利迪链霉菌初级代谢关键基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利迪链菌素是利迪链霉菌产生的一种结构全新、抑菌效果明显的新型抗生素,具有很高的潜在应用价值。然而利迪链菌素的产量低是其应用的限制因素,加强初级代谢途径,提高其产量是一条可行的途径。本文克隆了利迪链霉菌初级代谢的几个关键基因,并进行了功能分析。
     研究了利迪链霉菌对木糖的利用能力,结果表明利迪链霉菌能利用木糖作为唯一碳源,但生长比较缓慢。在低浓度葡萄糖培养基上,木糖对生长具有显著促进作用。从利迪链霉菌中克隆到了木糖代谢的关键基因木酮糖激酶编码基因xylB,长度为1446bp,编码481个氨基酸。这表明,虽然利迪链霉菌利用木糖效率低,但仍然具有木糖代谢的遗传基础。
     采用同源克隆策略,克隆了利迪链霉菌葡萄糖代谢途径中的4个基因。葡萄糖-6-磷酸脱氢酶基因zwf2,长度1542bp,编码513个氨基酸,在242-252位具有AXXXGXGGXA (可能的NADP+结合位点)结构域,43位具有保守残基K(可能的葡萄糖-6-磷酸结合位点)。葡萄糖激酶编码基因glkA,长度954bp,编码317个氨基酸。磷酸果糖激酶基因pfkA1,长度1026bp,编码341个氨基酸。XylB,GlkA,PfkA1属于糖激酶,基于广义酸碱催化机理分析,催化活性区域可能分别为PYLDGERT (326-333位), CXCGXGCXEXY (168-180),DIXXTDXTXTFGFD (125-140位)。异柠檬酸脱氢酶基因idh长2220bp,编码739个氨基酸,Idh催化活性区域可能是HLKATMM(254-260位)。
     构建了zwf2组成型强表达载体,通过接合转移,将其转化到利迪链霉菌中。经过筛选鉴定,得到了重组利迪链霉菌。
     通过以上糖代谢关键基因克隆与功能分析研究,并构建了zwf2高表达菌株,为以后深入研究初级代谢对利迪链菌素生物合成的影响奠定了基础。
Streptolydigin is a novel antibiotic produced by Streptomyces lydicus. It has high antibacteral activity with potential commercial value. But the low productivity limits its application. Enhancing primary metabolism is a feasible approach to improve the antibiotic production. In this study we cloned several key genes of primary metabolism and analyzed their functions.
     Xylose significantly promoted mycellium growth rate when the media contained low concentration of glucose.The cloned xylB of xylose metabolism gene cluster is 1446 bp in length and encodes 481 amino acids. The results showed S. lydicus can utilize xylose though the efficiency is low.
     Using the degenerated primers based on the conserved domains, we cloned four key genes (zwf2, glkA, pfkA1, idh) of glucose metabolism from S. lydicus. zwf2 is 1542 bp long and encodes a putative enzyme of 513 amino acids. glkA is 954 bp in length and encode 317 amino acids. pfkA1 is 1026 bp in length and encode 341 amino acids. idh is 2220 bp long and encodes a putative enzyme of 739 amino acids. The active domains of Zwf2 may be AXXXGXGGXA (putative NADP+ binding site) and lysine43 (glucose-6-phosphate binding site). The active domain of three sugar kinases, XylB, GlkA and PfkA1 with the general acid and alkaline catalytic mechanism, may be PYLDGERT, CXCGXGCXEXY and DIXXTDXTXTFGFD while Idh’s active domain may be the highly conserved domain HLKATMM. We constructed a constitutive expression plasmid pIB139-zwf2, and then transformed to the S. lydicus.
     The cloning and function analysis of these key genes of primary metabolism and construction of zwf2-high expression strain lay a foundation of further study on the relationship between primary metabolism and streptolydigin biosynthesis.
引文
[1] Skylaris C K, Olga I M, Detsi A et al. Density functional and ab initio study of the tautomeric forms of 3-acetyl tetronic and 3-acetyl acyltetramic acids. Chem Phys. 2003, 293:355–363.
    [2] Marfori E C, Bamba T, Kajiyama S et al. Biosynthetic studies of the acyltetramic acid antibiotic trichosetin. Tetrahedron. 2002, 58:6655–6658.
    [3] Rosen T, Fernandes P B, Marovich M A et al. Aromatic dienoyl tetramic acids. Novel antibacterial agents with activity against anaerobes and staphylococci. J Med Chem. 1989, 32: 1062–1069.
    [4] Kyzer S, Zhang J, Landick R. Inhibition of RNA polymerase by streptolydigin: no cycling allowed. Cell. 2005, 122:494–496.
    [5] Temiakov D, Zenkin N, Vassylyeva M N et al. Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell. 2005, 19:655–666.
    [6] Tuske S, Sarafianos S G, Wang X et al. Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell. 2005, 122:541–552.
    [7] Pearce C J, Ulrich S E, Rinehart K L Jr. Biosynthetic incorporation of propionate and methionine into streptolydigin. J Am Chem Soc. 1980, 102:2510–2512.
    [8] Pearce C J, Rinehart K L Jr. The use of doubly-labeled 13C-acetate in the study of streptolydigin biosynthesis. J Antibiot. 1983, 36:1536–1538.
    [9] Chen H, Harrison P H. Investigation of the origin of C2 units in biosynthesis of streptolydigin. Org Lett. 2004, 6:4033–4036.
    [10] Chen H, Olesen S G, Harrison P H.Biosynthesis of Streptolydigin: Origin of the Oxygen Atoms. Org Lett. 2006, 8:5329–5332.
    [11] Parekh S, Vinci V A, Strobel R J. Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol, 2000, 54:287–301.
    [12] Tan T W, Zhang M, Wang B W et al. Screening of high lipase producing Candida sp. and production of lipase by fermentation, Process Biochem. 2003, 39: 459–465.
    [13] Bai D M, Zhao X M, Li X G et al. Strain improvement of Rhizopus oryzae for over-production of l(+)-lactic acid and metabolic flux analysis of mutants. Biochem Eng J. 2004, 18:41–48
    [14] Kumar M S, Kumar P M, Sarnaik H M et al. A rapid technique for screening of lovastatin-producing strains of Aspergillus terreus by agar plug and Neurospora crassa bioassay. J Microbiol Methods. 2000, 40:99–104.
    [15] Li Q S, Wang L J, Li Y R. Color development with rational screening method for improved l-glutamate oxidase-producing strains. Enzyme Microb Tech. 1996, 18: 7–9.
    [16] Kumar D, Garg S, Bisaria V S et al. Production of methionine by a multi-analogue resistant mutant of Corynebacterium lilium. Process Biochem. 2003, 38: 1165–1171.
    [17] Pina A, Calderon I L, Benitez T. Intergeneric hybrids of Saccharomyces cerevisiae and Zygosaccharomyces fermentati obtained by protoplast fusion. Appl Environ Microbiol. 1986, 51(5):995–1003.
    [18] Hatvani L, Manczinger L, Kredics L et al. Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion. Antonie Van Leeuwenhoek. 2006, 89(3-4): 387-393.
    [19] Khattab A A, Bazaraa W A. Screening, mutagenesis and protoplast fusion of Aspergillus niger for the enhancement of extracellular glucose oxidase production. J Ind Microbiol Biotechnol. 2005, 32(7):289–294.
    [20] Hu H, Ochi K. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol. 2001, 67(4):1885-1892.
    [21] Tamehiro N, Hosaka T, Xu J et al. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol. 2003, 69(11):6412-6417.
    [22]胡海峰,越智幸三.组合庆大霉素和利福平二种抗性突提高蜡状芽孢杆菌2045合成抗生素FR—900493的水平,中国抗生素杂志, 2003, 28(1): 53-54
    [23] Hosokawa K, Park N H, Inaoka T et al. Streptomycin-resistant (rpsL) or rifampicin-resistant (rpoB) mutation in Pseudomonas putida KH146-2 confers enhanced tolerance to organic chemicals. Environ Microbiol. 2002, 4(11):703-712.
    [24] Bailey J. Toward a science of metabolic engineering. Science 1991, 252(5013):1668-1675.
    [25] Stephanopoulos G, Vallino J J. Network rigidity and metabolic engineering in metabolite overproduction. Science 1991, 252(5013):1675-1681.
    [26] Stratigopoulos G, Bate N, Cundliffe E. Positive control of tylosin biosynthesis: pivotal role of TylR. Mol Microbiol. 2004, 54(5):1326-1334.
    [27] Bruheim P, Sletta H, Bibb M J et al. High-yield actinorhodin production in fed-batch culture by a Streptomyces lividans strain overexpressing the pathway-specific activator gene actll-ORF4. J Ind Microbiol Biotechnol. 2002, 28(2):103-111.
    [28] Zhang H, Morikawa K, Ohta T et al. In vitro resistance to the CSalphabeta-typeantimicrobial peptide ASABF-alpha is conferred by overexpression of sigma factor sigB in Staphylococcus aureus. J Antimicrob Chemother. 2005, 55(5):686–691.
    [29] Lee S J, Lee D Y, Kim T Y et al. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol. 2005, 71(12):7880–7887.
    [30] Shimizu H. Metabolic engineering-integrating methodologies of molecular breeding and bioprocess systems engineering. J Biosci Bioeng. 2002, 563-573.
    [31] Becker J, Klopprogge C, Zelder O et al. Amplified expression of fructose 1, 6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol. 2005, 71(12):8587–8596.
    [32]雷肇祖,钱志良,章健,工业菌种改良述评,工业微生物,2004:34(1):39-51
    [33] Bailey J E, Sburlati A, Hatzimanikatis V et al. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng. 2002, 79(5):568-579.
    [34] Dogan I, Pagilla K R, Webster D A et al. Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production. J Ind Microbiol Biotechnol. 2006,33(8) :693-700.
    [35] Kim Y, Webster D A, Stark B C. Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into their chromosomes. J Ind Microbiol Biotechnol. 2005, 32(4):148-154.
    [36] Caceres N E, Harris N B, Wellehan J F et al. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J Bacteriol. 1997, 179(16):5046-5055.
    [37] Yu H M, Shi Y, Tian Z L et al. Heterogenous expression of nitrile hydratase gene of Nocardia sp. in recombinant Pichia pastoris, Wei Sheng Wu Xue Bao. 2005, 45(6):959-962.
    [38] Cortes J, Wiesmann KE, Roberts G A, et al. Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science, 1995. 268(5216): 1487-1489.
    [39] Gaisser S, Kellenberger L, Kaja A L, et al. Direct production of ivermectin-like drugs after domain exchange in the avermectin polyketide synthase of Streptomyces avermitilis ATCC31272. Org Biomol Chem, 2003. 1(16): 2840-2847.
    [40] Nguyen K T, Ritz D, Gu J Q, et al. Combinatorial biosynthesis of novelantibiotics related to daptomycin. Proc Natl Acad Sci USA, 2006. 103(46): 17462-17467.
    [41] Li Y R, Ling H B, Li W L. Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Metab Eng,2005.7(3):165-173
    [42] Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A, 2005. 102(36): 12678-12683.
    [43] Zheng,J T., Wang SL, and Yang K Q. Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae. Appl Microbiol Biotechnol, 2007. 76(4): 883-888.
    [44]李海明.柔红霉素dnrH基因阻断突变的研究.硕士论文,上海医药工业研究院2004
    [45] Stutzman-Engwall K, Conlon S, Fedechko R, et al. Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metab Eng, 2005. 7(1): 27-37.
    [46] Horinouchi S, Kumada Y, and Beppu T. Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J Bacteriol, 1984. 158(2): 481-487.
    [47] Horinouchi S and Beppu T. A-factor and streptomycin biosynthesis in Streptomyces griseus. Antonie Van Leeuwenhoek, 1993. 64(2): 177-186.
    [48] Horinouchi S, Ohnishi Y, andKang D K. The A-factor regulatory cascade and cAMP in the regulation of physiological and morphological development in Streptomyces griseus. J Ind Microbiol Biotechnol, 2001. 27(3): 177-182
    [49] Ohnishi Y, Kameyama S, Onaka H, et al. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : identification of a target gene of the A-factor receptor. Mol Microbiol, 1999. 34(1): 102-111.
    [50] Sola-Landa A, Moura R S, and Martin J F. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA, 2003. 100(10): 6133-6138.
    [51] Mendes MV, Tunca S, Anton N, et al. The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng, 2007. 9(2): 217-227.
    [52] Gunnarsson N, Eliasson A, and Nielsen J. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Molecular Biotechnology of Fungal Beta-Lactam Antibiotics and Related Peptide Synthetases, 2004. 88: 137-178.
    [53] Li R and Townsend C A. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng, 2006. 8(3): 240-252.
    [54] Butler M J., Bruheim P, Jovetic S, et al. Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol, 2002. 68(10): 4731-4739
    [55] Ryu Y G., Butler M J, Chater K F, et al. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol, 2006. 72(11): 7132-7139
    [56] Reeves A R, Cernota W H, Brikun I A, et al. Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng, 2004. 6(4): 300-312.
    [57]王伟.抗真菌抗生素生产过程中利迪链霉菌蛋白质组研究.硕士论文,天津大学. 2008.
    [58]黄培堂等译,《分子克隆实验指南》,北京:科学出版社,2002..
    [59] Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol, 2003. 21(5): 526-531.
    [60] Bentley S D, Chater K F, Cerdeno-Tarraga A M, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002. 417(6885): 141-147.
    [61] Li X B, Qiao B, and Yuan Y J. Differential analysis of secondary metabolites by LC-MS following strain improvement of Streptomyces lydicus AS 4.2501. Biotechnol Appl Biochem, 2006. 45(3): 107-118.
    [62]李小兵.利迪链菌素高产菌株选育及生物合成研究.博士论文,天津大学.2006.
    [63]王镜岩,朱圣庚,徐长发.生物化学(第三版),北京:高等教育出版社,2002
    [64] Becker J, Klopprogge C, Herold A, et al. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase. J Biotechnol, 2007. 132(2): 99-109.
    [65] Scrutton N S, Berry A, and Perham R N, Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature, 1990. 343(6253): 38-43.
    [66] Lee WT. and Levy HR. Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase participates in substrate binding through charge-charge interaction. Protein Sci, 1992. 1(3): 329-334.
    [67] Wu G., Culley D E, and Zhang W. Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and theimplications for their metabolism. Microbiology, 2005. 151( 7): 2175-2187.
    [68] Angell S, Lewis C G., Buttner M J, et al. Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet, 1994. 244(2): 135-143.
    [69] Guzman S, Carmona A, Escalante L, et al. Pleiotropic effect of the SCO2127 gene on the glucose uptake, glucose kinase activity and carbon catabolite repression in Streptomyces peucetius var. caesius. Microbiology, 2005. 151(5): 1717-1723.
    [70] Kwakman J H. and. Postma P W. Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J Bacteriol, 1994. 176(9): 2694-2698.
    [71] van Wezel G P, Mahr K, Konig M, et al. GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol, 2005. 55(2): 624-636.
    [72] Edwards D J, Heinrikson R L, and Chung A E. Triphosphopyridine nucleotide specific isocitrate dehydrogenase from Azotobacter vinelandii. Alkylation of a specific methionine residue and amino acid sequence of the peptide containing this residue. Biochemistry, 1974. 13(4): 677-683.
    [73] Eikmanns, B J, Rittmann D, and Sahm H. Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol, 1995. 177(3): 774-782.
    [74] Kieser T, Bibb M J., Buttner M J, et al. Practical streptomyces genetics. England:John Innes Foundation,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700