维生素D_3对丝毛鸡β-防御素诱导表达及生长免疫性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防御素是家禽先天免疫的重要效应分子,在宿主抵御致病性微生物入侵时起至关重要的作用。维生素D_3(VD_3)作为一种免疫调节剂,能直接诱导哺乳动物单核细胞、上皮细胞等细胞系中抗菌肽和相关免疫因子的表达。然而,家禽体内尚未发现VD_3转化成1,25(OH)_2D_3活性形式的1α羟化酶。本研究旨在探讨VD_3与鸡体内β-防御素表达之间的关系,同时也探讨了VD_3对丝毛鸡生产免疫性能的影响,共包括以下六部分试验。
     试验一注射VD_3对丝毛鸡β-防御素表达的影响
     本试验旨在研究腹腔注射VD_3对丝毛乌骨鸡组织中β-防御素(β-defensins,AVBDs)、Toll样受体(Toll-like receptors,TLRs)、维生素D受体(vitamin D receptor,VDR)和24羟化酶(CYP24)基因表达的影响。采用实时荧光定量PCR方法检测VD_3对6周龄丝毛乌鸡肝、肾、脾、十二指肠、空肠、回肠、盲肠和法氏囊中AVBDs、TLRs、VDR和CYP24基因的表达变化。结果表明,在注射VD_3后24h内,6个AVBDs(AVBD-1、AVBD-5、AVBD-7、AVBD-9、AVBD-10和AVBD-12)、3个TLRs(TLR2、TLR6和TLR 7)、VDR和CYP24基因在肠道组织中均有显著的表达上调;TLR2、TLR5、VDR、AVBD-6、CYP24和GAL-1基因分别在肝、肾、脾组织也有显著的表达变化。结果提示,AVBDs、TLRs、VDR和CYP24基因的表达变化可能是受VD_3的诱导。
     试验二注射沙门氏菌对丝毛鸡β-防御素基因表达的影响
     本试验旨在研究腹腔注射灭活沙门氏菌对丝毛乌骨鸡组织中AVBDs和TLRs基因表达的影响。采用实时荧光定量PCR方法检测沙门氏菌对6周龄丝毛乌鸡胸腺、肝、肾、脾、十二指肠、空肠、回肠、盲肠和法氏囊中AVBDs和TLRs基因的表达变化。结果表明,在注射后32h内的不同时间点,8个AVBDs(AVBD-1、GAL-1、AVBD-5、AVBD-6、AVBD-7、AVBD-9、AVBD-10和AVBD-12)和5个TLRs(TLR1、TLR4、TLR5、TLR6和TLR7)基因在丝毛乌鸡胸腺、肝、肾、脾、十二指肠、空肠、回肠、盲肠和法氏囊中均有显著的表达上调。结果提示,在这9个组织中的8个AVBDs和5个TLRs基因的表达发生了大幅上调,AVBDs的表达可能是TLRs的介导所致。
     试验三饲喂VD_3对丝毛鸡β-防御素基因表达的影响
     本试验旨在研究VD_3饲喂剂量对丝毛乌骨鸡组织中AVBDs、TLRs、维生素D羟化酶结合蛋白(VDHA)和24羟化酶(CYP24)基因表达的影响。1—6周龄分别饲喂每千克饲料添加0、800、1600、3200和6400IU VD_3的饲粮。采用实时荧光定量PCR方法检测VD_3对6周龄丝毛乌鸡胸腺、肝、肾、脾、十二指肠、空肠、回肠、盲肠和法氏囊中AVBDs、TLRs、VDHA和CYP24基因的表达变化。结果表明,在饲喂800、1600、3200和6400IU VD_3的不同处理中,6个AVBDs(AVBD-1、AVBD-5、AVBD-7、AVBD-9、AVBD-10和AVBD-12)基因在胸腺、十二指肠、空肠、回肠、盲肠和法氏囊组织中的表达均有显著的影响;TLR2、TLR5、VDHA、AVBD-6、CYP24和GAL-1基因分别在肝肾脾组织也有显著的表达变化。结果提示,AVBDs、TLRs、VDHA和CYP24基因的表达变化是受VD_3的诱导,且AVBDs的表达可能受TLRs、VDHA和CYP24基因的介导,其表达与VD_3存在剂量依赖性,适宜的VD_3饲喂剂量可以使β-防御素基因的表达上调。
     试验四饲喂VD_3对丝毛鸡组织中免疫因子的影响
     本试验旨在研究VD_3对丝毛鸡体内细胞因子IL-2和IL-18表达的影响,探讨其与细胞因子表达丰度的关系。采用VD_3饲喂模型,利用实时荧光定量PCR技术检测细胞因子在胸腺、肠道和法氏囊中的表达变化。结果表明,长期饲喂6400IU的VD_3有助于IL-18基因在丝毛鸡胸腺、法氏囊和肠道的表达上调。饲喂高剂量也有助于IL-2在十二指肠、法氏囊和盲肠的表达上调,但在胸腺、空肠和回肠中高剂量对其有抑制作用。结果提示,VD_3剂量跟丝毛鸡体内细胞因子IL-2和IL-18表达丰度相关,但其对不同组织中的细胞因子的调节存在差异。
     试验五饲喂VD_3对丝毛鸡生长性能和免疫器官的影响
     本试验旨在研究日粮中添加不同水平VD_3对丝毛鸡生长性能和胸腺、脾和法氏囊组织的影响。选用7日龄仔鸡120只,随机分为6个处理,每个处理20羽。试验日粮参照中国地方鸡推荐标准配制,6个处理的日粮VD_3水平分别为:0、400、800、1600、3200和6400 IU/kg。研究结果表明:在本试验范围内,增加日粮VD_3水平可以改善丝毛鸡日增重和平均体重。随着日粮VD_3水平的增加,脾脏和法氏囊组织的质量指数和细胞数随之提高,但不影响胸腺组织的质量指数和细胞数。由此可见,在试验范围内,提高日粮VD_3水平可以显著提高丝毛鸡生长性能,显著增加脾脏和法氏囊组织的脾脏指数和法氏囊指数及其细胞数。
     试验六丝毛鸡β-防御素的组织表达分布及其基因片段的克隆与序列分析
     用设计的特异性引物,运用Real-time PCR方法分析了丝毛鸡6个β-防御素基因在不同组织中的分布,结果发现:AVBD-1、AVBD-5、AVBD-7、AVBD-9、AVBD-10、AVBD-12的表达广泛分布在胸腺、十二指肠、空肠、回肠、盲肠和法氏囊组织中,但表达量有差异。同样采用RT-PCR方法扩增丝毛鸡β-防御素基因AVBD-10。通过克隆、测序获得AVBD-10基因的cDNA核苷酸序列,并提交到GenBank,比较分析其与GenBank中注册的防御素基因核苷酸序列的相似性,其核苷酸的相似性在88%~100%之间。利用DNAStar软件对所获得的丝毛鸡β-防御素AVBD-10基因进行系统发育树分析,结果AVBD-10与GenBank中注册的丝毛鸡防御素AVBD-10基因不在同一分支,可能是品种血缘不纯造成的差异。
     总之,VD_3能诱导丝毛鸡体内防御素AVBDs的表达,其诱导功能的发挥与TLRs、VDHA和Cyp24的介导有关;适宜的VD_3饲喂剂量能上调组织中AVBDs、IL2、IL18基因的表达,提高生长性能和免疫器官质量指数。
Avian beta defensins(AVBDs) are important effector molecules of innate immune,which play a critical role in the host against invasion of pathogenic microorganisms.Vitamin D3(VD3) as an immunomodulator,could directly induce the expression of antimicrobial peptide and related immune factors in mammalian monocytes, epithelial cells,however in poultry,lacking the 1α-hydroxylase of vitamin D3 into the 1,25 dihydroxy-vitamin D3.Thus,they were studied that of the relationship of VD3 and the expression ofβ-defensin between,and the effect of VD3 on the performance of production and immune,including the following six experiments.
     Exp.1 Effect of Vitamin D3 by Injection on theβ-defensins in Taihe Silky Fowl
     The expression of AVBDs,Toll-like receptors(TLRs) and vitamin D receptor(VDR) was studied following in vivo by injection vitamin D_3.Healthy 6w Silky Fowl were abdominally injected with vitamin D_3 or untreated.Real-time PCR analyses reveal that injection of vitamin D_3 showed significantly up-regulated the expression of TLRs (TLR2,TLR6 and TLR7),VDR,AVBDs(AVBD 1,AVBD 5,AVBD 7,AVBD 9,AVBD 10 and AVBD 12) and 24-hydroxylase(CYP24A1) in the gut(duodenum,jejunum,ileum and cecum) during different time from 8 h to 24 h postinjection,similarly the expression of TLRs(TLR2,TLR5),VDR,AvBDs(AVBD-6,GAL-1) and 24-hydroxylase(CYP24A1) in the tissues(liver,spleen and kidney).These results suggest that expression of VDR,AVBDs and TLRs seems to be induced by vitamin D_3 and was concluded that the tissues expressing TLRs and VDR responds to vitamin D_3 and in turn upregulate this tissues cellular functions to synthesize AVBDs.Intraperitoneal injection of vitamin D_3 likely resulted in enhanced the expression of AVBDs,TLRs and VDR,which provided insight into factors important to the control of the innate immune response in the chicken.
     Exp.2 Effect of Salmonella enteritidis by Injection on theβ-defensins in Silky Fowl
     The expression of AVBDs and TLRs was studied following in vivo challenge with Salmonella enteritidis.Healthy 6w Silky Fowl were abdominally injected with Salmonella enteritidis or untreated.Real-time PCR analyses reveal that Salmonella enteritidis by injection showed significantly up-regulated the expression of eight avianβ-defensins (AVBD-1,GAL-1,AVBD-5,AVBD-6,AVBD-7,AVBD-9,AVBD-10 and AVBD-12) and five TLRs(TLR1,TLR4,TLR5,TLR6 and TLR7)in the tissues(thymus,duodenum, jejunum,ileum,cecum,bursa of fabricius,liver,spleen and kidney)at 0-32 h postinjection.These results suggest that the Silky Fowl expresses at least eight isoforms of avianβ-defensins and five types of TLRs with a greater expression in the 9 tissues. Thus expression ofβ-defensins and TLRs seems to be affected by Salmonella enteritidis, and was concluded that the tissues expressing TLRs responds to Salmonella enteritidis and in turn upregulate cellular functions to synthesize avianβ-defensins.Such expression and functions of TLRs may play an essential role in Silky Fowl innate immunity for host defense.
     Exp.3 Effects of Different Supplemental Levels of Vitamin D in Diets onβ-defensins in Taihe Silky Fowl
     The expression of AVBDs,TLRs and vitamin D3 hydroxylase associated protein (VDHA) was studied following in vivo by feeding vitamin D_3.Healthy Silky Fowl were fed vitamin D_3 of 0,800,1600,3200 and 6400 IU/kg feed from 1 to 6w.Real-time PCR analyses reveal that feeding of vitamin D_3 showed significantly changed the expression of AVBDs(AVBD 1,AVBD 5,AVBD 7,AVBD 9,AVBD 10 and AVBD 12) in the thymus, duodenum,jejunum,ileum,cecum and bursa of Fabricius during different dose from 800 to 6400 IU,similarly the expression of TLRs(TLR2,TLR5),VDHA and AVBDs (AVBD-6,GAL-1) in the tissues(liver,spleen and kidney).These results suggest that expression of VDHA,AVBDs and TLRs were induced by vitamin D_3 and the genes expression levels existed a dose-dependent in same tissues of birds with fed VD3 of different dose,and the appropriate dose of VD3 can directly up-regulate the gene expression ofβ-defensins in the tissues.
     Exp.4 Effect of Vitamin D on the Cytokines in Taihe Silky Fowl
     The aim of this experiment was to research the effects of VD3 on interleukin-2(IL-2) and interleukin-18(IL-18) in Taihe Silky Fowl.Real-time PCR analyses reveal that VD3 by injection showed significantly changed the expression of IL-2 and IL-18 in the tissues (thymus,duodenum,jejunum,ileum,cecum and bursa of fabricius).Long-term feeding 6400IU of VD3 in diets was up-regulated the expression of IL-18 in thymus,bursa of Fabricius and gut of Silky Fowl.Feeding high-dose VD3 also was up-regulated the expression of IL-2 in the duodenum,the bursa of Fabricius and cecal,but down-regulated the expression in the thymus,jejunum and ileum.The results suggest that doses of vitamin D3 effect the expression change of IL-2 and IL-18 in Silky Fowl,but this cytokines had regulated different in the different tissues.
     Exp.5 Effects of Different Supplemental Levels of Vitamin D in Diets on Growth performance and Immune Organs in Taihe Silky Fowl
     The aim of this experiment was to research the effects of different supplemental levels of vitamin D in diets on growth performance and immune organs in Taihe Silky Fowl.One hundred and twenty Taihe Silky Fowl were divided into 6 treatments and each treatments contained 20 Taihe Silky Fowl.Vitamin D levels in the diets of six treatments were 0, 400,800,1600,3200 and 6400 IU/kg respectively.Other nutrient levels all reached the recommended nutrient standard of Chinese chicken.The results showed that daily gain and average weight of Taihe Silky Fowl were improved with the increase of vitamin D levels. The number of cells of the spleen and bursa were improved with the increase of vitamin D levels,while the number of cells of thymus were not affected.In conclusion,the growth performance of Taihe Silky Fowl were improved with the increase of vitamin D levels,and the the number of cells of the spleen and bursa were improved significantly at the same time.
     Exp.6 Cloning,Sequencing and Distribution ofβ-defensins Gene in Silky Fowl
     With specific primers,six chichenβ-defensin cDNA fragments,were analyzed by real-time PCR from Silky Fowl.Different mRNA distribution of genes in different tissues, indicated that AVBD-1,AVBD-5,AVBD-7,AVBD-9,AVBD-10 and AVBD-12 were widely expressed in thymus,duodenum,jejunum,ileum,caecum and bursal tissue,but there were difference in expression.AVBD-10 was amplified by reverse transcription-polymerase chain reaction(RT-PCR).After being sequenced,AVBD-10 cDNA fragments were identified and deposited to GenBank TM.The results of sequence comparison with theβ-defensin gene sequences published in GenBank TM indicated that nucleotide similarity of the AVBD-10 genes ranged from 88%to 100%.Analysis by DNAstar showed that Silky Fowl AVBD-10 by registered of the GenBank and sequenced AVBD-10 gene were not the same embranchment,which were probably caused by hybrid of species.
     In summary,VD3,whose function was mediated by TLRs,VDHA and Cyp24, induced the expression of defensins in Silky Fowl;the gene expression of AVBDs,IL2 and IL18 in tissue was up-regulated,and the growth performance and mass index of immune organ were improved with appropriate dose of vitamin D3
引文
[1]Lynn D J,Higgs R,Lloyd AT,et al.Avian beta-defensin nomenclature:a community proposed update[J].Immunol Lett,2007,110(1):86-9.
    [2]Mageed AM,Isobe N,Yoshimura Y.Expression of avian beta-defensins in the oviduct and effects of lipopolysaecharide on their expression in the vagina of hens [J].Poult Sci,2008,87(5):979-84.
    [3]陈燕珊,谢青梅,覃健萍等.禽类的重要免疫因子--鸡β防御素[J]:生命的化学,2005,.(06):501-504.
    [4]黎观红,游金明,瞿明仁等.鸡消化道的重要天然免疫效应分子.抗茵肽[J].中国预防兽医学报,2008,(12):987-991。
    [5]韩宗玺,马得莹,刘胜旺等.重组鸡抗菌肽Gallinacin-9的原核表达及其抗菌活性的鉴定[J].畜牧兽医学报,2008,(10):1426-1431.
    [6]邢海云,高英杰,宁官保等.鸡 β-防御素在大肠杆菌中的高效表达及复性[J].中国兽医学报,2007,(02):184-187.
    [7]Ameenuddin S,Sunde M,DeLuca HF,et al.24-hydroxylation of 25-hydroxyvitamin D3:is it reqlUred for embryonic development in chicks?[J].Science,1982,217(4558):451-2.
    [8]Liu PT,Stenger S,Li H,et al.Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response[J].Science,2006,311(5768):1770-3.
    [9]Schauber J,Gallo RL.The vitamin D pathway:a new target for control of the skin's immune response?[J].Exp Dermatol,2008,17(8):633-9.
    [10]Buchau AS,Schauber J,Hultsch T,et al.Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes[J].J Invest Dermatol,2008,128(11):2646-54.
    [11]Schauber J,Ruzicka T,Rupee RA.[Cathelieidin LL-37.A central factor in the pathogenesis of inflammatory dermatoses?][J].Hautarzt,2008,59(1):72-4.
    [12]Linde A,Ross CR,Davis EG,et al.Innate immunity and host defense peptides in veterinary medicine[J].J Vet Intern Med,2008,22(2):247-65.
    [13]Evans KN,Nguyen L,Chan J,et al.Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells[J].Biol Reprod,2006,75(6):816-22.
    [14]Schauber J,Dorschner RA,Yamasaki K,et al.Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli[J].Immunology,2006,118(4):509-19.
    [15]Peric M,Koglin S,Kim SM,et al.IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes[J].J Immunol,2008,181(12):8504-12.
    [16]Bergman P,Gudmundsson GH,Agerberth B.[Natural immunity--first line defense.New treatment against infections and autoimmune diseases in sight][J].Lakartidningen,2008,105(34):2254-9.
    [17]Higgs R,Lynn D J,Cahalane S,et al.Modification of chicken avian beta-defensin-8at positively selected amino acid sites enhances specific antimicrobial activity[J].Immunogenetics,2007,59(7):573-80.
    [18]Anderson RC,Rehders M,Yu PL.Antimicrobial fragments of the pro-region of cathelicidins and other immune peptides[J].Biotechnol Lett,2008,30(5):813-8.
    [19]Zhu S.Positive selection targeting the cathelin-like domain of the antimicrobial cathelicidin family[J].Cell Mol Life Sci,2008,65(7-8):1285-94.
    [20]Higgs R,Lynn D J,Gaines S,et al.The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens[J].Immunogenetics,2005,57(1-2):90-8.
    [21]van DA,VeldhlUzen EJ,Kalkhove SI,et al.The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-bome pathogens[J].Antimicrob Agents Chemother,2007,51(3):912-22.
    [22]张祥斌,毕英佐,曹永长等.胡须鸡β-防御素Gal-1-Gal-13基因克隆、序列分析及其在组织中分布[J].农业生物技术学报,2008,(04):597-603.
    [23]Wang TT,Nestel FP,Bourdeau V,et al.Cutting edge:1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression[J].J Immunol, 2004,173(5):2909-12.
    [24]Wang TT,Nestel FP,Bourdeau V,et al.Cutting edge:1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression[J].J Immunol,2004,173(5):2909-12.
    [25]Wehkamp J,Schauber J,Stange EF.Defensins and cathelieidins in gastrointestinal infections[J].Curr Opin Gastroenterol,2007,23(1):32-8.
    [26]Sugiarto H,Yu PL.Avian antimicrobial peptides:the defense role of beta-defensins [J].Biochem Biophys Res Commun,2004,323(3):721-7.
    [27]van DA,VeldhIUzen E J,Haagsman HP.Avian defensins[J].Vet Immunol Immunopathol,2008,124(1-2):1-18.
    [28]WELLMAN-LABADIE O,PICMAN J,HrNCKE MT等.禽类抗菌蛋白及其结构、分布和活性[J].饲料与畜牧,2008,(04):16-21。
    [29]Lynn D J,Bradley DG.Discovery of alpha-defensins in basal mammals[J].Dev Comp Immunol,2007,31(10):963-7.
    [30]Higgs R,Lynn D J,Cahalane S,et al.Modification of chicken avian beta-defensin-8at positively selected amino acid sites enhances specific antimicrobial activity[J].Immunogenetics,2007,59(7):573-80.
    [31]Brockus CW,Jackwood MW,Harmon BG.Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow[J].Anim Genet,1998,29(4):283-9.
    [32]Lynn D J,Higgs R,Lloyd AT,et al.Avian beta-defensin nomenclature:a community proposed update[J].Immunol Lett,2007,110(I):86-9.
    [33]Higgs R,Lynn DJ,Gaines S,et al.The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens[J].Immunogenetics,2005,57(1-2):90-8.
    [34]马得莹,刘胜旺,李一经等.鸡p-防御素基因的克隆、序列分析及其在组织中的分布[J].畜牧兽医学报,2008,(08):1033-1039.
    [35]Zhao C,Nguyen T,Liu L,et al.Gallinacin-3,an inducible epithelial beta-defensin in the chicken[J].Infect Immun,2001,69(4):2684-91.
    [36]赵绪永,马辉,赵丽等.鸡p.防御素.3在毕赤酵母中的分泌表达及其生物活性测定[J].中国预防兽医学报,2009,(01):24-27.
    [37]左珂菁,张祥斌,冀君 等.禽抗微生物肽的结构、分布及活性研究进展[J].生物技术通报,2008,(04):38-46.
    [38]张祥斌,毕英佐,曹永长等.胡须鸡β-防御素Gal-1-Gal-13基因克隆、序列分析及其在组织中分布[J].农业生物技术学报,2008,(04):597-603.
    [39]赵建增,乔彦良,李朝阳.重组Gallinacin-3的克隆及在大肠杆菌中的表达[J].中国兽药杂志,2006,(02):1-4+34.
    [40]张辉华,毕英佐,曹永长等.鸡β-防御素-3的克隆与诱导表达[J].中国预防兽医学报,2006,(04):401-404+435.
    [41]张辉华,毕英佐,曹永长等.鸡β-防御素基因的克隆与结构分析[J].农业生物技术学报,2005,(04):482-488.
    [42]冀君,陈燕珊,张祥斌等.广西黄鸡β-防御素基因的克隆、序列分析与组织分布[J].华南农业大学学报,2008,(03):61-65.
    [43]Xiao Y,Hughes AL,Ando J,et al.A genome-wide screen identifies a single beta-defensin gene cluster in the chicken:implications for the origin and evolution of mammalian defensins[J].BMC Genomics,2004,5(1):56.
    [44]Cole AM,Cole AL.Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense[J].Am J Reprod Immunol,2008,59(1):27-34.
    [45]Cole AM.Innate host defense of human vaginal and cervical mucosae[J].Curr Top Mierobiol Immunol,2006,306:199-230.
    [46]Harwig SS,Swiderek KM,Kokryakov VN,et al.Gallinacins:cysteine-rich antimicrobial peptides of chicken leukocytes[J].FEBS Lett,1994,342(3):281-5.
    [47]Sugiarto H,Yu PL.Mechanisms of action of ostrich beta-defensins against Escherichia coli[J].FEMS Microbiol Lett,2007,270(2):195-200.
    [48]Sugiarto H,Yu PL.Identification of three novel ostrieacins:an update on the phylogenetic perspective of beta-defensins[J].Int J Antimicrob Agents, 2006,27(3):229-35.
    
    [49] Landon C, Thouzeau C, Labbe H, et al. Solution structure of spheniscin, a beta-defensin from the pengIUn stomach [J]. J Biol Chem, 2004,279(29):30433-9.
    
    [50] Ganz T, Selsted ME, Lehrer RI. Defensins [J]. Eur J Haematol, 1990,44(1): 1-8.
    
    [51] Selsted ME. Theta-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated alpha-defensins [J]. Curr Protein Pept Sci, 2004,5(5):365-71.
    
    [52] Thouzeau C, Le MY, Froget G, et al. Spheniscins, avian beta-defensins in preserved stomach contents of the king penglUn, Aptenodytes patagonicus [J]. J Biol Chem, 2003,278(51):51053-8.
    
    [53] Xiao LQ, Liu AH, Zhang YL. An effective method for raising antisera against beta-defensins: double-copy protein expression of mBinlb in E. coli [J]. Acta Biochim Biophys Sin (Shanghai), 2004,36(8):571-6.
    
    [54] Sugiarto H, Yu PL. Avian antimicrobial peptides: the defense role of betardefensins [J]. Biochem Biophys Res Commun, 2004,323(3):721-7.
    
    [55] Falco A, Chico V, MarroqI U L, et al. Expression and antiviral activity of a beta-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences [J]. Mol Immunol, 2008,45(3):757-65.
    
    [56] Tesse R, Cardinale F, Santostasi T, et al. Association of beta-defensin-1 gene polymorphisms with Pseudomonas aeruginosa airway colonization in cystic fibrosis [J]. Genes Immun, 2008,9(1):57-60.
    
    [57] Buck CB. Defensins' offensive play: exploiting a viral achilles' heel [J]. Cell Host Microbe, 2008,3(1):3-4.
    
    [58] Chung WO, Dale BA. Differential utilization of nuclear factor-kappaB signaling pathways for gingival epithelial cell responses to oral commensal and pathogenic bacteria [J]. Oral Microbiol Immunol, 2008,23(2): 119-26.
    
    [59] Craddock RM, Huang JT, Jackson E, et al. Increased alpha-defensins as a blood marker for schizophrenia susceptibility [J]. Mol Cell Proteomics, 2008,7(7):1204-13.
    
    [60] Ouhara K, Komatsuzawa H, Kawai T, et al. Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus[J].J Antimicrob Chemother,2008,61(6):1266-9.
    [61]Soylu OB,Ozturk Y,Ozer E.Alpha-defensin expression in the gastric tissue of children with Helicobacter pylori-associated chronic gastritis:an immunohistochemical study[J].J Pediatr Gastroenterol Nutr,2008,46(4):474-7.
    [62]Kumar A,Zhang J,Yu FS.Innate immune response of corneal epithelial cells to Staphylococcus aureus infection:role of peptidoglycan in stimulating proinflammatory cytokine secretion[J].Invest Ophthalmol Vis Sci,2004,45(10):3513-22.
    [63]Cormican P,Meade KG;Cahalane S,et al.Evolution,expression and effectiveness in a cluster of novel bovine beta-defensins[J].Immunogenetics,2008,60(3-4):147-56.
    [64]Mendez-Samperio P,Miranda E,Trejo A.Regulation of human beta-defensin-2 by Mycobacterium bovis bacillus Calmette-Guerin(BCG):involvement of PKC,JNK,and PI3K in human lung epithelial cell line(A549)[J].Peptides,2008,29(10):1657-63.
    [65]Braff MH,Bardan A,Nizet V,et al.Cutaneous defense mechanisms by antimicrobial peptides[J].J Invest Dermatol,2005,125(1):9-13.
    [66]Voss E,Wehkamp J,Wehkamp K,et al.NOD2/CARD 15 mediates induction of the antimicrobial peptide human beta-defensin-2[J].J Biol Chem,2006,281(4):2005-11.
    [67]Fehlbaum P,Rao M,Zasloff M,et al.An essential amino acid induces epithelial beta-defensin expression[J].Proc Natl Acad Sci U S A,2000,97(23):12723-8.
    [68]Yang D,Liu ZH,Tewary P,et al.Defensin participation in innate and adaptive immunity[J].Curr Pharm Des,2007,13(30):3131-9.
    [69]Yang D,Chertov O,Bykovskaia SN,et al.Beta-defensins:linking innate and adaptive immunity through dendritic and T cell CCR6[J].Science,1999,286(5439):525-8.
    [70]Chen H,Xu Z,Peng L,et al.Recent advances in the research and development of human defensins[J].Peptides,2006,27(4):931-40.
    [71]Pazgier M,Hoover DM,Yang D,et al.Human beta-defensins[J].Cell Mol Life Sci, 2006,63(11):1294-313.
    [72]Schneider J J,Unholzer A,Schaller M,et al.Human defensins[J].J Mol Med,2005,83(8):587-95.
    [73]Froy O.Regulation of mammalian defensin expression by Toll-like receptor-dependent and independent signalling pathways[J].Cell Microbiol,2005,7(10):1387-97.
    [74]Barak O,Treat JR,James WD.Antimicrobial peptides:effectors of innate immunity in the skin[J].Adv Dermatol,2005,21:357-74.
    [75]Lehrer RI.Multispecific myeloid defensins[J].Curr Opin Hematol,2007,14(1):16-21.
    [76]Maxwell AI,Morrison GM,Dorin JR.Rapid sequence divergence in mammalian beta-defensins by adaptive evolution[J].Mol Immunol,2003,40(7):413-21.
    [77]Cunliffe RN.Alpha-defensins in the gastrointestinal tract[J].Mol Immunol,2003,40(7):463-7.
    [78]Semple CA,Taylor K,Eastwood H,et al.Beta-defensin evolution:selection complexity and clues for residues of functional importance[J].Biochem Soc Trans,2006,34(Pt 2):257-62.
    [79]O'Neil DA.Regulation of expression of beta-defensins:endogenous enteric peptide antibiotics[J].Mol Immunol,2003,40(7):445-50.
    [80]De Smet K,Contreras R.Human antimicrobial peptides:defensins,cathelicidins and histatins[J].Biotechnol Lett,2005,27(18):1337-47.
    [81]Wehkamp J,Schmid M,Fellermann K,et al.Defensin deficiency,intestinal microbes,and the clinical phenotypes of Crohn's disease[J].J Leukoc Biol,2005,77(4):460-5.
    [82]Ayabe T,Ashida T,Kohgo Y,et al.The role of Paneth cells and their antimicrobial peptides in innate host defense[J].Trends Microbiol,2004,12(8):394-8.
    [83]Lu X,Kurago Z,Brogden KA.Effects of polymicrobial communities on host immunity and response[J].FEMS Microbiol Lett,2006,265(2):141-50.
    [84]Wehkamp J,Stange EF.A new look at Crohn's disease:breakdown of the mucosal antibacterial defense[J].Ann N Y Aead Sci,2006,1072:321-31.
    [85]De Schepper S,De Ketelaere A,Bannerman DD,et al.The toll-like receptor-4(TLR-4) pathway and its possible role in the pathogenesis of Eschefichia coli mastitis in dairy cattle[J].Vet Res,2008,39(1):5.
    [86]Shi J.Defensins and Paneth cells in inflammatory bowel disease[J].Inflamrn Bowel Dis,2007,13(10):1284-92.
    [87]W.ehkamp J,Schmid M,Fellermann K,et al.Defensin deficiency,intestinal microbes,and the clinical phenotypes of Crohn's disease[J].J Leukoc Biol,2005,77(4):460-5.
    [88]Jang Be,Lim KJ,Paik JH,et al.Up-regulation of human beta-defensin 2 by interleukin-lbeta in A549 cells:involvement of PI3K,PKC,p38 MAPK,JNK,and NF-kappaB[J].Biochem Biophys Res Cornmun,2004,320(3):1026-33.
    [89]Brockus CW,JackwOod MW,Harmon BG Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow[J].Anim Genet,1998,29(4):283-9.
    [90]Subedi K,Isobe N,Nishibori M,et al.Changes in the expression of gallinacins,antimicrobial peptides,in ovarian follicles during follicular growth and in response to lipopolysaccharide in laying hens(Gallns domesticus)[J].Reproduction,2007,133(1):127-33.
    [91]Tortes AM,Kuchel PW.The beta-defensin-fold family of polypeptides[J].Toxicon,2004,44(6):581-8.
    [92]Boman HG.Antibacterial peptides:basic facts and emerging concepts[J].J Intern Med,2003,254(3):197-215.
    [93]Lehrer RI,Ganz T.Defensins of vertebrate animals[J].Curt Opin Immunol,2002,14(1):96-102.
    [94]Bals R.Epithelial antimicrobial peptides in host defense against infection[J].Respir Res,2000,1(3):141-50.
    [95]Ishii KJ,Coban C,Akira S.Manifold mechanisms of Toll-like receptor-ligand recognition[J].J Clin Imrnunol,2005,25(6):511-21.
    [96]Greene CM,McElvaney NG.Toll-like receptor expression and function in airway epithelial cells[J].Arch Immunol Ther Exp(Warsz),2005,53(5):418-27.
    [97] Hu X, Chakravarty SD, Ivashkiv LB. Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms [J]. Immunol Rev, 2008,226:41-56.
    
    [98] Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer [J]. Oncogene, 2008,27(2): 161-7.
    
    [99] Misch EA, Hawn TR. Toll-like receptor polymorphisms and susceptibility to human disease [J]. Clin Sci (Lond), 2008,114(5):347-60.
    
    [100] Krishnan J, Selvarajoo K, Tsuchiya M, et al. Toll-like receptor signal transduction [J]. Exp Mol Med, 2007,39(4):421-38.
    
    [101] Zhang SY, Jouanguy E, Sancho-Shimizu V, et al. Human Toll-like receptor-dependent induction of interferons in protective immunity to viruses [J]. Immunol Rev, 2007,220:225-36.
    
    [102] Takeda K, Akira S. TLR signaling pathways [J]. Semin Immunol, 2004,16(1):3-9.
    
    [103] Vijay-Kumar M, Aitken JD, Gewirtz AT. Toll like receptor-5: protecting the gut from enteric microbes [J]. Semin Immunopathol, 2008,30(1): 11-21.
    
    [104] Yu P, Musette P, Peng SL. Toll-like receptor 9 in murine lupus: more friend than foe![J]. Immunobiology, 2008,213(2):151-7.
    
    [105] Carpentier PA, Duncan DS, Miller SD. Glial toll-like receptor signaling in central nervous system infection and autoimmunity [J]. Brain Behav Immun, 2008,22(2): 140-7.
    
    [106] Weighardt H, Holzmann B. Role of Toll-like receptor responses for sepsis pathogenesis [J]. Immunobiology, 2007,212(9-10):715-22.
    
    [107] Carmody RJ, Chen YH. Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling [J]. Cell Mol Immunol, 2007,4(1):31-41.
    
    [108] Schroder NW, Arditi M. The role of innate immunity in the pathogenesis of asthma: evidence for the involvement of Toll-like receptor signaling [J]. J Endotoxin Res, 2007,13(5):305-12.
    
    [109] Bjorkbacka H. Multiple roles of Toll-like receptor signaling in atherosclerosis [J]. Curr Opin Lipidol, 2006,17(5):527-33.
    
    [110] van EE, Stoffels K, Gysemans C, et al. Regulation of vitamin D homeostasis: implications for the immune system[J].Nutr Rev,2008,66(10 Suppl 2):S 125-34.
    [111]Sato T.[Renal bioactivation of vitamin D and its key modulators][J].Clin Calcium,2007,17(5):686-90.
    [112]Avila E,Diaz L,Barrera D,et al.Regulation of Vitamin D hydroxylases gene expression by 1,25-dihydroxyvitamin D3 and cyclic AMP in cultured human syncytiotrophoblasts[J].J Steroid Biochem Mol Biol,2007,103(1):90-6.
    [113]Bonjour JP,Chevalley T,Fardellone P.Calcium intake and vitamin D metabolism and action,in healthy conditions and in prostate cancer[J].Br J Nutr,2007,97(4):611-6.
    [114]C.hristakos S,Dhawan P,Benn B,et al.Vitamin D:molecular mechanism of action [J].Ann N Y Acad Sci,2007,1116:340-8.
    [115]Liu PT,Stenger S,Li H,et al.Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response[J].Science,2006,311(5768):1770-3.
    [116]Schauber J,Dorschner RA,Coda AB,et al.Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism[J].J Clin Invest,2007,117(3):803-11.
    [117]Griffin MD,Dong X,Kumar R.Vitamin D receptor-mediated suppression of RelB in antigen presenting cells:a paradigm for ligand-augrnented negative transcriptional regulation[J].Arch Biochem Biophys,2007,460(2):218-26.
    [118]Carlberg C,Seuter S.The vitamin D receptor[J].Dermatol Clin,2007,25(4):515-23,ⅷ.
    [119]Sanchez-Martinez R,Zambrano A,Castillo AI,et al.Vitamin D-dependent recrlUtment of corepressors to vitamin D/retinoid X receptor heterodimers[J].Mol Cell Biol,2008,28(11):3817-29.
    [120]Gombart AF,Luong QT,Koeffler HP.Vitamin D compounds:activity against microbes and cancer[J].Anticancer Res,2006,26(4A):2531-42.
    [121]Gombart AF,Borregaard N,Koeffler HP.Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3[J].FASEB J,2005,19(9):1067-77.
    [122]Liu PT,Stenger S,Tang DH,et al.Cutting edge:vitamin 13-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin[J].J Immunol,2007,179(4):2060-3.
    [123]Liu PT,Krutzik SR,Modlin RL.Therapeutic implications of the TLR and VDR partnership[J].Trends Mol Med,2007,13(3):117-24.
    [124]Sadeghi K,Wessner B,Laggner U,et al.Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns[J].Eur J Immunol,2006,36(2):361-70.
    [125]Penna G,AmuchasteglU S,Giarratana N,et al.1,25-Dihydroxyvitamin 133selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells[J].J Immunol,2007,178(1):145-53.
    [126]Yang W,Molenaar A,Kurts-Ebert B,et al.NF-kappaB factors are essential,but not the switch,for pathogen-related induction of the bovine beta-defensin 5-encoding gene in mammary epithelial cells[J].Mol Immunol,2006,43(3):210-25.
    [127]Cantoma MT.Vitamin D and multiple sclerosis:an update[J].Nutr Rev,2008,66(10 Suppl 2):S135-8.
    [128]Andress D.Nonclassical aspects of differential vitamin D receptor activation:implications for survival in patients with chronic kidney disease[J].Drugs,2007,67(14):1999-2012.
    [129]Hendy GN,Hruska KA,Mathew S,et al.New insights into mineral and skeletal regulation by active forms of vitamin D[J].Kidney Int,2006,69(2):218-23.
    [130]Daniel C,Sartory NA,Zahn N,et al.Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with ealcitriol is associated with a change of a T helper(Th) 1/Thl7 to a Th2 amd regulatory T cell profile[J].J Pharmacol Exp Ther,2008,324(1 ):23-33.
    [131]Jirapongsananuruk O,Melamed I,Leung DY.Additive immunosuppressive effects of 1,25-dihydroxyvitamin D3 and corticosteroids on TH1,but not TH2,responses [J].J Allergy Clin Immunol,2000,106(5):981-5.
    [132]Topilski I,Flaishon L,Naveh Y,et al.The anti-inflammatory effects of 1,25-dihydroxyvitamin D3 on Th2 cells in vivo are due in part to the control of integrin-mediated T lymphocyte homing[J].Eur J Immunol,2004,34(4):1068-76.
    [133]Bemiss CJ,Mahon BD,Henry A,et al.Interleukin-2 is one of the targets of 1,25-dihydroxyvitamin D3 in the immune system[J].Arch Biochem Biophys,2002,402(2):249-54.
    [134]Muthian G,R.aikwar HP,Rajasingh J,et al.1,25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Thl response in experimental allergic encephalomyelitis[J].J Neurosci Res,2006,83(7):1299-309.
    [135]Meindl S,Rot A,Hoetzenecker W,et al.Vitamin D receptor ablation alters skin architecture and homeostasis of dendritic epidermal T cells[J].Br J Dermatol,2005,152(2):231-41.
    [136]Staeva-Vieira TP,Freedman LP.1,25-dihydroxyvitamin D3 inhibits IFN-gamma and IL-4 levels during in vitro polarization of primary murine CD4+ T cells[J].J Immunol,2002,168(3):1181-9.
    [137]F(u|¨)jita H,Asahina A,Komine M,et al.The direct action of lalpha,25(OH)2-vitamin D3 on purified mouse Langerhans cells[J].Cell Immunol,2007,245(2):70-9.
    [138]Mahon BD,Wittke A,Weaver V,et al.The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells[J].J Cell Biochem,2003,89(5):922-32.
    [139]Veldman CM,Cantoma MT,DeLuca HF.Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system[J].Arch Biochem Biophys,2000,374(2):334-8.
    [140]Panichi V,Migliori M,Taccola D,et al.Effects of calcitriol on the immune system:new possibilities in the treatment of glomerulonephritis[J].Clin Exp Pharmacol P.hysiol,2003,30(11):807-11.
    [141]Szeles L,Keresztes G,Torocsik D,et al.1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype[J].J Immunol,2009,182(4):2074-83.
    [142]Ureta G,Osorio F,Morales J,et al.Generation of dendritic cells with regulatory properties[J].Transplant Proc,2007,39(3):633-7.
    [143]Hewison M,Freeman L,Hughes SV,et al.Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells[J].J Immunol,2003,170(11):5382-90.
    [144] Pedersen AE, Gad M, Walter MR, et al. Induction of regulatory dendritic cells by dexamethasone and lalpha,25-Dihydroxyvitamin D(3) [J]. Immunol Lett, 2004,91(1):63-9.
    
    [145] Griffin MD, Lutz W, Phan VA, et al. Dendritic cell modulation by lalpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo [J]. Proc Natl Acad Sci U S A, 2001,98(12):6800-5.
    
    [146] Gurlek A, Pittelkow MR, Kumar R. Modulation of growth factor/cytokine synthesis and signaling by lalpha,25-dihydroxyvitamin D(3): implications in cell growth and differentiation [J]. Endocr Rev, 2002,23(6):763-86.
    
    [147] Hayes CE. Vitamin D: a natural inhibitor of multiple sclerosis [J]. Proc Nutr Soc, 2000,59(4):531-5.
    
    [148] Griffin MD, Kumar R. Effects of lalpha,25(OH)2D3 and its analogs on dendritic cell function [J]. J Cell Biochem, 2003,88(2):323-6.
    
    [149] Lemire J. 1,25-Dihydroxyvitamin D3--a hormone with immunomodulatory properties [J]. Z Rheumatol, 2000,59 Suppl 1:24-7.
    
    [150] Rodriguez M, Canadillas S, Lopez I, et al. Regulation of parathyroid function in chronic renal failure [J]. J Bone Miner Metab, 2006,24(2): 164-8.
    
    [151] Daniel C, Sartory NA, Zahn N, et al. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile [J]. J Pharmacol Exp Ther, 2008,324(1):23-33.
    
    [152] Mathieu C, van EE, Decallonne B, et al. Vitamin D and 1,25-dihydroxyvitamin D3 as modulators in the immune system [J]. J Steroid Biochem Mol Biol,2004,89-90(1-5):449-52.
    
    [153] Luong K, Nguyen LT, Nguyen DN. The role of vitamin D in protecting type 1 diabetes mellitus [J]. Diabetes Metab Res Rev, 2005,21(4):338-46.
    
    [154] Giulietti A, Gysemans C, Stoffels K, et al. Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice [J]. Diabetologia, 2004,47(3):451-62.
    [155]Giulietti A,Gysemans C,Stoffels K,et al.Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice[J].Diabetologia,2004,47(3):451-62.
    [156]Stio M,Treves C,Celli A,et al.Synergistic inhibitory effect of cyclosporin A and vitamin D derivatives on T-lymphocyte proliferation in active ulcerative colitis[J].Am J Gastroenterol,2002,97(3):679-89.
    [157]Linker-Israeli M,Elstner E,Klinenberg JR,et al.Vitamin D(3) and its synthetic analogs inhibit the spontaneous in vitro immunoglobulin production by SLE-derived PBMC[J].Clin Immunol,2001,99(1):82-93.
    [158]Smolders J,Menheere P,Kessels A,et al.Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis[J].Mult Scler,2008,14(9):1220-4.
    [159]Segaert S,Duvold LB.Calcipotriol cream:a review of its use in the management of psoriasis[J].J Dermatolog Treat,2006,17(6):327-37.
    [160]Kittaka A,Saito N,Takano M.[Recent progress of study on vitamin D analogs][J].Clin Calcium,2006,16(7):1154-65.
    [161]Aschenbrenner JK,Sollinger HW,Becker BN,et al.1,25-(OH(2))D(3) alters the transforming growth factor beta signaling pathway in renal tissue[J].J Surg Res,2001,100(2):171-5.
    [162]Dusso AS,Thadhani R,Slatopolsky E.Vitamin D receptor and analogs[J].Semin Nephrol,2004,24(1):10-6.
    [163]B.arsony J,Prufer K.Vitamin D receptor and retinoid X receptor interactions in motion[J].Vitam Horm,2002,65:345-76.
    [164]Farach-Carson MC,Nemere I.Membrane receptors for vitamin D steroid hormones:potential new drug targets[J].Curr Drug Targets,2003,4(1):67-76.
    [165]Fogh K,Kragballe K.Recent developments in vitamin D analogs[J].Curr Pharm Des,2000,6(9):961-72.
    [166]Christakos S,Dhawan P,Liu Y,et al.New insights into the mechanisms of vitamin D action[J].J Cell Biochem,2003,88(4):695-705.
    [167]Omdahl JL,Bobrovnikova EA,Choe S,et al.Overview of regulatory cytochrome P450 enzymes of the vitamin D pathway[J].Steroids,2001,66(3-5):381-9.
    [168]Marcinkowska E.A run for a membrane vitamin D receptor[J].Biol Signals Recept,2001,10(6):341-9.
    [169]Boyan BD,Sylvia VL,Dean DD,et al.1,25-(OH)2D3 modulates growth plate chondrocytes via membrane receptor-mediated protein kinase C by a mechanism that involves changes in phospholipid metabolism and the action of arachidonic acid and PGE2[J].Steroids,1999,64(1-2):129-36.
    [170]Brown AJ,Dusso A,Slatopolsky E.Vitamin D[J].Am J Physiol,1999,277(2 Pt 2):F157-75.
    [171]van EE,Mathieu C.Immunoregulation by 1,25-dihydroxyvitamin D3:basic concepts[J].J Steroid Biochem Mol Biol,2005,97(1-2):93-101.
    [172]Boyan BD,Jennings EG,Wang L,et al.Mechanisms regulating differential activation of membrane-mediated signaling by lalpha,25(OH)2D3 and 24R,25(OH)2D3[J].J Steroid Biochem Mol Biol,2004,89-90(1-5):309-15.
    [173]Segaert S.Vitamin D regulation of cathelicidin in the skin:toward a renaissance of vitamin D in dermatology?[J].J Invest Dermatol,2008,128(4):773-5.
    [174]WolfM.Active vitamin D and survival[J].J Am Soc Nephrol,2008,19(8):1442-3.
    [175]van DA,VeldhlUzen EJ,Kalkhove SI,et al.The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens[J].Antimicrob Agents Chemother,2007,51(3):912-22.
    [176]Chang TL,Klotman ME.Defensins:natural anti-HIV peptides[J].AIDS Rev,2004,6(3):161-8.
    [177]Trinchieri G,Sher A.Cooperation of Toll-like receptor signals in innate immune defence[J].Nat Rev Immunol,2007,7(3):179-90.
    [178]Yee YK,Chintalacharuvu SR,Lu J,et al.Vitamin D receptor modulators for inflammation and cancer[J].Mini Rev Med Chem,2005,5(8):761-78.
    [179]Granucci F,Zanoni I.Role of Toll like receptor-activated dendritic cells in the development of autoimmunity[J].Front Biosci,2008,13:4817-26.
    [180]Kawai T,Akira S.Toll-like receptor and RIG-I-like receptor signaling[J].Ann N Y Acad Sci,2008,1143:1-20.
    [181]杨玉荣,余锐萍,梁宏德.TLR4-NF-κB在防御素调节获得性免疫中的作用[J].免疫学杂志,2008,(01):45-48+52.
    [182]Hong-Geller E,Chaudhary A,Lauer S.Targeting toll-like receptor signaling pathways for design of novel immune therapeutics[J].Curr Drug Discov Technol,2008,5(1):29-38.
    [183]Kaisho T,Akira S.Toll-like receptor function and signaling[J].J Allergy Clin Immunol,2006,117(5):979-87;qlUz 988.
    [184]O'Neill LA.Primer:Toll-like receptor signaling pathways--what do rheumatologists need to know?[J].Nat Clin Pratt Rheumatol,2008,4(6):319-27.
    [185]Akbari MR,Haghighi HR,Chambers JR,et al.Expression of antimicrobial peptides in cecal tonsils of chickens treated with probiotics and infected with Salmonella enterica serovar typhimurium[J].Clin Vaccine Immunol,2008,15(11 ):1689-93.
    [186]Sadeyen JR,Trotereau J,Protais J,et al.Salmonella cartier-state in hens:study of host resistance by a gene expression approach[J].Microbes Infect,2006,8(5):1308-14.
    [187]Sadeyen JR,Trotereau J,Velge P,et al.Salmonella cartier state in chicken:comparison of expression of immune response genes between susceptible and resistant animals[J].Microbes Infect,2004,6(14):1278-86.
    [188]Hasenstein JR,Lamont SJ.Chicken gallinacin gene cluster associated with Salmonella response in advanced intercross line[J].Avian Dis,2007,51(2):561-7.
    [189]Mageed AM,Isobe N,Yoshimura Y.Expression of avian beta-defensins in the oviduct and effects of lipopolysaccharide on their expression in the vagina of hens [J].Poult Sci,2008,87(5):979-84.
    [190]Tsoukas CD,Provvedini DM,Manolagas SC.1,25-dihydroxyvitamin D3:a novel immunoregulatory hormone[J].Science,1984,224(4656):1438-40.
    [191]Liu PT,Stenger S,Li H,et al.Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response[J].Science,2006,311(5768):1770-3.
    [192]Sadeghi K,Berger A,Langgartner M,et al.Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling [J]. J Infect Dis, 2007,195(2):296-302.
    
    [193] Miller WL, Portale AA. Vitamin D biosynthesis and vitamin D 1 alpha-hydroxylase deficiency [J]. Endocr Dev, 2003,6:156-74.
    
    [194] Yim S, Dhawan P, Ragunath C, et al. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3) [J]. J Cyst Fibres, 2007,6(6):403-10.
    
    [195] Bikle D. Nonclassic actions of vitamin D [J]. J Clin Endocrinol Metab, 2009,94(1):26-34.
    
    [196] Jones G. Expanding role for vitamin D in chronic kidney disease: importance of blood 25-OH-D levels and extra-renal 1 alpha-hydroxylase in the classical and nonclassical actions of 1 alpha,25-dihydroxyvitamin D(3) [J]. Semin Dial, 2007,20(4):316-24.
    
    [197] Griffin MD, Dong X, Kumar R. Vitamin D receptor-mediated suppression of RelB in antigen presenting cells: a paradigm for ligand-augmented negative transcriptional regulation [J]. Arch Biochem Biophys, 2007,460(2):218-26.
    
    [198] O'Kelly J, Hisatake J, Hisatake Y, et al. Normal myelopoiesis but abnormal T lymphocyte responses in vitamin D receptor knockout mice [J]. J Clin Invest, 2002,109(8):1091-9.
    
    [199] Froicu M, Cantorna MT. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury [J]. BMC Immunol, 2007,8:5.
    
    [200] Kong J, Grando SA, Li YC. Regulation of IL-1 family cytokines IL-1 alpha, IL-1 receptor antagonist, and IL-18 by 1,25-dihydroxyvitamin D3 in primary keratinocytes [J]. J Immunol, 2006,176(6):3780-7.
    
    [201] Ehrchen J, Helming L, Varga G, et al. Vitamin D receptor signaling contributes to susceptibility to infection with Leishmania major [J]. FASEB J, 2007,21(12):3208-18.
    
    [202] Tse AK, Wan CK, Shen XL, et al. 1,25-dihydroxyvitamin D3 induces biphasic NF-kappaB responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of IkappaB [J]. Exp Cell Res, 2007,313(8): 1722-34.
    [203]James SY,Williams MA,Newland AC,et al.Leukemia cell differentiation:cellular and molecular interactions of retinoids and vitamin D[J].Gen Pharrnacol,1999,32(1):143-54.
    [204]Bastie JN,Balitrand N,GIUdez F,et al.1 alpha,25-dihydroxyvitamin D3transrepresses retinoic acid transcriptional activity via vitamin D receptor in myeloid cells[J].Mol Endocrinol,2004,18(11):2685-99.
    [205]Norman AW.Minireview:vitamin D receptor:new assignments for an already busy receptor[J].Endocrinology,2006,147(12):5542-8.
    [206]May E,Asadullah K,Zugel U.Immunoregulation through 1,25-dihydroxyvitamin D3 and its analogs[J].Curr Drag Targets Inflamm Allergy,2004,3(4):377-93.
    [207]程茂基,蒋克纯,佘越励 等.植酸酶和VD_3协同对肉仔鸡生产性能和矿物元素利用率的影响[J].中国家禽,2000,(12):12-15.
    [208]Mitchell RD,Edwards HM Jr.Additive effects of 1,25-dihydroxycholecalciferol and phytase on phytate phosphorus utilization and related parameters in broiler chickens[J].Poult Sci,1996,75(1):111-9.
    [209]Atencio A,何宁.肉用种蛋鸡日粮中添加VD3对其后代性能和骨畸形的影响[J].养殖与饲料,2006,(04):48.
    [210]Grossman CJ.Interactions between the gonadal steroids and the immune system[J].Science,1985,227(4684):257-61.
    [211]van EE,Branisteanu DD,Verstuyf A,et al.Analogs of 1,25-dihydroxyvitamin D3as dose-reducing agents for classical immunosuppressants[J].Transplantation,2000,69(9):1932-42.
    [212]Yang S,Smith C,DeLuca HF.1 alpha,25-Dihydroxyvitamin D3 and 19-nor-1alpha,25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo[J].Biochim Biophys Acta,1993,1158(3):279-86.
    [213]Xiao Y,Hughes AL,Ando J,et al.A genome-wide screen identifies a single beta-defensin gene cluster in the chicken:implications for the origin and evolution of mammalian defensins[J].BMC Genomics,2004,5(1):56.
    [214]Lynn D J,Higgs R,Gaines S,et al.Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken[J]. Immunogenetics,2004,56(3):170-7.
    [215]张祥斌,谢青梅,马静云等.丝羽乌骨鸡 β-防御素基因的克隆和序列分析[J].广东畜牧兽医科技,2008,(04):22-24+44.
    [216]冀君,陈燕珊,张祥斌等.广西黄鸡D-防御素基因的克隆、序列分析与组织分布[J].华南农业大学学报,2008,(03):61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700