to type Ⅷ collagen. J Cell Biol,1990, 110(1):219~227
    [159]Laule A, Cable MK, Hoffman CE, Hanna C.Endothelial cell population changes of human cornea during life. Arch Ophthalmol,1978,96(11):2031~2035
    [160]Svedbergh B, Bill A.Scanning electron microscopic studies of the corneal endothelium in man and monkeys. Acta Ophthalmol (Copenh),1972,50(3):321~336
    [161]Laing RA, Sanstrom MM, Berrospi AR, Leibowitz HM.Changes in the corneal endothelium as a function of age. Exp Eye Res,1976,22(6):587~594
    [162]Mishima S. Clinical investigations on the corneal endothelium-ⅩⅩⅩⅧ Edward Jackson Memorial Lecture.Am J Ophthalmol,1982,93(1):1~29
    [163]Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest Ophthalmol Vis Sci, 1984,25(3):312~322
    [164]Suda T. Mosaic pattern changes in human corneal endothelium with age. Jpn J Ophthalmol,1984,28(4):331~338
    [165]Blatt HL, Rao GN, Aquavella JV.Endothelial cell density in relation to morphology. Invest Ophthalmol Vis Sci,1979,18(8):856~859
    [166]Yee RW, Matsuda M, Schultz RO, Edelhauser HF.Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res,1985,4(6):671~678
    [167]Carlson KH,Bourne WM,McLaren JW,Brubaker RF. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age. Exp Eye Res.1988, 47(1):27~41
    [168]Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci,1997,38(3):779~782
    [169]Maurice DM.The location of the fluid pump in the cornea. J Physiol,1972, 221(1):43~54
    [170]Lim JJ, Fischbarg J. Electrical properties of rabbit corneal endothelium as determined from impedance measurements. Biophys J,1981,36(3):677~695
    [171]Geroski DH, Edelhauser HF.Quantitation of Na/K ATPase pump sites in the rabbit corneal endothelium. Invest Ophthalmol Vis Sci,1984,25(9):1056~1060
    [172]Barfort P, Maurice D. Electrical potential and fluid transport across the corneal endothelium. Exp Eye Res,1974,19(1):11~19
    [173]Hodson S, Miller F. The bicarbonate ion pump in the endothelium which regulates the hydration of rabbit cornea.J Physiol,1976,263(3):563~577
    [174]Hamann S, Zeuthen T, La Cour M, Nagelhus EA,Ottersen OP, Agre P, Nielsen S. Aquaporins in complex tissues:distribution of aquaporins 1-5 in human and rat eye. Am J Physiol,1998,274(5 Pt 1):1332~1345
    [175]Li J, Kuang K, Nielsen S, Fischbarg J. Molecular identification and immunolocalization of the water channel protein aquaporin 1 in CBCECs. Invest Ophthalmol Vis Sci.1999, 40(6):1288~1292
    [176]Thiagarajah JR, Verkman AS.Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem,2002, 277(21):19139~19144
    [177]Maurice DM. The structure and transparency of the cornea. J Physiol,1957, 136(2):263~286
    [178]Iwamoto T,Smelser GK.Electron Microscopy of the Human Corneal Endothelium with Reference to Transport Mechanisms.Invest Ophthalmol,1965,4:270~284
    [179]Kreutziger GO. Lateral membrane morphology and gap junction structure in rabbit corneal endothelium.Exp Eye Res,1976,23(3):285~293
    [180]Hirsch M,Renard G,Faure JP, Pouliquen Y. Study of the ultrastructure of the rabbit corneal endothelium by the freeze-fracture technique:apical and lateral junctions. Exp Eye Res,1977,25(3):277~288
    [181]Ottersen OP,Vegge T. MLtrastructure and distribution of intercellular junctions in corneal endothelium.Acta Ophthalmol(Copenh),1977,55(1):69~78
    [182]Kaufman HE, Katz JI. Pathology of the corneal endothelium. Invest Ophthalmol Vis Sci, 1977,16(4):265~268
    [183]Joyce NC, Meklir B, Neufeld AH. In vitro pharmacologic separation of corneal endothelial migration and spreading responses. Invest Ophthalmol Vis Sci,1990, 31(9):1816~1826
    [184]Matsuda M,Sawa M,Edelhauser HF, Bartels SP, Neufeld AH,Kenyon KR. Cellular migration and morphology in corneal endothelial wound repair. Invest Ophthalmol Vis Sci, 1985,26(4):443~449
    [185]Ichijima H, Petroll WM,Jester JV, Barry PA, Andrews PM, Dai M, Cavanagh HD. In vivo confocal microscopic studies of endothelial wound healing in rabbit cornea. Cornea, 1993,12(5):369~378
    [186]Gordon SR, Essner E, Rothstein H.In situ demonstration of actin in normal and injured ocular tissues using 7-nitrobenz-2-oxa-1,3-diazole phallacidin. Cell Motil,1982, 2(4):343~354
    [187]Schilling-Schon A, Pleyer U, Hartmann C, Rieck PW.The role of endogenous growth factors to support corneal endothelial migration after wounding in vitro. Exp Eye Res,2000, 71(6):583~589
    [188]Joyce NC, Joyce SJ, Powell SM, Meklir B. EGF and PGE2:effects on corneal endothelial cell migration and monolayer spreading during wound repair in vitro. Curr Eye Res.1995,4(7):601~609
    [189]Hollingsworth J, Perez-Gomez I, Mutalib HA,Efron N. A population study of the normal cornea using an in vivo, slit-scanning confocal microscope. Optom Vis Sci,2001, 78(10):706~711
    [190]Joyce NC, Meklir B, Joyce SJ, Zieske JD. Cell cycle protein expression and proliferative status in human corneal cells. Invest Ophthalmol Vis Sci,1996,37(4):645~655
    [191]Joyce NC, Navon SE, Roy S, Zieske JD. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ. Invest Ophthalmol Vis Sci,1996,37(8): 1566~1575
    [192]叶向或,盛耀华TGF2-P与角膜内皮.眼科新进展,2005,25(2):181~183
    [193]Schutz L, Mora PT. The need for direct cell contact in "contact" inhibition of cell division in culture.J Cell Physiol.1968,71(1):1~6
    [194]Joyce NC, Harris DL, Zieske JD. Mitotic inhibition of corneal endothelium in neonatal rats.Invest Ophthalmol Vis Sci,1998,39(13):2572~2583
    [195]Senoo T, Obara Y, Joyce NC.EDTA:a promoter of proliferation in human corneal endothelium.Invest Ophthalmol Vis Sci,2000,41(10):2930~2935
    [196]Tripathi RC, Li J, Chan WF, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2.Exp Eye Res,1994,59(6):723~727
    [197]Min SH, Lee TI, Chung YS, Kim HK. Transforming Growth Factor-β Levels in Human Aqueous Humor of Glaucomatous, Diabetic and Uveitic Eyes. Kor J Ophthalmol,2006, 20(3):162~165
    [198]Joyce NC, Zieske JD. Transforming growth factor-beta receptor expression in human cornea. Invest Ophthalmol Vis Sci,1997,38(10):1922~1928
    [199]Harris DL, Joyce NC.Transforming growth factor-beta suppresses proliferation of rabbit corneal endothelial cells in vitro.J Interferon Cytokine Res,1999,19(4):327~334
    [200]Kim TY, Kim WI, Smith RE, Kay ED. Role of p27 (Kip1) in cAMP-and TGF-beta2-mediated antiproliferation in rabbit corneal endothelial cells. Invest Ophthalmol Vis Sci,2001,42(13):3142~149
    [201]Kikuchi M, Harris DL, Obara Y, Senoo T, Joyce NC. p27kip1 Antisense-induced proliferative activity of rat corneal endothelial cells. Invest Ophthalmol Vis Sci,2004, 45(6):1763~1770
    [202]Lu J, Lu Z, Reinach P, Zhang J, Dai W, Lu L, Xu M. TGF-beta2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation. Exp Cell Res,2006, 312(18):3631~3640
    [203]陆秀兰,张明.TGF-β2体外抑制牛角膜内皮细胞增殖的研究.国际眼科杂,2009,9(6):1058~1060
    [204]Joyce NC, Matkin ED, Neufeld AH.Corneal endothelial wound closure in vitro. Effects of EGF and/or indomethacin. Invest Ophthalmol Vis Sci.1989,30(7):1548~1559
    [205]Rao GN, Shaw EL, Arthur E, Aquavella JV. Morphological appearance of the healing corneal endothelium. Arch Ophthalmol,1978,96(11):2027~2030
    [206]Sherrard ES. The corneal endothelium in vivo:its response to mild trauma. Exp Eye Res, 1976,22(4):347~357
    [207]Joyce NC, Joyce SJ, Powell SM, Meklir B.EGF and PGE2:effects on corneal endothelial cell migration and monolayer spreading during wound repair in vitro. Curr Eye Res,1995,14(7):601~609
    [208]Olsen EG,Davanger M, Moen T. The role of microfilaments in the healing of the corneal endothelium. Acta Ophthalmol (Copenh),1985,63(1):104~108
    [209]Gordon SR, Staley CA.Role of the cytoskeleton during injury-induced cell migration in corneal endothelium. Cell Motil Cytoskeleton,1990,16(1):47~57
    [210]Mohay J, Wood TO, McLaμghlin BJ. Long-term evaluation of corneal endothelial cell transplantation. Trans Am Ophthalmol Soc,1997,95:131~148
    [211]Petroll WM, Jester JV, Barry-Lane P, Cavanagh HD. Assessment of f-actin organization and apical-basal polarity during in vivo cat endothelial wound healing. Invest Ophthalmol Vis Sci,1995,36(12):2492~2502
    [212]Gordon SR, Buxar RM.Inhibition of cytoskeletal reorganization stimulates actin and tubulin syntheses during injury-induced cell migration in the corneal endothelium.J Cell Biochem,1997,67(3):409~421
    [213]Grasso S, Hernandez JA, Chifflet S. Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. Am J Physiol Cell Physiol,2007,293:1327~1337
    [214]Raphael B, Kerr NC, Shimizu RW,Lass JH, Crouthamel KC, Glaser SR, Stern GA, McLaμghlin BJ, Musch DC, Duzman E, et al.Enhanced healing of cat corneal endothelial wounds by epidermal growth factor. Invest Ophthalmo) Vis Sci,1993,34(7):2305~2312
    [215]Hoppenreijs VP, Pels E, Vrensen GF, Oosting J,Treffers WF. Effects of human epidermal growth factor on endothelial wound healing of human corneas.Invest Ophthalmol Vis Sci, 1992,33(6):1946~1957
    [216]Hoppenreijs VP, Pels E, Vrensen GF, Treffers WF. Basic fibroblast growth factor stimulates corneal endothelial cell growth and endothelial wound healing of human corneas. Invest Ophthalmol Vis Sci,1994,35(3):931~944
    [217]Sabatier P, Rieck P, Daumer ML, Courtois Y, Pouliquen Y, Hartmann C.Effects of human recombinant basic Fibroblast Growth factor on endothelial wound healing in organ culture of human cornea. J Fr Ophtalmol,1996,19(3):200~207
    [218]Hoppenreijs VP, Pels E, Vrensen GF, Treffers WF.Effects of platelet-derived growth factor on endothelial wound healing of human corneas. Invest Ophthalmol Vis Sci,1994, 35(1):150~161
    [219]Soltau JB, McLaμghlin BJ. Effects of growth factors on wound healing in serum-deprived kitten corneal endothelial cell cultures. Cornea,1993,12(3):208~215
    [220]杨蕊,郭绒霞,孙乃学.表皮生长因子对家兔角膜内皮损伤修复的实验研究.眼科研究,1999,17(4):279~282
    [221]赵靖,谢立信,史伟云.表皮生长因子促进猫角膜内皮损伤修复.眼科研究,2003,21(4):405
    [222]Laing RA,Neubauer L, Oak SS, Kayne HL, Leibowitz HM. Evidence for mitosis in the adult corneal endothelium. Ophthalmology,1984,91(10):1129~1134
    [223]Saika S, Saika S, Liu CY, Azhar M, Sanford LP, Doetschman T, Gendron RL, Kao CW, Kao WW.TGF-β2 in corneal morphogenesis during mouse embryonic development. Dev Biol,2001,240(2):419~432
    [224]Cousins SW, McCabe MM, Danielpour D, Streilein JW.Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci,1991,32(8):2201~2211
    [225]Ishida K, Yoshimura N, Yoshida M, Honda Y. Upregulation of transforming growth factor-beta after panretinal photocoagulation. Invest Ophthalmol Vis Sci,1998, 39(5):801~807
    [226]Chen KH, Hsu WM, Lee SM. Differential effects of transforming growth factor-beta2 on corneal endothelial cell proliferation-A role of serum factors. Exp Eye Res,2002, 75(1):61~67
    [227]Chen KH,Harris DL, Joyce NC.TGF-beta2 in aqueous humor suppresses S-phase entry in cultured corneal endothelial cells. Invest Ophthalmol Vis Sci,1999,40(11):2513~2519
    [228]Kues WA,Anger M, Carnwath JW, Paul D, Motlik J, Niemann H.Cell cycle synchronization of porcine fetal fibroblasts:effects of serum deprivation and reversible cell cycle inhibitors. Biol Reprod,2000,62(2):412~419
    [229]陆嘉炜.TGF-β2对FGF-2诱导角膜内皮细胞增殖作用的研究[博士学位论文].上海: 中国科学院研究生院,2007.
    [230]左连富等.流式细胞术与生物医学.辽宁科学技术出版社,1997:8~19
    [231]宋根平,李素文.流式细胞术的原理和应用北京:北京师范大学出版社,1992:141~176
    [232]Chen KH, Harris DL, Joyce NC. TGF-beta2 in aqueous humor suppresses S-phase entry in cultured corneal endothelial cells. Invest Ophthalmol Vis Sci,1999,40(11):2513~2519
    [233]Toyoshima H, Hunter T. p27, a novel inhibitor of G1 Cyclin-CDK protein kinase activity, is related to p21.Cell,1994,78(1):67~74
    [234]Kato JY, Matsuoka M, Polyak K, Massague J, Sherr CJ. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of Cyclin-dependent kinase 4 activation. Cell, 1994,79(3):487~496
    [235]Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW,DePinho RA,Elledge SJ. Ltered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature,1997, 87(6629):151~158
    [236]Boehm M, Yoshimoto T, Crook MF, Nallamshetty S, True A, Nabel GJ, Nabel EG.A growth factor-dependent nuclear kinase phosphorylates p27Kip1 and regulates cell cycle progression. EMBO J,2002,21(13):3390~3401
    [237]Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J, Crabtree GR, Roberts JM. Interleukin-2-mediated elimination of the p27Kipl Cyclin-dependent kinase inhibitor prevented by rapamycin. Nature,1994,372(6506):570~573
    [238]Reynisdottir I, Polyak K,Iavarone A, Massague J. Kip/Cip and Ink4 CDK inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev,1995, 9(15):1831~1845
    [239]Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science,1996,272(5263):877~880
    [240]Hirai A, Nakamura S, Noguchi Y, Yasuda T, Kitagawa M, Tatsuno I, Oeda T, Tahara K, Terano T, Narumiya S, Kohn LD, Saito Y. Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kipl and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem,1997,272(1):13~16
    [241]Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the Cyclin-dependent kinase inhibitor p27. Science,1995,269(5224):682~685
    [242]Lee HT, Kay EP. Regulatory role of cAMP on expression of Cdk4 and p27Kipl by inhibiting phosphatidylinositol 3-kinase in corneal endothelial cells. Invest Ophthalmol Vis Sci,2003,44(9):3816-3825
    [243]Yoshida K, Kase S,Nakayama K, Nagahama H,Harada T, Ikeda H,Harada C, Imaki J, Ohgami K, Shiratori K,Ilieva IB,Ohno S, Nishi S, Nakayama KI.Involvement of p27 KIP1 in the proliferation of the developing corneal endothelium.Invest Ophthalmol Vis Sci,2004, 45(7):2163~216
    [244]Kikuchi M, Zhu C, Senoo T, Obara Y, Joyce NC.p27kip1 siRNA induces proliferation in corneal endothelial cells from young but not older donors. Invest Ophthalmol Vis Sci,2006, 47(11):4803~4809
    [245]Bourne WM, Nelson LR, Hodge DO. Continued endothelial cell loss ten years after lens implantation. Ophthalmology,1994,101(6):1014~1022
    [246]Bourne WM.Cellular changes in transplanted human corneas.Cornea.2001, 20(6):560~569
    [247]Schultz RO, Matsuda M, Yee RW, Edelhauser HF, Schultz KJ.Corneal endothelial changes in type I and type II diabetes mellitus. Am J Ophthalmol,1984,98(4):401~410
    [248]Sihota R, Sharma T, Agarwal HC. Intraoperative mitomycin C and the corneal endothelium. Acta Ophthalmol Scand,1998,76(1):80~82
    [249]Konowal A, Morrison JC,Brown SV, et al. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am J Ophthalmol,1999,127(4):403~406
    [250]Wu SC, Jeng S, Huang SC, Lin SM.Corneal endothelial damage after neodymium:YAG laser iridotomy. Ophthalmic Surg Lasers,2000,31(5):411~416
    [251]Stainer GA, Akers PH,Binder PS, Zavala EY. Correlative microscopy and tissue culture of congenital hereditary endothelial dystrophy. Am J Ophthalmol,1982,93(4):456~465
    [252]Adamis AP, Filatov V, Tripathi BJ, Tripathi RC.Fuchs' endothelial dystrophy of the cornea. Surv Ophthalmol,1993,38(2):149~168
    [253]严浩,胡燕华,徐惠民.转化生长因子p1对牛角膜内皮细胞外基质合成的影响.眼科新进展,2006,26(8):585~587
    [254]Usui T, Takase M, Kaji Y, Suzuki K, Ishida K, Tsuru T, Miyata K, Kawabata M, Yamashita H. Extracellular Matrix Production Regulation by TGF-beta in Corneal Endothelial Cells. Invest Ophthalmol Vis Sci,1998,39:1981~1989
    [255]李雪,徐锦堂,崔浩等.大鼠角膜碱、酸、热烧伤后房水中TGF-β2的变化研究。国际眼科杂志,2008,8(9):1819~1822
    [256]Derynck R, Zhang YE.Smad-dependent and Smad-independent pathways in TGF-beta family ignaling. Nature,2003,425(6958):577~584
    [257]韩贻仁,樊廷俊等.分子细胞生物学.北京:高等教育出版社,2008.280~289
    [258]Edlund S, Landstrom M, Heldin CH, Aspenstrom P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA.Mol Biol Cell,2002,13(3):902~914
    [259]Shen X, Li J, Hu PP, Waddell D, Zhang J,Wang XF. The activity of guanine exchange factor NET1 is essential for transforming growth factor-(3-mediated stress fiber formation.J. Biol.Chem,2001,276(18):15362~15368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700