双解耦双自由度微机械陀螺的设计与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析了当前国内外微机械振动式陀螺的发展现状,针对目前普遍采用的结构的优点和缺点进行了分析,在此基础上提出了一种基于体硅工艺的双自由度双级解耦结构的微机械振动式陀螺,并对该结构陀螺的原理、特性、设计、工艺等方面进行了分析研究。
     从理论上对双级解耦原理做了分析,并针对双自由度检测方式重新列写陀螺运动方程,针对该方程进行求解,并对解的特性做了相应分析。设计陀螺结构整体尺寸大约为4000μm×4800μm,结构厚度为80μm,检测质量块尺寸约为1950μm×1510μm。采用有限元分析软件对设计的结构进行了静态、模态、抗过载、解耦性能等分析,得出相应的陀螺结构参数。通过分析可知在陀螺工作状态下,产生的耦合噪声为输出信号大小的1%,结构在1000g的冲击下,所受到的最大应力为37.4MPa,远小于硅材料的屈服强度。
     针对双自由度检测的特点,采用方程等价性原理建立了陀螺电学模型,并采用该模型对双自由度陀螺的瞬态特性做了相应仿真。经仿真可知在20V直流偏置和6V交流峰峰值的驱动电压下,驱动位移为0.8×10~(-5)m。并且,当输入角速度幅值为1rad/s时,第一检测质量块位移为0.3×10~(-8)m,第二检测质量块位移约为1×10~(-8)m,陀螺对输入信号的稳定时间为0.35s。
     根据双自由度陀螺运动方程建立了陀螺的数学模型,并采用该模型进行陀螺模态特性的仿真。经仿真可知陀螺的检测带宽可达500Hz,检测模态将出现两个峰值分别为9987rad/s和17810rad/s,以及一个极小值为2.042×10~4rad/s,从仿真中可以看出,双自由度检测的方式减小了品质因数对陀螺灵敏度的影响。
     对陀螺制作的关键工艺进行了简要分析,根据工艺条件制作了版图,并进行了陀螺工艺仿真。
In this paper, the current research achievements on micromachined gyroscope are analysed. A bulk silicon technology based, 2-DOF(Degree of Freedom) and two-degree decoupled gyro structure is raised. The characteristics of the gyro structure is studied.
     The movement equation of 2-DOF gyroscope is solved. The solution characteristic is analysed after solving. The overall size of gyroscope structure is about 4000μm×4800μm with thickness of 80μm. The size of sensing block is about 1950μm×1510μm. Ansys software is used to analyse the static, modal, anti-overload and decoupling characteristics. According to the simulation, the coupling noise is 1% of the output signal. Under a 1000g impact, the biggest stress which the structure standed is 37.4MPa.
     A electrophysiological model is established, and the transient response of the gyro is simulated. From the results of the simulation, it is known that with 20V DC bias and 6V peak driving voltage, the driven displacement can reach 0.8×10~(-5)m. When the amplitude of input angular velocity is 1rad/s, the first sensing DOF mass displacement can reach 1×10~(-8)m, and the second sensing DOF mass displacement can reach 0.3×10~(-8)m. The stability time of the gyro is 0.35s.
     According to the 2-DOF gyro equation, a mathematical model is established, and the modal characteristics is simulated. From the results of the simulation, the bandwidth can reach 500Hz. The sensing modal will have two peaks of 9,987 rad/s and 17,810rad/s, and a minimum value of 2.042rad/s. According to the simulation, 2-DOF sensing can reduce the effect of quality factor.
     The key technology of gyro production is briefly introduced. The masks is made according to process conditions, and the gyro process simulation is made.
引文
1李新刚,袁建平.微机械陀螺的发展现状.力学进展. 2003, 33(3): 289-301
    2 N.Yazdi,F.Ayazi,K.Najafi. Micromachined inertial Sensors. Proceedings of the IEEE.1998, 2(86): 1640-1659
    3 K.Schumacher, O.Kromer, U.Wallrabe, J.Mohr, V.Saile. Micromechanical LIGA-Gyroscope. Sensors and actuators. 2000, 2(11): 168-171
    4 C.Acar, A.M.Shkel. Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement. J. Micromech. Microeng. 2005, 5(15): 1092–1101
    5李文望,孙道恒.微机械振动陀螺的耦合误差和隔离耦合的结构设计.机械与电子. 2001, 3(6): 45-47
    6 A.M.Shkel, C.Acar. Nonresonant Micromachined Gyroscopes With Structural Mode-Decoupling. IEEE Sensors Journal. 2003, 10(3): 497-506
    7黄小振.电容式微机械陀螺接口电路的设计、模拟与测试.中科院上海冶金研究所. 2001: 17-25
    8陈永,焦继伟,熊斌,车录锋,李昕欣,王跃林.一种基于滑膜阻尼效应的新型微机械陀螺.中国机械工程. 2004, 15(15): 103-105
    9 W.Geiger, W.U.Butt, A.Gaiber, J.French. Decoupled Microgyros and The Design Principle Daved. IEEE Sensors Journal. 2001, 4(1): 170-173
    10 S.E. Alper, T.Akin. Symmetrical and decoupled nickel micro- gyroscope on insulating substrate. Sensors and Actuators. 2004, 2(115): 336-350
    11 B.Xiong, L.Che, Y.Wang. A novel bulk micromachined gyroscope with slots structure working at atmosphere. Sensors and Actuators. 2003, 1(107): 137-145
    12 S.A.Bhave, J.I.Seeger, X.Jiang, B.E.Boser, Roger T.Howe and John Yasaitis. An Integrated, Vertical-Drive, In-Plane-Sense Microgyroscope. The 12th International Conference on Solid State Sensors, Actuators and Microsystems. 2003: 171-174
    13 H.Xie, G.K.Fedder. Vertical Comb-finger Capacitive Actuation and Sensing for CMOS-MEMS. Sensors and Actuators A. 2002, 9(5): 212~221
    14孟为民,李伟华,黄庆安. MEMS的设计方法和系统仿真.传感器技术. 2001, 20(10): 57~60
    15戎华,黄庆安,李伟华.系统级模拟的MEMS器件宏模型.真空科学与技术. 2002, 22 (5): 366-371
    16 H.Luo, X.Zhu, H.Lakdawala. A copper CMOS-MEMS z-axis gyroscope. The
    15th IEEE International Conference on Micro Electro Mechanical Systems(MEMS 2002), Las Vegas, Nevada. 2002, Jan 21-25: 631-634
    17 Z.H.Li, Z.C.Yang, Z.X.Xiao. A Bulk Micromachined Vibratory Lateral Gyroscope Fabricated with Wafer Bonding and Deep Trench Etching. Sensors and Actuators A. 2000, 83(3): 24-29
    18樊中朝,余金中,陈少武. ICP刻蚀技术及其在光电子器件制作中的应用.微细加工技术. 2003, 2(2): 21-28
    19 H.Jansen, M.Boer, W.H.Kloeck. The black silicon methodⅧ. A study of the performance of etching silicon using SF6/ O2 based chemistry with cryogenical wafer cooling and a high density ICP source. Microelectronics Journal, 2001, 2(32): 769-777
    20 J.Foucher, G.Cunge, L.Vallier. Design of notched gate processes in high density plasmas. J Vac Sci Technol, 2002, 20(5): 2024-2031
    21 M.M.Visser, S.T.Moe, A.B.Hanneborg. Diffusion at Anodically Bonded Interfaces. J. Micromech. Microeng. 2001, 5(11): 376-381
    22陈永,焦继伟,王惠泉,金仲和,张颖,熊斌,李昕欣,王跃林.大气下工作的微机械陀螺的设计及其噪声特性.半导体学报. 2005, 26(1): 148-152
    23刘俊,石云波,张文栋.单芯片集成加速度计陀螺的研究.测试技术学报. 2003, 17(2): 156-160
    24 W.Yuan, H.Chang, W.Li. Application of an optimization methodology for multidisciplinary system design of micro- gyroscopes. Microsyst Technol. 2005, 3(2): 1-9
    25 S.E.Alper, T.Akin. A Single-Crystal Silicon Symmetrical and Decoupled MEMS Gyroscope on an Insulating Substrate. Journal of Micro- electromechanical Systems. 2005, 14(4): 707-717
    26 Y.J.Yang, P.Yen. An Efficient Macromodeling Methodology for Lateral Air Damping Effects. Journal of Microelectromechanical Systems. 2005, 12(5): 812-828
    27 W.Menz, J.Mohr.微系统技术.王春海等译.化学工业出版, 1999: 2~12
    28车录锋,熊斌,黄小振,王跃林.微机械陀螺振动特性的等效电学模拟.电子与信息学报. 2003, 25(2): 279-283
    29 A.Ongkodjojo, F.H.Tay. Global optimization and design for micro electromechanical systems devices based on simulated annealing. Journal of Micromechanics and Microengineering. 2002, 2(12): 878-897
    30 K.H.Hwang, K.H.Lee, G.J.Park. Robust Design of a vibratory gyroscope with an unbalanced inner torsion gimbal using axiomatic design. J. Micromech. Microeng. 2003, 13(8): 8–17
    31 G.Spinola, V.A.Lodi, S.Merlo. Optical Detection of the Coriolis Force on a Silicon Micromachined Gyroscope. Journal of Microelectromechanical Systems. 2003, 12(5): 540-549
    32 H.T.Lim, J.Song, J.G.Lee. A Few deg/hr Resolvable Low Noise Lateral Microgyroscope. IEEE Sensors Journal. 2002, 2(2): 627-630
    33 T.Veijola, M.Turowski. Compact Damping Models for Laterally Moving Microstructures with Gas-Rarefaction Effects. Journal of Microelectro mechanical Systems. 2001, 10(2): 263-273
    34刘晓为,陈宏,陈伟平.常压下工作的微机械陀螺的频率和阻尼特性.传感器技术学报. 2006, 19(5): 2267-2271
    35 W.Geiger, W.U.Butt, A.Gaisser. Decoupled microgyros and the design principle DAVED. Sensors and Actuators, A: Physical. 2003, 95(2-3): 239-249
    36陈雪萌,宋朝晖等.一种高灵敏度硅微机械陀螺的设计和制造.传感器技术. 2004, 23(12): 82~85
    37 C.Weiping, L.Xiaowei, C.Qiang. Simulation of Novel Bulk Micromachined Gyroscope with Comb Driving. ISIST’2004, 3rd International Symposium on Instrumentation Science and Technology. Xi’an, China. 2004,3: 517~521
    38 R.P.Leland. Adaptive Mode Tuning for Vibrational Gyroscopes. Transactions on Control Systems Technology. 2003, 11(2): 242~247
    39 T.George. Overview of MEMS/NEMS Technology Development for Space Applications at NASA/JPL. Smart Sensors, Actuators. 2003, 5116: 136~148
    40 M.Yoichi, T.Masaya, O.Kuniki. Micromachined vibrating rate gyroscope with independent beams for the drive and detection modes[J]. Sensors and Actuators, A: Physical. 2000, 80(2): 170-178
    41 J.Chihwan, S.Seonho, L.Byeungleul. A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes[J]. Journal of Micromechanics and Microengineering. 2004, 14(11): 1530-1536
    42洪永强,蒋红霞.微电子机械系统及硅微机械加工工艺.电子工艺技术. 2003, 24(5): 185-188
    43 H.Xie, G.K.Fedder. Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope. IEEE sensors Journal. 2003, 3(5): 622-631
    44谷庆红.微机械陀螺仪的研制现状.中国惯性技术学报. 2003, 11(5): 125-128
    45张生才,赵毅强,刘艳艳,姚素英,张为,曲宏伟.半导体高温压力传感器的静电键合技术.传感技术学报. 2002, 6(2): 150-152
    46 S.Lee, S.Park, J.Kim. Surface/Bulk Micromachined Single-Crystalline-Silicon Micro-Gyroscope. Journal of Micro- electromechanical systems. 2000, 9(4): 557-567
    47 C.Acar, S.Eler, A.M.Shkel. Concept, Implementation, and Control of Wide Bandwidth MEMS Gyroscopes. Proceedings of the American Control Conference. 2001: 1229-1234
    48 L.Che, B.Xiong, Y.Wang.Simulation of characteristic of comb-gimbal micro -machined gyroscope. Proceedings of the IEEE. 2002: 1095-1098
    49吴徽,刘理天,杨景铭.表面微机械静电梳状驱动结构的研究.清华大学学报.1999, 39(1): 246-251
    50黄俊钦,樊尚春.微传感器最新发展.航空计测技术. 2003, 23(1): 1~8
    51 R.P.Leland. Adaptive Mode Tuning for Vibrational Gyroscopes. IEEE Transactions on Control Systems Technology. 2003, 11(2): 242~247
    52 H.Xie, G.K.Fedder. Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope. IEEE Sensors Journal. 2003, 3(5): 622~631
    53 S.Park,R.Horowitz. Adaptive Control for the Conventional Mode of Operation of MEMS Gyroscopes. Journal of Microelectromechanical Systems. 2003, 12(1): 101-108
    54 S.Y.Lee, H.K.Jung, H.K.Chang. Two-Mass System with Wide Bandwidth for SiOG Vibratory Gyroscopes. The 13th International Conference on Solid-State Sensors, Actators and Microsystems. 2005: 539-542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700