小麦族植物单拷贝核Acc1和Pgk1基因序列的分子系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族(Triticeae Dumortier)是禾本科(Poaceae)植物中一个十分重要的类群,约有350-450个种,广泛分布于北半球温带地区。小麦族植物包含重要的粮食作物如:小麦(Triticum aestivum L.)、大麦(Hordeum vulgare L.)、黑麦(Secale cereale L.),也包含许多有重要经济价值的牧草种类如:老芒麦(Elymus sibiricus L.)、羊草(Leymuschinensis(Trio.)Tzvelve)、冰草(Agropyron cristatum(L.)Gaerton)。因此,研究小麦族系统与进化历史,为麦类作物的改良和提高牧草品质提供良好的遗传资源;对草原的合理开发利用、草原生态系统平衡的维持、水土保持等方面有着重要的作用。
     小麦族植物包括大量的二倍体和多倍体,二倍体通过不同天然杂交组合形成小麦族70-75%的多倍体植物。不同的二倍体和多倍体植物被禾草分类学家组合在不同的属中。按照基因组分类系统,小麦族普遍得到认可的二倍体属主要有:山羊草属(Aegilops)、冰草属(Agropyron)、澳冰草属(Australopyrum)、类大麦属(Crithopsis)、簇毛麦属(Dasypyrum)、旱麦草属(Eremopyrum)、亨氏草属(Henrardia)、异形花属(Heteranthelium)、大麦属(Hordeum)、新麦草草属(Psathyrostachys)、黑麦属(Secale)、拟鹅观草属(Pseudoroegneria)、带芒草属(Taeniatherum)、Festucopsis、Lophopyrum、Peridictyon和Thinopyrum等,多倍体属主要有:小麦属(Triticum)、披碱草属(Elymus)、偃麦草属(Elytrigia)、猬草属(Hystrix)、鹅观草属(Roegneria)、仲彬草属(Kengyilia)和赖草属(Leymus)等。其中,猬草属、鹅观草属和仲彬草属被包括在广义概念的披碱草属(广义披碱草属,Elymus sensu lato)中。小麦族二倍体属、广义披碱草属和赖草属含有的植物种类占整个小麦族物种数量的85%以上。理清它们的系统关系有助于把握小麦族的系统与进化历史,从而更好的应用到麦类作物和牧草品种遗传改良的实践中。目前,就二倍体属、广义披碱草属和赖草属植物的基因组系统关系、属间系统关系、属的系统地位及有效性、物种起源、基因组供体来源等存在较大的分歧。本研究基于编码质体乙酰-CoA羧化酶的单拷贝核Acc1基因和编码磷酸甘油酸激酶的单拷贝核Pgk1基因序列的分子系统发育分析,从二倍体属、广义披碱草属和赖草属的107个植物类群中分离获得158个Acc1基因单倍型序列和185个Pgk1基因单倍型序列,通过Acc1和Pgk1基因单倍型序列的遗传变异和直系同源比较,探讨小麦族二倍体属、广义披碱草属和赖草属植物的基因组系统关系、属间系统关系、属的系统地位、基因组供体来源、植物类群发生地理分化的生物学理论依据。主要结果如下:
     1.基于Acc1和Pgk1基因序列对小麦族代表18个基因组的33个二倍体植物进行系统发育重建,探讨二倍体基因组的系统关系。系统发育分析显示部分植物类群在Acc1和Pgk1基因树间存在明显的系统冲突。独立基因以及联合基因的系统分析支持:(1)Triticum/Aegilops复合群为非单系起源,他们与Taeniatherum(Ta)和Thinopyrum(E~b)具有较近的亲缘关系;(2)Lophopyrum elongatum(E~e)和Thinopyrumbessarabicum(E~b)在进化上已经发生明显的分化;(3)Pseudoroegneria(St)、Lophopyrum(E~e)和Australopyrum(W)可能存在共同起源;(4)Peridictyon(Xp)和Dasypyrum(V)拥有较近的亲缘关系;(5)Eremopyrum(F)与Agropyron(P)可能存在共同起源。
     2.对猬草属及其近缘属Thinopyrum(E~b)、Lophopyrum(E~e)、拟鹅观草属(St)、新麦草属(Ns)、大麦属(H)、赖草属(NsXm)和披碱草属(StH)植物共23个类群的Acc1和Pgk1基因序列进行序列和系统发育分析,探讨猬草属及其近缘属植物的系统发育关系,猬草属的系统位置及有效性,猬草属植物基因组供体来源。序列分析显示Acc1基因序列在E.wawawaiensis中拥有一个182 bp的Stowaway转座插入,Pgk1基因序列在L.arenarius和Psa.juncea中有81 bp的Stowaway插入,Pgk1基因序列在Hy.duthiei、Hy.duthiei ssp.longearistata和L.akmolinensis中有29 bp的Copia反转座插入。系统发育分析表明:(1)猬草属模式种Hy.patula含有StH基因组,与披碱草属、拟鹅观草属和大麦属具有密切的亲缘关系;(2)猬草属的其他物种Hy.duthiei、Hy.duthiei ssp.longearistata、Hy.coreana和Hy.komarovii含有NsXm基因组,与新麦草属和赖草属植物亲缘关系密切。研究结果支持将础patula从猬草属组合到披碱草属中,而Hy.duthiei、Hy.duthiei ssp.logearistata、Hy.coreana和Hy.komarovii应组合到赖草属中。
     3.从33个广义披碱草属植物中分离获得67个Acc1基因单倍型序列和59个Pgk1基因的单倍型序列。对这些单倍型序列与小麦族18个基因组的33-35个二倍体基因序列进行系统比较分析,探讨广义披碱草属系统关系、基因组供体来源及St基因组分化式样。结果表明:(1)广义披碱草属植物的St、H、P和W分别起源于拟鹅观草属、大麦属、冰草属和澳冰草属:(2)Y基因组与Peridictyon的Xp基因组和Dasypyrum的V基因组具有较近的亲缘关系;(3)广义披碱草属含StH基因组的植物存在北美与欧亚大陆的地理分化;(4)北美的Pse.spicata参与了北美StH基因组植物的物种形成,欧亚大陆广义披碱草属植物的St基因组存在多个来源,且可能经历了快速的遗传分化;(5)广义披碱草属植物存在多重起源;(6)披碱草属、鹅观草属和仲彬草属植物类群在系统发生上形成复杂的网状进化式样。
     4.从广义披碱草属的仲彬草属植物类群的15个物种中分离到47个Pgk1基因单倍型序列。将这47个单倍型序列与4个拟鹅观草属物种和11个冰草属植物类群的Pgk1基因序列进行了序列与系统发育分析,探讨仲彬草属植物系统关系及地理分化。结果显示:(1) P基因组单倍型序列中,青藏高原的仲彬草属物种与来自内蒙古的Ag.cristatum及Ag.mongolicum在1251-1334bp处多了一个81bp插入,而中亚半荒漠-草原植被区的仲彬草属物种和中亚其他地区的Ag.cristatum没有发现81bp插入;(2)仲彬草属与拟鹅观草属和冰草属具有密切的亲缘关系;(3)拟鹅观草属可能没有直接作为St基因组供体来源参与仲彬草属物种形成;(4)中亚和青藏高原的仲彬草属物种可能为独立起源的两个支系,独立起源可能是导致仲彬草属存在中亚-青藏高原的地理分化格局的原因。
     5.从27个赖草属物种分离获得代表不同基因组直系来源的50个Acc1基因的单倍型序列和42个Pgk1基因的单倍型序列。将这些单倍型序列与小麦族35个二倍体植物的Acc1和Pgk1基因序列进行了系统比较分析,探讨赖草属植物系统关系、基因组供体来源及地理分化。结果表明:(1)青藏高原赖草属植物在Acc1基因序列上比其他供试的赖草属植物多了一个33bp插入;(2)赖草属植物Acc1基因的Xm-copy序列与冰草属植物和Eremopyrum triticeum的Acc1基因序列比赖草属植物Ns-copy序列和新麦草属植物的Acc1基因序列多了一个TATA插入;(3)赖草属与新麦草属具有密切的亲缘关系,赖草属的Ns基因组起源于新麦草属;(4)赖草属Xm基因组的起源可能涉及到冰草属的P基因组、Ere.triticeum的F基因组和一个未知来源的基因组;(5)赖草属植物Ns基因组存在多个不同的起源;(6)赖草属植物存在北美-青藏高原-中亚的地理分化;(7)北美赖草可能由中亚的原始种通过白令陆桥迁徙而来,而青藏高原赖草由中亚的原始种演变而来。
The tribe Triticeae,including about 350-450 species distributed in the temperate and subtropical and tropic regions,is of enormous important group in Poaceae.Triticeae includes some of the world's most important cereal,wheat(Triticum aestivum L.),barley (Hordeum vulgare L.),and rye(Secale cereale L.),and a significant number of important forage grasses(e.g.,Elymus sibiricus L.,Leymus chinensis(Trio.) Tzvelve,and Agropyron cristatum(L.) Gaerton).The economic importance of the group makes relationships among its species of particular interest.A clear picture of phylogenetic relationships would point to wild taxa that may serve as sources of novel gene pool,focus efforts at conservation of germplasm,and help set priorities for preservation of grassland habitats.
     Triticeae consists of numerous diploids and polyploids,and polyploidy leads to the lineages of at least 70%of the species within Triticeae are polyploids.Different diploids and polyploids were included in different genera.According to the system of genome classifications,the main diploid genera includes Aegilops,Agropyron,Australopyrum, Crithopsis,Dasypyrum,Eremopyrum,Festucopsis,Henrardia,Heteranthelium,Hordeum, Lophopyrum,Peridictyon,Psathyrostachys,Secale,Pseudoroegneria,Taeniatherum and Thinopyrum,while the main polyploid genera includes Triticum,Elymus,Hystrix,Elytrigia, Roegneria,Kengyilia and Leymus.Hystrix,Elytrigia,Roegneria and Kengyilia were combined into Elymus sensu lato.The species of diploid genera,Elymus sensu lato,and Leymus are at least 85%of the species of Triticeae.The investigation of phylogenetic relationship among these genera can help understand the phylogeny and evolutionary history of Triticeae,thus making them guidance for the improvement of crop and forage. Despite decades of intensive efforts,there are still many unsolved questions to be answered, such as the phylogenetic relationships among genome and genera,the definition of genera, the origin of species,geographical differentiation,and the origin of unknown genome.
     In this study,we evaluated the phylogeny and geographical differentiation of diploid genera,Hystrix,Elymus sensu lato,and Leymus based on the haplotype of single-copy nuclear Acc1 and Pgk1 gene.One hundred and fifty-eight haplotypes of the Acc1 gene and 185 haplotypes of the Pgk1 gene were isolated from 107 plant taxa studied here.Sequence and phylogenetic analysis of haplotype of the Acc1 and Pgk1 gene showed as follows:
     1.To estimate phylogenetic relationships among the genome of Triticeae,the sequences of single-copy nuclear Acc1 and Pgk1 gene were isolated from 33 diploid taxa representing 18 basic genomes in Triticeae.Although phylogenetic analysis indicates conflicting Acc1 and Pgk1 gene trees,individul and combined data suggests that:(1) Triticum/Aegilops complex are non-monophyletic,and Triticum/Aegilops complex are closely related to Taeniatherum(Ta) and Thinopyrum(E~b);(2) Lophopyrum elongatum(E~e) and Thinopyrum bessarabicum(E~b) are evolutionary distinct;(3) there may be the same origin among Pseudoroegneria(St),Lophopyrum(E~e) and Australopyrum(W);(4) Peridictyon(Xp) is closely related to Dasypyrum(V);(5) the involvement of Eremopyrum (F) into Agropyron(P) may be a result of introgression.
     2.To evaluate the phylogenetic relationships between Hystrix and its related genera, sequences of the Acc1 and Pgk1 gene were analysed for five Hystrix taxa,together with three Pseudoroegneria(St) species,two Hordeum(H) species,two Psathyrostachys(Ns) species,four Elymus(StH) species,five Leymus(NsXm) species,Thinopyrum bessarabicum(E~b),and Lophopyrum elongatum(E~e).Sequence analyses indicated that an 182bp Stowaway insertion occurred in the Acc1 sequences of E.wawawaiensis,and an 81bp Stowaway insertion occurred in the Pgk1 sequences of L.arenarius and Psa.juncea, and a 29bp Copia insertion occurred in the Pgk1 sequences of Hy.duthiei,Hy.duthiei ssp. longearistata and L.akmolinensis.Phylogenetic analyses indicated that:(1) Hy.patula was closely related to Pseudoroegneria,Hordeum and Elymus;(2) Hy.duthiei,Hy.duthiei ssp. longearistata,Hy.coreana and Hy.komarovii were closely related to Psathyrostachys and Leymus.Based on these results,it is reasonable to transfer Hy.patula from Hystrix to Elymus,and to combine Hy.duthiei,Hy.duthiei ssp.longearistata,Hy.coreana and Hy. komarovii into Leymus.
     3.Using the sequences of two single-copy nuclear gene(Acc1 and Pgk1), phylogenetic analysis was performed on 33 accessions of the genus Elymus L.sensu lato in the tribe Triticeae and 33-35 diploid species representing 18 genome.Sixty-seven haplotypes of Acc1 sequence and 59 haplotypes of Pgk1 sequence were obtained from these 35 taxa used here.Phylogenetic analysis of haplotype suggests that:(1) the St,H,P, and W genomes in polyploid Elymus sensu lato were donated by Pseudoroegneria, Hordeum,Agropyron,and Australopyrum,respectively;(2) the Y genome is closely related to the V genome of Dasypyrum and Xp genome of Peridictyon;(3) tetraploid StH species is in good agreement their geographical origin-Eurasian and North American distinction;(4) North America Pse.spicata may sever as the St genome donor during the speciation of tetraploid StH species from North America,while the St genome of Elymus sensu lato in Eurasian might have been derived from more than one Pseudoroegneria species/populations;(5) multiple origin might occurred in some species of Elymus sensu lato;(6) there is a pattern of network evolution in Elymus,Roegneria and Kengyilia.
     4.Forty-seven haplotyps of the Pgk1 gene were isolated from 15 polyploid Kengyilia. These haplotypes were analysis together with the haplotypes from 4 Pseudoroegneria and 11 Agropyron taxa.Sequence analysis indicats that the P-copy sequences of the Kengyilia species from Qinghai-Tibetan Plateau and two Agropyron species(Ag.cristatum and Ag. mongolicum) from Nei-monglia of China shared an 81 bp insertion at position 1251-1334 bp,while this insertion were not found in other St-copy,Y-copy sequences,even though the P-copy sequences of the Kengyilia species and Agropyron species from central region. Phylogenetic analysis suggests that:(1) Kengyilia is closely related to Pseudoroegneria and Agropyron;(2) there may no hybridization events involving hexaploid Kengyilia species;(3) the central Asia and Qinghai-Tibetan Plateau Kengyilia species have independent alloploid origins with different P-genome donors,which may result in the geographical distinction of central Asia-Qinghai-Tibetan Plateau.
     5.Fifty haplotypes of the Acc1 gene and forty-two haplotypes of the Pgk1 gene were isolated from 27 Leymus species.These haplotype were analysed with the haplotype from 35 diploid taxa representing 18 basic genomes in Triticeae.Sequence analysis indicates that:(1) Ns-copy sequence of Acc1 gene of Leymus species from Qinghai-Tibetan Plateau has a 33bp insertion compared to the species distributed in other regions;(2) the Xm-copy sequences of Acc1 gene of Leymus species and the sequences of Agropyron species and Eremopyrum triticeum share a 4-bp TATA insertion in the intron region compared to the Ns-copy sequences.Phylogenetic analysis suggests that:(1) the Ns genome of Leymus is donated by Psathyrostachys;(2) the Xm genome in Leymus might originate from the P genome of Agropyron and the F genome of Ere.triticeum and an unknown origin;(3) the Ns genome of Leymus might have been derived from more than one Psathyrostachys species/populations;(4) Leymus species is in good agreement the geographical pattern of North America-Qinghai-Tibetan Plateau-central Asia;(5) North America Leymus species might originate from colonization of East Asia via the Bering land bridge,and the Leymus species from Qinghai-Tibetan Plateau might originate from central Asia.
引文
1.蔡联炳.2001.以礼草属的地理分布植物分类学报.39(3):248-259
    2.蔡联炳,苏旭.2007.国产赖草的分类修订.植物研究,27(6):651-660
    3.柴守诚,刘大钧,陈佩度等.1999.大赖草和新麦草物种专化DNA重复序研究Ⅱ在小麦族中分布的多态性.西北农业大学学报,27(4):1.4
    4.耿以礼.1959.中国主要植物图说—禾本科.北京:科学出版社
    5.郭本兆.1987.中国植物志(第9卷3分册).北京:科学出版社
    6.李锡文,李捷.1993.横断山脉地区种子植物区系的初步研究.云南植物研究,15(3):217-231
    7.颜济,杨俊良.1990.耿氏草属Kengkilia,中国禾本科小麦族一新属.四川农业大学学报,8(1):75-76
    8.颜济,杨俊良.2007.小麦族生物系统学.(第2卷).北京:中国农业出版社
    9.颜济,杨俊良.2008.小麦族系统学(第4卷).北京:中国农业出版社
    10.杨瑞武.2004.11个四倍体赖草属物种的核型研究.植物分类学报,42(2):154-161
    11.智丽,滕中华.2005.中国赖草属植物的分类、分布的初步研究.植物研究,25(1):22-25
    12.周永红,杨俊良,颜济等.1999.小麦族下Hystrix longearistata和Hystrix duthiei的生物学研究.植物分类学报,37(4):386-393
    13.Anamthawat-Jonsson K,Bragason BT,Bodvarsdottir SK.1999.Molecular variation in Leymus species and populations.Mol.Ecol.8(2):309-315
    14.Anamthawat-Jonsson K,B(o|¨)dvarsdottir SK.2001.Genomic and genetic relationships among species of Leymus(Poaceae:Triticeae) inferred from 18S-26S ribosomal genes.Am.J.Bot.88:553-559
    15.Assadi M.1995.Meiotic configuration and chromosome number in some Iranian species of Elymus L.and Agropyron Gaerter(Poaceae:Triticeae).Bot.J.Linn Soc.117(2):159-168
    16.Baden C.Frederiksen S.Seberg O.1997.A taxonomic revision of the genus Hystrix(Triticeae,Poaceae).Nord.J.Bot.17:449-468.
    17.Barkworth ME,Atkins RJ.1984.Leymus Hochst.(Gramineae:Triticeae) in North America:taxonomy and distribution.Am.J.Bot.71:609-625
    18.Barkworth ME,Dervey DR.1985.Genomically based genera in the perennial Triticeae of North America:identification and membership.Am.J.Bot.72(6):767-776
    19.Barrier M,Robichaux RH,Purugganan MD.2001.Accelerated regulatory gene evolution in an adaptive radiation.Proc.Natl.Acad.Sci.USA 98:10208-10213
    20.Baum BR,Yen C,Yang JL.1991.Roegneria:its generic limits and justification for its recognition.Can.J.Bot.69:282-294
    21.Bentham C.1881.Notes on Gramineae.Bot.J.Linn Soc.18:14-134
    22.Bentham G,Hooker J D.1883.Gramineae.In:Genera Plantarum.London:L.Reeve & Co.3:1074-1215
    23. Bothmer R von, Flink J, Landstrom T. 1986. Meiosis in interspcific Hordeum hybrids I diploid combinations. Can. J. Genet. Cytol. 28: 525-535
    
    24. Bothmer R von, Jacobsen N, Baden C, J(?)rgensen RB, Linde-Laursen I. 1995. An ecogeographical study of the genus Hordeum. 2nd ed. Rome, Italy: IPGRI.
    
    25. Brochmann C, Borgen L, Stabbetorp OE. 2000. Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae). Plant Syst. Evol. 220: 77-92
    
    26. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R. 2004. A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J. 40(1): 143-50
    
    27. Casacuberta J M, Santiago N. 2003. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1-11
    
    28. Chaney RW. 1974. centers and migration routes. Ecol. Monogr. 17:140-149
    
    29. Church GL. 1967. Taxonomic and genetic relationships of eastern North American species of Elymus with setaceous glums. Rhodora 69:330-351
    
    30. Clayton WD, Renvoize SA. 1986. Genera Gramineum. Grasses of the world. Royal Botanical Gardens, London, UK.
    
    31. Cronn RC, Small RL, Wendel JF. 1999. Duplicated genes evolve independently after polyploidy formation in cotton. Proc. Natl. Acad. Sci. USA 96:14406-14411
    
    32. Dewey DR. 1972. Genome analysis of hybrids between diploid Elymus juncea and five tetraploid Elymus species. Bot. Gaz. 133:415-420
    
    33. Dewey DR. 1982. Genomic and phylogenetic relationships among North American Perennial Triticeae. In: Estes JR et al., (eds). Grasses and Grasslands. Norman: University of Oklahoma Press, pp51-88
    
    34. Dewey DR. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed), Gene Manipulation in plant improvement. New York: Plenum, pp209-280
    
    35. Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem.Bull. 19:11-15
    
    36. Doyle JJ, Doyle JL. 1997. The cytosolic glutamine synthetase gene family in Leguminosae: Gene phylogeny and evolution of its role in nodulation. Am. J. Bot. 84S: 188
    
    37. Doyle JJ, Doyle JL, Brown AHD, Palmer RG. 2002. Genomes, multiple origins, and lineage recombination in the Glycine tomentella (Leguminosae) polyploid complex: histone H3-D gene sequences. Evolution 56:1388-1402
    
    38. Dubcovsky J, Schlatter A R, Echaide M. 1997. Genome analysis of South American Elymus (Triticeae) and Leymus (Triticeae) species based on variation in repeated nucleotide sequences. Genome 40(4): 505-520
    
    39. Ellneskog-Staam P, Bothmer R von, Anamthawat-J6nsson K, Salomon B. 2007. Genome analysis of species in the genus Hystrix (Triticeae; Poaceae). Plant Syst. Evol. 265,241-249.
    40. Emshwiller E, Doyle JJ. 2002. Origins of domestication and polyploidy in oca (Oxalis tuberosa: Oxalidaceae). 2. Chloroplast-expressed glutamine synthetase data. Am. J. Bot. 89(7): 1042-1056
    
    41. Feschotte C, Jiang N, Wessler S R. 2002. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3: 329-341
    
    42. Ford VS, Gottlieb LD. 2002. Single mutations silence PgiC2 genes in two very recent allotetraploid species of Clarkia. Evolution 56,699-707
    
    43. Fortune PM, Schierenbach KA, Ainouche AK, Jacquenmin J, Wendel JF, Ainouche ML. 2007. Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species. Mol. Phylogenet. Evol. 42: 1040-1055.
    
    44. Frederiksen S. 1991. Taxonomic studies in Eremopyrum (Poaceae). Nord. J. Bot. 11: 271-285.
    
    45. Frederiksen S. 1993. Taxonomic studies in some annual genera of the Triticeae (Poaceae). Nord. J. Bot. 13:481-493
    
    46. Ge S, Sang T, Lu BR, Hong DY. 1999. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc. Natl. Acad. Sci. USA 96: 14400-14405
    
    47. Gornicki P, Fans J, King I, Podkwinski J, Gill B. Haselkorn R. 1997. Plastid-localised acetyl-Coa carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc. Natl. Acad. Sci. USA 94: 14179-14184
    
    48. Gross BL, Schwarzbach AE, Riesberg LH. 2003. Origin(s) of the diploid hybrid species Helianthus deserticola (Asteraceae). Am. J. Bot. 90:1708-1719
    
    49. Gu YQ, Coleman-Derr D, Kong X, Anderson OD. 2004. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol. 135(1): 459-70
    
    50. Helfgott, DM, Mason-Garner RJ. 2004. The evolution of North American Elymus (Triticeae, Poaceae) allotetraploids: evidence from phosphoenolpyruvate carboxylase gene sequences. Syst. Bot. 29(4): 850-861
    
    51. Hitchcock AS. 1951. Tribe 3. Hordeae. In: Manual of the Grasses of the United States. U.S. Government Printing Office, Washington, D.C, pp. 230-280
    
    52. Hochstetter CF. 1848. Nachtr(a|¨)glicher Commentar zu meiner Abhandlung: "Aufbau der Graspflanze etc.". Flora 7:105-118
    
    53. Hole DJ, Jensen KB, Wang RR-C, et al. 1999. Molecular marker analysis of Leymus flavescens and chromosome pairing in Leymus flavescens hybrids (Poaceae:Triticeae). Inter J. Plant Sci. 160(2): 371-376
    
    54. Hong DY. 1993. Eastern Asian-North American disjunctions and their biological significance. Cathaya 5:1-39
    
    55. Hsiao C, Chatterton NJ, Asay KH, Jensen KB. 1994. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37(1): 112-120
    
    56. Hsiao C, Chatterton NJ, Asay KH, Jensen KB. 1995. Phylogenetic relationships of the monogenomic species of the wheat tribe,Triticeae(Poaceae),inferred from nuclear rDNA(internal transcribed spacer) sequences.Genome 38:221-223
    57.Huang SX,Sirikhachornkit A,Su S J,Fairs J,Gill B,Haselkom R,Gornicki P.2002a.Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat.Proc.Natl.Acad.Sci.USA 99:8133-8138
    58.Huang SX,Sirikhachornkit A,Fads JD,Su XJ,Gill BS,Haselkorn R,Gomicki P.2002b.Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses.Plant Mol.Biol.48:805-820
    59.Huang SX,Su X J,Haselkorn R,Gornicki P.2003.Evolution of switchgrass(Panicum virgatum L.)based on sequences of the nuclear gene encoding plastid acetyl-CoA carhoxylase.Plant Sci.164:43-49
    60.Huelsenbeck JP,Ronqulst FR.2001.MrBayes:Bayesian inference of phylogenetic trees.Bioinformatics 17:754-755
    61.Hughes CE,Bailey CD,Harris SA.2002.Divergent and reticulate species relationships in Leucaena(Fabaceae) inferred from multiple data sources:insights into polyploid origins and nrDNA polymorphism.Am.J.Bot.89:1057-1073
    62.Jakob SS,Blattner FR.2006.A chloroplast genealogy of Hordeum(Poaceae):long-term persisting haplotypes,incomplete lineage sorting,regional extinction,and the consequences for phylogenetic inference.Mol.Biol.Evol.23(8):1602-1612
    63.Jensen KB.1989.Cytology and origin of Elymus abolinii,and its F_1 hybrids with Pseudoroegneria spicata,E.lanceotalus,E.dentatus ssp.ugamicus,and E.drobovii(Poaceae;Triticeae).Genome 32:468-474
    64.Jensen KB.1990.Cytology and Taxonomy of Elymus kengii,E.grandiglumis,E.alatavicus and E.batalinii(Triticeae:Poaceae).Genome 33(3):563-570.
    65.Jensen KB.1996.Genome analysis of Eurasion Elymus thoroldianus,E.melantherus,and E.kokonoricus(Triticeae:Poaceae).Int.J.Plant Sci.157:136-141
    66.Jensen KB,Wang RR-C.1997.Cytological and molecular evidence for transferring Elymus coreanus and Elymus californicus from the genus Elymus to Leymus(Poaceae:Triticeae).Int.J.Plant Sci.158:872-877
    67.Johnson LA,Johnson RL.2006.Morphological delimitation and molecular evidence for allopolyploidy in Collomia wilkenii(Polemoniaceae),a new species from northern Nevada.Syst.Bot.31:349-360.
    68.Jauhar PP.1990.Multidisciplinary approach to genome analysis in the diploid species,Thinopyrum bessarabicum and T.elongatum(Lophoprum elongatum) of the Triticeae,Theor.Appl.Genet.80:523-536.
    69.Kellogg EA.1989.Comments on genomic genera in the Triticeae(Poaceae).Am.J.Bot.76:796-805.
    70.Kellogg EA,Appels R.1995.Intraspecific and interspeeific variation in 5S RNA genes are decoupled in diploid wheat relatives.Genetics 140:325-343
    71.Kellogg EA,Appels R,Mason-Gamer RJ.1996.When genes tell different stories:the diploid genera of the Triticeae(Graminea).Syst.Bot.21:321-347
    72.Kihara H,Nishiyama I.1930.Genomanalyse bei Triticum und Aegilops.I.Genomaffinit(a|¨)ten in tri-,tetra-,und pentaploiden Weizenbastarden.Cytologia 1:270-284.
    73.Kihara H.1975.Interspecific relationship in Triticum and Aegilops.Seiken Ziho,15(1):1-2
    74.Kilian B,(O|¨)zkan H,Deusch O,Effgen S,Brandolini A,Kohl J,Martin W,Salamini F.2007.Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes.Mol.Biol.Evol.24:217-227
    75.Kimber C.1983.Genome analysis in the genus Triticum.In:Sakamoto S(ed),Proceedings of the 6th International Wheat Genetic Symposium.Japan.Kyoto University Press,Kyoto,pp 23-28
    76.Lihova J.Shimizu KK.Marhold K.2006.Allopolyploid origin of Cardamine asarifolia (Brassicaceae):incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene.Mol.phylogenet.Evol.39:759-786
    77.Linder CR,Rieseberg LH.2004.Reconstructing patterns of reticulate evolution in plants.Am.J.Bot.91:1700-1708
    78.Linnaeus C.1763.Species Plantarum.Facsimile edition
    79.Liu QL,Ge S,Tang HB,Zhang XL,Zhu GF,Lu BR.2006.Phylogenetic relationships in Elymus (Poaceae:Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences.New Phytol.170:411-420
    80.Liu ZP,Chen ZY,Pan J,Li XF,Su M,Wang LJ,Li HJ,Liu GS.2008.Phylogenetic relationships in Leymus(Poaceae:Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences.Mol.phylogenet.Evol.46(1):278-289
    81.L(o|¨)ve A.1980.IOPB chromosome number reports.LXVI.Poaceae-Triticeae-Americanae.Taxon 29:163-169
    82.L(o|¨)ve A..1982.Generic evaluation of the wheatgrass.Biol Zentralbl.101:199-212
    83.L(o|¨)ve A..1984.Conspectus of the Triticeae.Feddes Repert.95:425-521
    84.Lu BR,Bothmer R von.1990.Intergeneric hybridization between Hordeum and Asiatic Elymus.Hereditas 112:109-116
    85.Lu BR.1993.Meiotic studies of Elymus nutans and E.jacquemontii(Poaceae:Triticeae) and their hybrids with Pseudoroegneria spicata and seventeen Elymus species.Plant Syst.Evol.186,193-221.
    86.Lu BR.1994.The genus Elymus L.in Asia.Taxonomy and biosystematics with special reference to genomic relationships.Proceedings of the 2nd Intenational Triticeae Symposium,Logan,Utah,USA:219-233
    87.Lu BR.1995.Diversity and conservation of the Triticeae genetic resources.Chinese Biodiversity 3(1):63-68
    88.Maddison WP.1997.Gene trees in species trees.Syst.Biol.46:523-536
    89.Mason-Gamer RJ.2001.Origin of North American Elymus(Triticeae:Poaceae) allotetraploids based on granule-bound starch synthase gene sequences.Syst.Bot.26:757-768.
    90.Mason-Gamer RJ.2004.Reticulate evolution,introgression,and intertribal gene capture in an allobexaploid grass.Syst.Biol.53:25-37
    91.Mason-Gamer RJ,Kellogg EA.2000.Phylogenetic analysis of the Triticeae using the starch synthase gene,and a preliminary analysis of some North American Elymus species.In:Jacobs,S.W.L.,Everett,J.(Eds.),Grasses:systematics and evolution.CSIRO,Melbourne,pp.102-109
    92.Mason-Gamer R J,Orme NL,Anderson CM.2002.Phylogenetic analysis of North American Elymus and the monogenomic Triticeae(Poaceae) using three chloroplast DNA data sets.Genome 45:991-1002
    93.Mason-Gamer RJ.2005.The β-amylase genes of grasses and a phylogenetic analysis of the Triticeae(Poaceae).Am.J.Bot.92:1045-1058.
    94.Mason-Gamer RJ.2008.Alloheaploidy,introgression,and the complex phylogenetic history of Elymus repens(Poaceae).Mol.Phylogenet.Evol.47:598-611
    95.Moench C.1794.Methods Plantas Horti botanici et Agri marburgensis a Staminum Situ describendi.Margburgi Cattorum
    96.Mort ME,Crawford D J.2004.The continuing search:low-copy nuclear sequences for low-level plant molecular phylogenetic studies.Taxon 53:257-261
    97.Nevski SA.1933.Uber das system der tribe Hordeae Benth.Flora et Systematica φrgaard,M.,and Heslop-Harrison,J.S.(1994).Relationships between species of Leymus,Psathyrostachys and Hordeum(Poaceae,Triticeae) inferred from Southern hybridization of genome and cloned DNA probes.Plant Syst.Evol.189:217-231
    98.Novacek MJ.1999.100 million years of land vertebrate evolution:the Cretaceous-early Tertiary transition.Ann.Missouri.Bot.Gard.86:230-258
    99.φrgaard M,Heslop-Harrison JS.1994.Relationships between species of Leymus,Psathyrostachys and Hordeum(Poaceae,Triticeae) inferred from Southern hybridization of genome and cloned DNA probes.Plant Syst.Evol.189:217-231
    100.Posada D,Crandall KA.1998.Modeltest:testing the model of DNA substitution.Bioinformatics 14:817-818
    101.Petersen G,Seberg O.1997.Phylogenetic analysis of the Triticeae(Poaceae) based on rpoA sequence data.Mol.Phylogenet.Evol.7:217-230.
    102.Petersen G,Seberg O.2002.Molecular evolution and phylogenetic application of DMC1.Mol.Phylogenet.Evol.22:43-50.
    103.Petersen G,Seberg O,Baden C.2004.A phylogenetic analysis of the genus Psathyrostachys (Poaceae) based on one nuclear gene,three plastid genes,and morphology.Plant Syst.Evol.249:99-110
    104.Petersen G,Seberg O,Yde M,Berthelsen K.2006.Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A,B and D genomes of common wheat(Triticum aestivum).Mol.Phylogenet.Evol.39:70-82
    105.Pilger R.1949.Addimenta Agrostologica.I.Triticeae(Hordeae).Bot.Jahrb.74:1-27
    106.Redinbaugh MG,Jones TA,Zhang Y.2000.Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids.Genome 43(5):846-852
    107.Runemark H,y Hence WK.1968.Elymus and Agropyron,a problem of generic delimitation.Bot.Not.121:51-79
    108.Sang,T.2002.Utility of low-copy nuclear gene sequences in plant phylogenetics.Crit.Rev.Biochem.Mol.Biol.37:121-147
    109.Seberg O,Petersen G.1998.A critical review of concepts and methods used in classical genome analysis.Bot.Rev.64:373-417.
    110.Seberg O,Frederiksen S.2001.A phylogenetic analysis of the monogenomic Triticeae(Poaceae)based on morphology.Bot.J.Linn.Soc.136:75-97.
    111.Sha LN,Yang RW,Fan X,Wang XL,Zhou YH.2008.Phylogenetic analysis of Leymus(Poaceae:Triticeae) inferred from nuclear rDNA ITS sequences.Biochem.Genet.46:605-619
    112.Sha LN,Fan X,Yang RW,Kang HY,Wang XL,Ding CB,Zhang L,Zheng YL,Zhou YH.2009.Phylogenetic relationships between Hystrix and its closely related genera(Triticeae;Poaceae)based on nuclear Acc1,DMC and chloroplast trnL-F sequences.Mol.Phylogenet.Evol.(in press)
    113.Slageren MW.1994.Wild wheats:a monograph of Aegilops L.and Amblyopyrum(Jaub.& Spach)Eig(Poaceae).Wageningen Agric.Univ.,Press,Wageningen
    114.Slotte T,Ceplitis A,Neuffer B,Hurka H,Lascoux M.2006.Intrageneric phylogeny of Capsella (Brassicaceae) and the origin of the tetraploid C.bursa-pasteris based in chloroplast and nuclear DNA sequences.Am.J.Bot.93:1714-1724.
    115.Smith JF,Funke MM,Woo VL.2006.A duplication of gcyc predates divergence within tribe Coronanthereae(Gesneriaceae):phylogenetic analysis and evolution.Plant Syst.Evol.261:245-256.
    116.Soltis DE,Soltis PS.1999.Polyploidy:recurrent formation and genome evolution.Trends Ecol.Evol.14:348-352
    117.Soltis DE,Soltis PS,Tare JA.2003.Advances in the study of polyploidy since Plant speciation.New phytol.161:173-191
    118.Sun GL,Yen C,Yang JL.1995.Morphology and cytology of interspecific hybrids involving Leymus multicaulis(Poaceae).Plant Syst.Evol.194:83-91
    119.Shiotani I.1968.Species differentiation in Agropyron,Elymus,Hystrix,and Sitanion.Proceedings of the 12~(th) Internaional Congress of Genetics,The Science Council of Japan,Tokyo.pp 184
    120.Sun GL,Ni Y,Daley,T.2008.Molecular phylogeny of RPB2 gene reveals multiple origin,geographic differentiation of H genome,and the relationship of the Y genome to other genomes in Elymus species.Mol.Phylogenet.Evol.46:897-907
    121.Svitashev S,Bryngelsson T,Li X,Wang RR-C.1998.Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus.Genome 41:120-128
    122.Swofford DL.2002.PAUP~*.Phylogenetie Analysis Using Parsimony(~* and Other Methods).Version 4.Sinauer Associates,Sunderland.MA
    123.Thompson JD,Higgins DG,Gibson TJ.1994.CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting positions-specific gap penalties and weight matrix choice.Nucleic.Acids Res.22:4673-4680
    124.Tiffney BH.1985.The Eocene North Atlantic land bridge:its importance in Tertiary and modern phytogeography of the Northern Hemisphere.J.Arnold Arbo.66:243-273
    125.Torabinejad J,Mueller RJ.1993.Genome analysis of intergeneric hybrids of apomictie and sexual Australian Elymus species with wheat,barley and rye:implications for the transfer of apomixes to cereals.Theor.Appl.Genet.86(2):288-294
    126.Tzvelev NN.1976.Zlaki SSSR(Grasses of the Soviet Union).Leningrad:Aeademiya Nauk SSSR.pp 176-189
    127.Wang RR-C,Dewey DR,Hsiao C.1986.Genomic analysis of the tetraploid Pseudoroegneria tauri.Crop Sci.26:723-727
    128.Wang RR-C,von Bothmer R,Dvorak J,Linde-Laursen I,Muramatsu M.1994.Genome symbols in the Triticeae(Poaceae).In:Wang RR-C,Jensen KB,Jaussi C(eds),Proceedings of the 2nd International Triticeae Symposium,Logan,Utah,USA.Utah State University Publisher,Utah.pp29-34
    129.Wang RR-C,Hsiao C.1984.Morphology and cytology of interspecific hybrid of Leymus mollis.J Herod.75:488-492
    130.Wang RR-C,Hsiao C.1989.Genome relationship between Thinopyrum bessarabicum and T.elongatum:revisited.Genome 32:802-809.
    131.Wang RR-C,Jensen KB.1994.Absence of the J genome in Leymus species(Poaeeae:Tritieeae):evidence from DNA hybridization and meiotic pairing.Genome 37:231-235
    132.Wang RR-C,Zhang JY,Lee BS,Jensen KB,Kishii M,Tsujimoto H.2006.Variations in abundance of 2 repetitive sequences in Leymus and Psathyrostachys species.Genome 49:511-519
    133.Wang XR,Szmidt AE,Lewandowski A,Wang ZR.1990.Evolutionary analysis of Pinus densata (Masters),a putative Tertiary hybrid.1.Allozyme variation.Theor.Appl.Genet.80:635-640
    134.Welch ME,Rieseberg LH.2002.Habitat divergence between a homoploid hybrid sunflower species,Helianthus paradoxus(Asteraeeae),and its progenitors.Am.J.Bot.89:472-478.
    135.Wendel JF,Doyle JJ.1998.Phylogenetic incongruence:window into genome history and molecular evolution.In:Soltis DE,Soltis PS,Doyle J J,(eds).Molecular systematics of plants Ⅱ:DNA sequencing.Dordrecht,the Netherlands:Kluwer,pp265-296136.Winkworth RC,Donoghue M J.2004.Viburnum phylogeny:evidence from the duplicated nuclear gene GBSSI.Mol.Phylogenet.Evol.33:109-126.137.Wortley AH,Rudall PJ,Harris DJ,Scotland RW.2005.How much data are needed to resolve a difficult phylogeny? Case study in Lamiales.Systematic Biology 54:697-709.
    138.Xia X,Xie Z.2001.DAMBE:Software package for data analysis in molecular biology and evolution.J Hered.92:371-373.
    139.Yang JL,Yen C,Baum BR.1992.Kengyilia:Synopsis and key to species.Hereditas 116:25-28
    140.Yang RW,Zhou YH,Zhang Y,Zheng YL,Ding CB.2006.The genetic diversity among Leymus species based on random amplified microsatellite polymorphism(RAMP).Genet.Res.Crop Evol.53:139-144
    141.Yang RW,Zhou YH,Ding CB,Zheng YL,Zhang L.2008.Relationships among Leymus species assessed by RAPD markers.Biol.Plant.52:237-241
    142.Yen C,Yang JL.2008.Triticeae Biosystematics(vol.4).Chinese Agricultural Press,Beijing.In Chinese.
    143.Zeng J,Zhang L,Fan X,Zhang HQ,Yang RW,Zhou YH.2008.Phylogenetic analysis of Kengyilia species based on nuclear ribosomal DNA internal transcribed spacer sequences.Biol.Plant.52(2):231-236
    144.Zhang HB,Dvorak J.1991.The genome origin of tetraploid species of Leymus(Poaceae:Triticeae)inferred from variation in repeated nucleotide sequences.Am.J.Bot.78:871-884
    145.Zhang,H.Q.,Yang,R.W.,Dou,Q.W.,Tsujimoto,H.,Zhou,Y.H.,2006.Genome constitutions of Hystrix patula,H.duthiei ssp.duthiei and H.duthiei ssp.longearistata(Poaceae:Triticeae)revealed by meiotic pairing behavior and genomic in-situ hybridization.Chromosome Res.14,595-604.
    146.Zhang,H.Q.,Zhou,Y.H.,2006.Meiotic pairing behaviour reveals differences in genomic constitution between Hystrix patula and other species of the genus Hystrix Moench(Poaceae:Triticeae).Plant Syst.Evol.258,129-136.
    147.Zhang L,Zheng YL,Wei YM,Liu SG,Zhou YH.2005.The genetic diversity and similarities among Kengyilia species based on random amplified microsatellite polymorphism.Genet.Resour.Crop Evol.52:1011-1017
    148.Zhou YH,Zheng YL,Yang JL,Yen C,Jia JZ.2000.Relationships among Kengyilia species assessed by RAPD markers.Acta.phytotaxon,sin.38:515-521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700