抗生素糖基转移酶系统发育及催化机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖基化反应是由糖基转移酶催化完成的,它对于抗生素等生物次级代谢产物发挥其生物活性有着十分重要的影响。在一些有着特殊性质的抗生素糖基转移酶(AGt)的催化下,各种初级代谢中不常见的脱氧糖基被连接到抗生素糖苷配基上,使其能够很好地发挥生物功能。本文对目前收集到的所有AGt氨基酸序列进行全面细致的相似性搜索,并利用邻接法、最大似然法和Bayesian法对GT-1成员进行系统发育分析。构建的系统发育树显示,多烯大环内酯AGt与其它聚酮AGt存在比较明显的进化差异,却更接近一些真核来源的糖基转移酶,结合多种序列分析手段推测其可能是来自真核的水平基因转移的产物。以上结论同时得到了基于结构数据的系统发育分析结果的支持。蛋白三维结构的比对揭示了Gtf-蛋白与MurG蛋白之间存在的进化关联,后者是一种参与细菌细胞壁形成的重要糖基转移酶。根据Gtf-蛋白系统发育分析结果,整个糖肽类抗生素生物合成基因簇之间的进化关系也得到了推测。另一方面,基于以结构比对为基础的氨基酸序列比对结果,本文对多个糖基转移酶中结构同源位点的氨基酸残基的功能进行分析,并对其作用机理进行推测。此外,考虑到聚酮AGt与Gtf-蛋白都是GT-1成员,且这两种抗生素糖苷配基合成模式十分相似的事实,文中提出了AGt与其糖苷配基合成酶之间可能存在进化关联的观点。文中也对非GT-1 AGt进行了简单分类,并对其进化来源进行了探讨,分析结果显示它们的祖先蛋白很可能来自各种初级代谢所需的蛋白。
Catalyzed by a family of enzymes called glycosyltransferases, glycosylation reactions are essential for the bioactivities of secondary metabolites such as antibiotics. Due to the special characters of antibiotic glycosyltransferases (AGts), antibiotics can function by attaching some unusual deoxy-sugars to their aglycons. Comprehensive similarity searches on the amino acid sequences of AGts have been performed. This paper reconstructed the molecular phylogeny of AGts with neighbor-joining, maximum-likelihood and Bayesian methods of phylogenetic inference. The phylogenetic trees show a distinct separation of polyene macrolide (PEM) AGts and other polyketide AGts. The former are more like eukaryotic glycosyltransferases and were deduced to be the results of horizontal gene transfer (HGT) from eukaryotes. This conclusion was also supported by structure-based phylogenetic analysis. Protein tertiary structural comparison indicated that some glycopeptide AGts (Gtf-proteins) have a close evolutionary relationship with MurGs, essential glycosyltransferases involved in maturation of bacterial cell walls. The evolutionary relationship of glycopeptide antibiotic biosynthetic gene clusters was speculated according to the phylogenetic analysis of Gtf-proteins. Based on the structural alignment of glycosyltransferases, the structurally homologous sites were detected, whose biological functions were also presumed. Considering the fact that polyketide AGts and Gtf-proteins are all GT-1 members and their aglycon acceptor biosynthetic patterns are very similar, this paper deduced that AGts and the synthases of their aglycon acceptors have some evolutionary relevancy. Finally, the evolutionary origins of AGts that do not fall under GT-1 (non-GT1 AGts) were discussed, suggesting that their ancestral proteins appear to be derived from various proteins responsible for primary metabolisms.
引文
[1] Breton C, Imberty A. Structure/function studies of glycosyltransferases. Curr Opin Struct Biol, 1999, 9(5): 563~571
    [2] Sinnott ML. Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev, 1990, 90: 1171~1202
    [3] Withers SG, Wakarchuk WW, Strynadka NC. One step closer to a sweet conclusion. Chem Biol, 2002, 9(12): 1270~1273
    [4] Campbell JA, Davies GJ, Bulone V, et al. A classification of nucleotide- diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J, 1997, 326: 929~942
    [5] Mulichak AM, Losey HC, Walsh CT, et al. Structure of UDP-glucosyl- transferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure, 2001, 9(7): 547~557
    [6] Hans J, Brandt W, Vogt T. Site-directed mutagenesis and protein 3D-homology modeling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis. Plant J, 2004, 39(3): 319~333
    [7] Liu J, Mushegian A. Three monophyletic superfamilies account for the majority of the know glycosyltransferases. Protein Sci, 2003, 12(7):1418~1431
    [8] Tarbouriech N, Charnock SJ, Davies GJ. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. J Mol Biol, 2001, 314(4): 655~661
    [9] Cid E, Gomis RR, Geremia RA, et al. Identification of two essential glutamic acid residues in glycogen synthase. J Biol Chem, 2000, 275(43):33614~33621
    [10] Kamra P, Gokhale RS, Mohanty D. SEARCHGTr: a program for analysis of glycosyltransferases involved in glycosylation of secondary metabolites. Nucleic Acids Res, 2005, 33: W220~W225
    [11] Faust B, Hoffmeister D, Weitnauer G, et al. Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tu2717. Microbiology, 2000, 146(Pt1): 147~154
    [12] Wang L, White RL, Vining LC. Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone. Microbiology, 2002, 148(Pt4): 1091~1103
    [13] Ogasawara Y, Katayama K, Minami A, et al. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii. Chem Biol, 2004, 11(1): 79~86
    [14] Walsh CT, Freel Meyers CL, Losey HC. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J Med Chem, 2003, 46(16): 3425~3436
    [15] Grzybowska J, Sowinski P, Gumieniak J, et al. N-methyl-N-D-fructopyranosyl- amphotericin B methyl ester, new amphotericin B derivative of low toxicity. J Antibiot, 1997, 50(8): 709~711
    [16] Falk R, Domb AJ, Polacheck I. A novel injectable water-soluble amphotericin B- arabinogalactan conjugate. Antimicrob Agents Chemother, 1999, 43(8): 1975~1981
    [17] Schlunzen F, Zarivach R, Harms J, et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature, 2001, 413(6858): 814~821
    [18] Cooper MA, Williams DH. Binding of glycopeptides antibiotics to a model of a vancomycin-resistant bacterium. Chem Biol, 1999, 6(12): 891~899
    [19] Kerns R, Dong SD, Fukuzawa S, et al. The role of hydrophobic substituents in the biological activity of glycopeptides antibiotics. J Am Chem Soc, 2000, 122(50): 12608~12609
    [20] Cundliffe E. Glycosylation of macrolide antibiotics in extracts of Streptomyces lividans. Antimicrob Agents Chemother, 1992, 36(2):348~352
    [21] Sasaki J, Mizoue K, Morimoto S, et al. Microbial glycosylation of macrolide antibiotics by Streptomyces hygroscopicus ATCC31080 and distribution of a macrolide glycosly transferase in several Streptomyces strains. J Antibiot, 1996, 49(11): 1110~1118
    [22] Gourmelen A, Blondelet-Rouault MH, Pernodet JL. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens. Antimicrob Agents Chemother, 1998, 42(10): 2612~2619
    [23] Yang M, Proctor MR, Bolam DN, et al. Probing the breadth of macrolide glycosyltransferases: in vitro remodeling of a polyketide antibiotic creates active bacterial uptake and enhances potency. J Am Chem Soc, 2005, 127(26): 9336~9337
    [24] Quiros LM, Aquirrezabalaqa I, Olano C, et al. Two glycosyltransferase and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol, 1998, 28(6): 1177~1185
    [25] Fischer C, Rodriquez L, Patallo EP, et al. Digitoxosyltetracenomycin C and glucosyltetracenomycin C, two novel elloramycin analogues obtained by exploring the sugar donor substrate specificity of glycosyltransferase ElmGT. J Nat Prod, 2002, 65(11): 1685~1689
    [26] Blanchard S, Thorson JS. Enzymatic tools for engineering natural product glycosylation. Curr Opin Chem Biol, 2006, 10(3): 263~271
    [27] Salah-Bey K, Doumith M, Michel JM, et al. Targeted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer Saccharopolyspora erythraea. Mol Gen Genet, 1998, 257(5):542~553
    [28] Zhao L, Que NLS, Xue Y, et al. Mechanistic studies of desosamine biosynthesis: C-4 deocygenation precedes C-3 transamination. J Am Chem Soc, 1998, 120(46): 12159~12160
    [29] Borisova SA, Zhao L, Sherman DH, et al. Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org Lett, 1999, 1(1): 133~136
    [30] Minami A, Uchida R, Equchi T, et al. Enzymatic approach to unnatural glycosides diverse aglycon scaffolds using glycosyltransferase VinC. J Am Chem Soc, 2005, 127(17): 6148~6149
    [31] Stassi DL, Kakavas SJ, Revnolds KA, et al. Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc Natl Acad Sci U S A, 1998, 95(13): 7305~7309
    [32] Marsden AF, Wilkinson B, Cortes J, et al. Engineering broader specificity into an antibiotic-producing polyketide synthase. Science, 1998, 279(5348): 199~202
    [33] Doumith M, Legrand R, Lang C, et al. Interspecies complementation in Saccharopolyspora erythraea: elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new erythromycin derivatives. Mol Microbiol, 1999, 34(5): 1039~1048
    [34] Gaisser S, Reather J, Wirtz G, et al. A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea. Mol Microbiol, 2000, 36(2): 391~401
    [35] Gaisser S, Martin CJ, Wilkinson B, et al. Engineered biosynthesis of novel spinosyns bearing altered deoxyhexose substituents. Chem Commun (Camb), 2002, 6: 618~619
    [36] Volchegursky Y, Hu Z, Katz L, et al. Biosynthesis of the anti-parasitic agent megalomicin: transformation of erythromycin to megalomicin in Saccharopolyspora erythraea. Mol Microbiol, 2000, 37(4): 752~762
    [37] Thornton JW, DeSalle R. Gene family evolution and homology: genomics meets phylogenetics. Annu Rev Genomics Hum Genet, 2000, 1:41~73
    [38] Nei M, Kumar S. 分子进化与系统发育,北京:高等教育出版社,2002
    [39] Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci, 1992, 8(3): 275~282
    [40] Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 1996, 144(1): 389~399
    [41] Nei M, Kumar S, Takahashi K. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used small. Proc Natl Acad Sci U. S. A, 1998, 95(21): 12390~12397
    [42] Weitnauer G, Muhlenweg A, Trefzer A, et al. Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics. Chem Biol, 2001, 8(6): 569~581
    [43] Hofmann C, Boll R, Heitmann B, et al. Genes encoding enzymes responsible for biosynthesis of L-lyxose and attachment of eurekanate during avilamycin biosynthesis. Chem Biol, 2005, 12(10): 1137~1143
    [44] Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25(24): 4876~4882
    [45] Felsenstein J. PHYLIP (phylogeny inference package). Version 3.6. Distributed by the author, 2002
    [46] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004, 5(2): 150~163
    [47] Schmidt HA, Strimmer K, Vingron M, et al. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 2002, 18(3): 502~504
    [48] Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17(8):754~755
    [49] Aparicio JF, Caffrey P, Gil JA, et al. Polyene antibiotic biosynthesis gene clusters. Appl Microbiol Biotechnol, 2003, 61(3): 179~188
    [50] Seco EM, Perez-Zuniga FJ, Rolon MS, et al. Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108. Chem Biol, 2004, 11(3): 357~366
    [51] Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta, 1986, 864(3~4): 257~304
    [52] Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol, 2005, 68(2): 151~162
    [53] Mulichak AM, Losey HC, Lu W, et al. Structure of the TDP-epi- vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc Natl Acad Sci USA, 2003, 100(16): 9238~9243
    [54] Reeves P. Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet, 1993, 9(1): 17~22
    [55] Suzuki N, Nakano Y, Yoshida Y, et al. Guanosine diphosphate-4-keto-6-deoxy- d-mannose reductase in the pathway for the synthesis of GDP-6-deoxy-d-talose in Actinobacillus actinomycetemcomitans. Eur J Biochem, 2002, 269(23): 5963~5971
    [56] Pereto J, Lopez-Garcia P, Moreira D. Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins. J Mol Evol, 2005, 61(1): 65~74
    [57] Fu X, Jiao W, Chang Z. Phylogenetic and biochemical studies reveal a potential evolutionary origin of small heat shock proteins of animals from bacterial class A. J Mol Evol, 2006, 62(3): 257~266
    [58] Nembaware V, Seoiqhe C, Sayed M, et al. A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry. BMC Evol Biol, 2004, 4(10):1~7
    [59] 胡兴戎,糖肽类抗生素的作用机制及肠球菌的糖肽耐药机制,国外医药抗生素分册,2001,22(3):116~121
    [60] Kahne D, Leimkuhler C, Lu W, et al. Glycopeptide and lipoglycopeptide antibiotics. Chem Rev, 2005, 105(2): 425~448
    [61] Fu X, Albermann C, Jiang J, et al. Antibiotic optimization via in vitro glycorandomization. Nat Biotechnol, 2003, 21(12): 1467~1469
    [62] Li TL, Huang F, Haydock SF, et al. Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol, 2004, 11(1): 107~119
    [63] Sosio M, Stinchi S, Beltrametti F, et al. The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species. Chem Biol, 2003, 10(6): 541~549
    [64] Pelzer S, Sussmuth R, Heckmann D, et al. Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother, 1999, 43(7): 1565~1573
    [65] Doolittle RF. Biodiversity: microbial genome multiply. Nature, 2002, 416(6882): 697~700
    [66] Ginolhac A, Jarrin C, Robe P, et al. TypeⅠ polyketide synthases may have evolved through horizontal gene transfer. J Mol Evol, 2005, 60(6): 716~725
    [67] Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J, 1986, 5(4): 823~826
    [68] Hall BG, Barlow M. Structure-based phylogenies of the serine beta-lactamases. J Mol Evol, 2003, 57(3): 255~260
    [69] Lambert C, Leonard N, De Bolle X, et al. ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 2002, 18(9): 1250~1256
    [70] Shatsky M, Nussinov R, Wolfson HJ. A method for simultaneous alignment of multiple protein structures. Proteins, 2004, 56(1): 143~156
    [71] Hu Y, Chen L, Ha S, et al. Crystal structure of the MurG: UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci USA, 2003, 100(3): 845~849
    [72] 郑集,陈钧辉,普通生物化学,北京:高等教育出版社,1998
    [73] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997,18(15): 2714~2723
    [74] Mulichak AM, Lu W, Losey HC, et al. Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands. Biochemistry, 2004, 43(18): 5170~5180
    [75] Lariviere L, Gueguen-Chaignon V, Morera S. Crystal structure of the T4 phage beta-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism. J Mol Biol, 2003, 330(5): 1077~1086
    [76] Shao H, He X, Achnine L, et al. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell, 2005, 17(11): 3141~3154
    [77] Offen W, Martinez-Fleites C, Yang M, et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J, 2006, 25(6): 1396~1405
    [78] Ha S, Gross B, Walker S. E. coli MurG: a paradigm for a superfamily of glycosyltransferases. Curr Drug Targets Infect Disord, 2001, 1(2): 201~213
    [79] Hopwood DA. Genetic contributions to understanding polyketide synthases. Chem Rev, 1997, 97(7): 2465~2498
    [80] 胡志浩,邓子新,聚酮生物合成及其基因的遗传分析Ⅰ,国外医药抗生素分册,1996,17(3): 161~169
    [81] 明镇寰,潘建伟,朱睦元,非核糖体多肽合成酶研究进展,生物化学与生物物理进展,2002,29(5): 667~669
    [82] 郑宗明,顾晓波,俞海青等,非核糖体肽合成酶主要结构域的研究进展,中国抗生素杂志,2005,30(2): 120~124
    [83] Shen B. Polyketide biosynthesis beyond the type Ⅰ, Ⅱa nd Ⅲ polyketide synthase paradigms. Curr Opin Chem Biol, 2003, 7(2): 285~295
    [84] Muller R. Don’t classify polyketide synthases. Chem Biol, 2004, 11(1): 4~6
    [85] Frankel BA, McCafferty DG. Profiling Natural Product Biosynthesis. Chem Biol, 2004, 11(3): 290~291
    [86] Cane DE, Walsh CT. Theparallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol, 1999, 6(12): R319~R325
    [87] Du L, Sanchez C, Chen M, et al. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem Biol, 2000, 7(8): 623~642
    [88] Royer M, Costet L, Vivien E, et al. Albicidin pathotoxin produced by Xanthomonas albilineans is encoded by three large PKS and NRPS genes present in a gene cluster also containing several putative modifying, regulatory, and resistance genes. Mol Plant Microbe Interact, 2004, 17(4): 414~427
    [89] Karolewiez A, Geisen R. Cloning a part of the ochratoxin A biosynthetic gene cluster of Penicillium nordicum and characterization of the ochratoxin polyketide synthase. Syst Appl Microbiol, 2005, 28(7): 588~595
    [90] Parker CT, Kloser AW, Schnaitman CA, et al. Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J Bacteriol, 1992, 174(8): 2525~2538
    [91] Hosted TJ, Wang TX, Alexander DC, et al. Characterization of the biosynthetic gene cluster for the oligosaccharide antibiotic, Evernimicin, in Micromanospora carbonacea var. africana ATCC39149. J Ind Microbiol Biotechnol, 2001, 27(6): 386~392
    [92] Sun Y, Zhou X, Dong H, et al. A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore Nanchangmycin. Chem Biol, 2003, 10(5): 431~441

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700