解耦结构微机械陀螺特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机械陀螺是MEMS技术应用在惯性传感器领域继微机械加速度计之后的又一重大突破。陀螺技术不但在军事、航空、航天领域发挥着巨大作用,而且在国民经济的其它领域中也获得应用,为国民经济的发展发挥着重要作用。因此开发高性能、低成本的微机械陀螺对于国家来说不仅具有很强的战略意义,同时也具有一定的经济意义。
     本课题的主要内容是微机械陀螺的特性研究:首先,对结构的频响特性进行研究,介绍了模态匹配对陀螺性能的影响,重点进行了全对称解耦结构陀螺的模态仿真和陀螺结构频响特性的测试,谐振频率分布在2.3kHz~2.5kHz之间,实验结果验证对称结构可使陀螺的两模态达到预期的匹配程度,通过频响特性曲线计算大气压下Q值为199,证实滑膜阻尼模型可以使陀螺实现大气压下工作;其次,对结构的解耦性能进行研究,理论建模分析了结构解耦性能,用有限元仿真软件进行结构解耦特性的仿真,仿真结果为模态间交叉耦合小于0.2%,对结构的解耦效果进行测试,结构解耦达到预期效果;最后,对结构非线性进行研究,介绍了非线性对陀螺性能的影响及产生原因,通过有限元仿真和曲线拟合,得到陀螺结构弹性梁的非线性关系,并根据仿真结果分析了非线性对系统谐振频率的影响并用测试证实在考虑非线性的情况下系统谐振频率随驱动力振幅的增大而增大。
     本论文所研究的内容,对振动式微机械陀螺的优化与设计具有一定的理论和实践意义,同时也为研制高性能、实用化的微机械陀螺奠定基础。
After micromechanical accelerometer, micromechanical gyroscope is an another important improvement in MEMS. The technology of gyroscope is wildly used in military affairs, navigation and is playing an important part in other fields of economy. So developing a micromechanical gyroscope with high performance and low cost is important in military affairs and economy of the country.
     In this paper, the performances of micromechanical gyroscopes are researched. First, the performance of frequency response is researched. The simulation and test result of the structure, which agree well, show that the natural frequency is between 2.3kHz and 2.5kHz and the driving mode matches well the sensing mode. The quality factor which is calculated by the frequency response curve is 199 at atmospheric pressure. Second, decoupling is researched by theory simulation and test. The test result shows that the decoupled structure has good effect and the coupling between the driving mode and sensing mode is under 0.5%. At last, the nonlinearity of spring is researched. The nonlinear factor is got from the simulation results, which is used to calculate that the natural frequency increases with the augment of the driving force. The conclusion is also proved by the test result.
     The contents studied in this thesis have the theoretical and practice significance to the design and improvement of gyroscope with high performance.
引文
1.李旭辉. MEMS发展应用现状.传感器与微系统. 2006, 25(5): 7-9
    2.亢春梅,曹金名,刘光辉.国外MEMS技术的现状及其在军事领域中的应用.传感器技术. 2002,6: 4-7
    3.郑祖辉.试简析TETRA系统的安全性.当代通信. 2003.15: 11-13
    4. Chang Shih-Chia, Putty Michael W. Fabrication options and operation principle for single crystal silicon vibratory ring gyroscope. MEMS/MOEMS Components and Their Applications II. United States. 2005. International Society for Optical Engineering. 2005, 5717: 142-154
    5. Guohong He, K.Najafi. A single-crystal silicon vibrating ring gyroscope. Proceedings of the IEEE MEMS. 2002: 718-721
    6. Yang J. S. A piezoelectric gyroscope based on extensional vibrations of rods. International Journal of Applied Electromagnetics. 2003, 17(4): 289-300
    7. Wu Xiaosheng, Chen wenyuan, Zhao Xiaolin, Li Zhenbo, Zhang Weiping, Cui Feng, He Miao. Structure design of levitating coil in micromachined gyroscope with an electromagnetic levitated rotor. Journal of Shanghai Jiaotong University. 2005, 39(1): 125-128
    8.李万玉,阮爱武,罗晋生.硅微机械陀螺的接口检测技术.传感器技术, 1999, 18(3): 40-42
    9. Chang Sup Sung, Hyoun Chul Rim, and Jung Sup Lee. Effective Paging Procedure for the Optical Feeder Microcellular System. IEEE. 2003: 837-846
    10. A.S.Phani, A.A.Seshia, M.Palaniapan, R.T.Howe, J.Yasaitis. Coupling of resonant modes in micromechanical vibratory rate gyroscopes. NSTI-Nanotech. 2004, 2: 335-338
    11. Jongwon Seok, Henry A.Scarton. Dynamic Characteristics of a Beam Angular-rate Sensor. International Journal of Mechanical Science. 2006, (48): 11-20
    12. W.Geiger, W.U.Butt, A.Gaisser, J.Frech, M.Braxmaier, T.Link, A.Kohne, P.Nommensen, H.Sandmaier, W.Lang. Decoupled Microgyros and the Design Principle DAVED. Sensors and Actuators, 2002, A95: 239-249
    13. Yoichi Mochida, Masaya Tamura, Kuniki Ohwada. A micromachinedvibrating rate gyroscope with independent beams for the drive and detection modes. Sensors and Actuators, 2000, 80: 170-178
    14. Cenk Acar, Andrei M.Shkel. Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement. Journal of micromechanics and microengineering. 2005, 15: 1092-1101
    15. Said Emre Alper, Tayfun Akin. A single-crystal silicon symmetrical and decoupled gyroscope on insulating substrate. Journal of Miroelectromechanical Systems, 2005, 14(2): 707-717
    16. Said Emre Alper, Tayfun Akin, A symmetric surface micromachined gyroscope with decoupled oscillation modes. Sensors and Actuators. 2002, A97-98: 347-358
    17. Cenk Acar, Andrei M.Shkel. An Approach for Increasing Drive-Mode Bandwidth of MEMS Vibratory Gyroscopes. Journal of microelectromechanical systems. 2005, 14(3): 520-528
    18. Cenk Acar, Andrei M.Shkel. Inherently Robust Micromachined Gyroscopes With 2-DOF Sense-Mode Oscillator. Journal of microelectromechanical systems. 2006, 15(2): 380-387
    19. Cenk Acar, Andrei M.Shkel. Nonresonant micromachined gyroscopes with structural mode-decoupled. IEEE Sensors Journal. 2003, 3(4): 497-506
    20.熊斌.栅结构振动式微机械陀螺.博士论文.上海微系统所. 2001
    21. Xiong Bin, Wang yueling. A Novel Silicon Micromachined Gyroscope with High Q at Atmosphere. Sensors and Actuators. 2002, A95: 123-129
    22. Yong Chen. A novel tuning fork gyroscope with high Q-factors working at atmospheric pressure. Microsystem Technologies. 2005, 11(2-3): 111-116
    23.陈永,焦继伟,王惠泉等.大气下工作的微机些陀螺的设计及其噪声特性.半导体学报. 2005, 26(1): 148-151
    24. Xie Huikai, Fedder Gary K. Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope. IEEE Sensor Journal. 2003, 3(5): 622-631
    25. Huikai Xie, Gary K. Fedder. A CMOS-MEMS Lateral-axis Gyroscope. Proceedings of the IEEE MEMS. 2001: 162-165 Xie Huikai, Fedder Gary K. Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS. Sensors and Actuators. 2002, 95(2-3): 212-221 26.
    27. J.A.Geen, S.J.Sherman, J.F.Chang, S.R.Lewis. Single-chip surfacemicromachined integrated gyroscope with 50°/h allan deviation. IEEE Journal of Solid-State Circuits. 2002, 37(12): 1860-1866
    28. John Geen, David Krakauer. New MEMS Angular-Rate-Sensing Gyroscope. Analog Dialogue. Proceedings of the IEEE MEMS. 2003: 482-485
    29. Thomas George. Overview of MEMS/NEMS technology development for space applications at NASA/JPL. Proceedings of SPIE. 2003, 5116I: 136-148
    30. Thomas George. MEMS/NEMS development for space applications at NASA/JPL. Proceedings of SPIE. 2002, 4755: 556-567
    31.黄小振.电容式振动微机械陀螺接口电路的设计、模拟与测试.硕士论文.中国科学院上海冶金研究所. 2001
    32. Cimoo Song. Commercial vision of silicon based inertial sensors. Digest of technical papers of The 9th International Conference on Solid State Sensors and Actuators, Transducers’97. 1997: 839-842
    33. Jan Soderkvist. Micromachined gyroscopes. Sensors and Actuators. 1994, A43: 65-71
    34. K.Y.Park, C.W.Lee, Y.S.Oh, Y.H.Cho. Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish hook shape spings. Proc. IEEE Micro Electro Mechanical System Workshop. Japan. 1997: 494-499
    35. MSY.Siva Prasad, C.R.Prasad, P.Santosh. Design and Simulation of a MEMS Rate Sensor. Proc. IEEE International Conference on Smart Materials Structures and Systems. Bangalore, India. 2005: 94-100
    36.李文望,孙道恒.微机械振动陀螺的耦合误差和隔离耦合的结构设计.机械与电子. 2001, (6): 45-47
    37. Byeung-Leul Lee, Sang-Woo Lee, Kyu-Dong Jung, Joon-Hyock Choi, Taek-Ryong Chung. A De-coupled Vibratory Gyroscope using a Mixed Micro-machining Technology. Proc. IEEE International Conference on Robotics and Automation. Seoul, Korea. 2001: 3412-3416
    38. S.H.Choa. Reliability of Vacuum Packaged MEMS Gyroscopes. Microelectronics Reliability. 2005, (45): 361-369
    39. Francesco Braghin, Ferruccio Resta, Elisabetta Leo, Guido Spinola. Nonlinear Dynamics of Vibrating MEMS. Sensors and Actuators. 2006, A95: 1-11
    40. Sudipto K.De, N.R. Aluru. Complex Nonlinear Oscillations inElectrostatically Actuated Microstructures. Journal of Microelectromechanical System. 2006,15(2): 355-369
    41. V.Annovazzi-Lodi, S.Merlo. Mechanical-thermal Noise in Micromachined Gyros. Microelectronics Journal. 1999, (30): 1227-1230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700