家蚕、野桑蚕LSP与HSC70-4基因启动子功能特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从家蚕、野桑蚕基因组DNA克隆了LSP和HSC70-4基因启动子调控区,以luc为报告基因,构建了系列报告质粒,经脂质体转染昆虫细胞或蚕体内瞬时表达,对BmLSP和Bm/Bmand HSC70-4基因启动子的功能特性进行了分析研究,为进一步阐明LSP、HSC70-4基因的表达调控分子机理奠定了基础,同时为HSC70-4基因启动子实际应用进行了探索研究。本论文的主要研究内容如下:
     一、Bm/Bmand LSP5'FR克隆与BmLSP启动子功能特性分析
     克隆的Bm和Bmand LSP5'FR片段经测序分析,涵盖了LSP的第一内含子,第一外显子、核心启动子区及其5′上游区四部分;在启动子区域内有经典的TATA盒,脂肪体内组织特异性表达基因的共有序列和推定的激素响应元件,5′上游区发现了与家蚕丝素轻链基因第一内含子区域的高度同源序列和失活的部分水手转座子元件(MLE)。采用PCR法和限制性内切酶法获得了系列缺失BmLSP基因启动子,在BmN细胞瞬时表达系统考察了第一内含子(Ⅰ)、含丝素轻链基因第一内含子区域同源序列(S)以及MLE对BmLSP基因启动子的转录活性的影响,结果表明Ⅰ能显著增加启动子的转录活性达5.4-5.8倍,S增加启动子转录活性4.42倍,暗示在I、S中可能存在类似增强子的元件。而MLE则抑制启动子的转录活性。昆虫激素JHA对BmLSP启动子转录活性影响呈现剂量依赖效应,1μg/ml处理增加2.97倍,2-6μg/ml处理不影响,8μg/ml处理显著降低转录活性2.85倍;而MH处理对其活性没有显著影响。
     二、Bm/Bmand HSC70-4 5'FR克隆及启动子功能特性分析
     克隆的BmandHSC70-4、BmHSC70-45'FR经测序分析涵盖了部分第一外显子和启动子区:推测了可能存在的顺式作用元件有6个GATA盒、2个CAAT盒和2个热激响应因子(HSF)结合元件,但没有发现经典的TATA盒与GC盒。在常态下BmHSC70-4启动子、BmandHSC70-4启动子在BmN细胞、sf21细胞和五龄蚕体内都呈现高转录活性;37℃热激处理BmN、Sf21细胞和四龄蚕体能增加启动子的转录活性,且在sf21细胞中热激效果更为明显,而在五龄家蚕体内热激处理却抑制其转录活性;在五龄家蚕体内,JHA不影响BmHSC70-4启动子转录活性,低剂量MH处理显著提高转录活性,而高剂量(5μg MH/头)处理没有显著影响:在家蚕五龄蚕体内不同发育阶段BmHSC70-4启动子的转录活性有所波动,到熟蚕期达到最高。以上结果表明Bm、BmandHSC70-4启动子既具有组成型特征,又有一定的诱导型特征。
     三、BmNPVhr3对Bm/Bmand HSC70-4启动子活性的增强功能
     hr3是来源于BmNPV同源序列,具有BmNPV复制起始位点和增强子的双重功能。结果表明hr3能增强Bm/Bmand HSC70-4启动子活性,在BmN细胞内增强16-18倍,且与hr3接入方向无关:在蚕体内分别增强190.57倍,242.19倍:在五龄家蚕体内,JHA不影响BmHSCTO-4/hr3组合转录活性,不同剂量MH处理显著提高转录活性;在家蚕五龄蚕体内不同发育阶段BmHSC70-4/hr3启动子组合的转录活性有所波动,到熟蚕期达到最高,这与BmHSC70-4启动子一致,说明hr3只是增强转录活性,并不改变特性。以上结果显示HSC70-4/hr3启动子组合更适合在细胞稳定表达系统或转基因家蚕中驱动目的蛋白基因的转录表达。
The regulation promoter region of LSP and HSC70-4 are cloned from genomic DNA from B. mori and B. mandarina. A series of luciferase reporter plasmids, driven by LSP and HSC70-4 promoters, are constructed, respectively. Via the transient expression system in BmN cells or silkworm transfected by lipofectin, the functional and characterestic analysis of the promoter are investigated. This will be helpful to further elucidate the regulation mechanism of LSP and HSC70-4 expression and to apply of the promoters in stable transformation cell system or transgenic silkworm.
    1. The Cloned BmandLSP and BmLSP 5'FR and Functional analysis of BmLSP promoter
    The Cloned BmandLSP and BmLSP 5'FR, consisting of the first intron, the first exon, the core promoter region and 5'-upstream region, harbor the classic TATA box, sequences commonly found in insect genes that were specifically transcribed in fat body and the deduced ERE. The 5'-upstream region contains the homologous sequence with the first intron of Fib-L (S) and the inactive mariner like element (MLE). Using PCR and restriction endonuclease methods, a series of luciferase reporter plasmids, driven by different length of BmLSP promoters, are constructed. Via the transient expression system in BmN cells, the effects of the regulation elements and foreign insect hormones on the BmLSP promoter activity are investigated. The results show that the BmLSP promoter activity is enhanced by the intron with 5.4-5.8 folds, and by S with 4.42 folds, suggesting that the intron and S harbor the enhancer-like element. However, MLE in 5'-upstream region presents a negative effect on promoter activity. The effects of juvenile
     hormone analogue (JHA) on the BmLSP promoter activity appear the typical dose-dependent manner, that is, low concentration treatments increase the BmLSP promoter activity and high concentration treatments decrease it. Meanwhile, insect ecdysone (MH) treatment present no significant effect
    2. The Cloned BmandHSC70-4 and BmHSC70-4 5'FR, and Characterestic and functional analysis of BmandHSC70-4 and BmHSC70-4 promoters
    The Cloned BmandHSC70-4 and BmHSC70-4 5'FR, consisting of the partial first exon, the central promoter region and 5'-upstream region, harbor six GATAs, two CAATs and two HSFs, but no TATA and GC box. Under normal condition, transcriptional activities of BmandHSC70-4 or BmHSC70-4 promoter are high in BmN, Sf21 cells and the 5lh instar larvae. By heat-shock treatment at 37癈 for 2hr, the enhancements of BmandHSC70-4 or BmHSC70-4 promoter activity are achieved in BmN cells, sf21 cells and 4lh instar silkworm larvae, respectively. But heat-shock treatment for 5th instar silkworm larvae lead to a drastically decrease of the promoters' activity. In 5th instar silkworm larvae, JHA treatments have no significant effect, and injection of low level of MH (1-3 V g per os) can increase BmHSC70-4 promoter activity, while high level of MH (5 M g per os) presents no effect. Transcriptional activity of promoter is changed with the different developmental stages and reaches the highest level at the wandering stage in 5" inst
    ar. From the above results obtained from in vitro and in vivo, we can deduce
    III
    
    
    that BmandHSC70-4 or BmHSC70-4 promoter is both constitutive and inducible promoter, suggesting that its potential application in cell stable expression system or transgenic Bombyx mori.
    3. BmNPV hr3 enhancing BmHSC70-4 and BmandHSC70-4 promoter transcriptional activity
    BmNPV hr3, derived from B. mori Nucleopolyhedrovirus, functions as replication initiation site in viral DNA and enhancer for several promoters' transcription. Here, hr3 also can increase the transcriptional activiy of the BmHSC70-4 and BmandHSC70-4 promoter by 16-18 folds in BmN cells and 190.57-242.19 folds in 5th instar larvae. The ArJ-mediated enhancement is orientation-independent.
    In the 5th instar larvae, MH treatments enhance the transcriptional activity of the promoter combination. The maximum stimulating effect, by 5ug MH per os treatment, is achieved about 17.54 times, compared with the cont
引文
1. 雷向东,宓怡德,袁中一,等.萤火虫荧光素酶基因在家蚕中的表达.科学通报,1994,39(9): 847-849
    2.吕鸿卢.昆虫病毒分子生物学,第一版,中国农业科技出版社,北京,1998
    3.吕鸿卢.昆虫病毒与昆虫病毒病.北京:科学出版社,1981,263-265
    4.吕鸿卢.中国养蚕学,第一版,上海科技山版社,1991,172-183
    5.唐顺明,易咏竹,沈兴家,张志芳,李奕仁,何家禄,家蚕(苏·菊×明·虎)幼虫血清蛋白基因(BmLSP)启动子特性分析.科学通报,2003,48(21):2261-2265(中文版)
    6.肖庆利.家蚕杆状病毒解旋酶基因启动子结构与功能分析及表达系统的应用.中国农业科学院博士学位论文,2001
    7.徐卫华.家蚕滞育的分子机理 2:蛹期滞育激素基冈的表达与滞育决定.遗传学报,1999,26(2):107-111
    8.黄君霆.家蚕基因组序列解读及其展望.蚕业科学,2004,30:1-5
    9.张志芳,张颖,吕鸿声,李载平,吴祥甫.家蚕核型多角体病毒DNA复制起始点hr3的结构与功能.中国科学(B辑),1995,25:949-955
    10.赵巧玲,张志芳,何家禄.家蚕蛹体基因组DNA的快速制备方法.蚕业科学,2000,26(1):63-64
    11.周亚竟.昆虫激素与CTAB对杆状病毒复制和相关基因启动子的影响.华东理工大学博士学位论文,2002
    12.朱江,戴玉锦.家蚕卵黄蛋白质分子生物学研究进展.国外农学-蚕业,1989(3):4-11
    13. Abrahamsen N, Martinez AA, Kjaer T et al. Cis-regulatory sequences leading to female-specific expression of yolk protein genes 1 and 2 in the fat body ofD melanogaster Mo.1 Gen. Genet., 1993, 237:41-48
    14. Agui N, Shimada T, Izumi S et al. Hormonal control of vitellogenin mRNA levels in the male and female housefly, Musca domestica. J Insect Physiol., 1991, 37:383-390
    15. Allan R L, Courtney T, Isabel B et al. Self-inflicted wounds, template-directed gap repair and a recombination hotspot: effects of the mariner transposase. Genetics, 2000, 154: 647-656
    16. Arnosti DN. Analysis and functional of transcriptional regulatory elements: Insights from Drosophila. Annu. Rev. Entomol., 2003, 48:579-602
    17. Banerji J, Rusconi S, Schaffner W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell, 1981, 27:299-308
    18. Beckmann RP, Mizzen LA, Weilch WJ. Interaction of hsp70 with newly synthesized proteins: implication for protein folding and assembly. Science, 1990, 248: 850-853
    19. Bello B, Couble P. Specific expression of a silk-encoding gene of Bombyx in the anterior salivary gland of Drosophila. Nature, 1990, 346 (6283): 480-482
    20. Bercovich B, Stancovski I, Mayer A, Blumenfeld N, Laszlo A, Schwartz AL and Ciechanover A. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem., 1997, 272: 9002-9010
    21. Beuken E, Vink C, Bruggeman CA. One step procedure for screening recombinant plasmids by size. Biotechniques, 1998, 24: 748-750
    22. Bhattacharyya N, Banerjee D. Transcriptional regulatory sequences within the first intron of the chicken apolipoprotein AI(apo AI) gene. Gene, 1999, 234:371-380
    
    
    23. Binger LC, Willis JH. Identification of the cDNA, gene and promoter for a major protein from flexible cuticles of the giant silk moth, Hyalophora cecropia. Insect Biochem. Mol. Biol., 1994, 24: 989-1000
    24. Blackwood EM, Kadonaga JT. Going the distance: a current view of enhancer action. Science, 1998, 281: 60-63
    25. Blumethal T, Zucker-Aprison E. Evolution and regulation of vitellogenin genes. Mol. Biol. Invertebr Dev., 1987, 66: 3-19
    26. Braun RP, Wyatt GR. Modulation of DNA-binding proteins in Locusta migratoria in relation to juvenile hormone action. Insect Mol. Biol., 1992, 1:99-107
    27. Burke TW, Willy PI, Kutach AK, Buttler JE, Kadonaga JT, The DPE, a conserved downstream core promoter element that is functionally analogous to the TATA box. Cold Spring Harbor Symp. Quant. Biol., 1998, 63:75-82
    28. Burtis KC, Coschigano KT, Baker BS et al. The doublesex proteins of D melanogaster bind directly to a sex-specific yolk protein gene enhancer. EMBO J., 1991, 10: 2577-2582
    29. Bushman F. Gene regulation: Selfish elements make a mark. Nature, 2004, 429 (6989) : 253
    30. Cai H, Lewine M. Modulation of enhancer-promoter interactions by insulators in the Drosophila embryo. Nature, 1995, 376: 535-536
    31. Cedric F, Susan RW. Mariner-like transposases are widespread and diverse in flowering plants. Proc. Natl. Acad. Sci. USA, 2002, (99): 280~285
    32. Chalkley GE, Verrijizer CP. DNA binding site selection by RNA polymerase Ⅱ TAFs: a TAF(Ⅱ) 150 complex recognizes the initiator. 1999, EMBO J. 18: 4835-4845
    33. Chang HC, Newmyer SL, Hull MJ, Ebersold M, Schmid SL, Mellman I. Hsc70 is required for endocytosis and clathrin function in Drosophila. J Cell Biol., 2002, 159(3):477-487
    34. Chen Y, Yao B, Zhu ZZ, Yi YZ, Lin XA, Zhang ZF and Shen GF, A constitute super-enhancer: homologous region 3 of Bombyx mori necleopolyhedrovirus. BBRC., 2004, 318(4):1039-1044
    35. Cherbas L, Cherbas P. The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem. Mol. Biol., 1993, 23:81-90
    36. Couble P, Chevillard M, Moine A, Ravel-Chapuis P, Prudhomme JC. Structural organization of the P25 gene of Bombyx mori and comparative analysis of its 5' flanking DNA with that of the fibroin gene. Nucleic Acids Res., 1985, 13(5):1801-1814
    37. Daniel L H, Allan R L, Elena R L. Modern thoughts on an ancient mariner: function, evolution, regulation. Annu. Rev. Genet., 1997, 31:337-358
    38. De Kort CAD, Koopmanschap AB, Nucleotide and deduced amino acid sequence ofa cDNA clone encoding diapause proteinl, an arylphorin-type storage hexamer of the Colorado potato beetle. J Insect Physiol., 1994, 40: 527-535
    39. Delaney S J, Smith DF, McClelland A, et al. Sequence conservation around the 5' ends of the larval serum protein 1 gene of Drosophila melanogaster. J. Mol. Biol., 1986(189): 1~11
    40. Deshaies RJ, Koch BD, Werner-Washburn M, EA Craig and Schekman RA. Subfamily of stress protein facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, 1988, 322: 800-805
    41. Durand B, Drevet J, Couble P. P25 gene regulation in Bombyx mori silk gland: two promoter-binding factors have distinct tissue and developmental specificities. Mol. Cell Biol, 1992, 12(12): 5768-5777
    42. EA Craig, Ingolia TD and Manseau LJ. Expression of Drosophila heat-shock cognate genes during
    
    heat shock and development. Dev. Biol., 1983, 99(2): 418-426
    43. Edwards GC, Braun RP, Wyatt GR. Induction of vitelogenin synthesis in Locusta imigratoria by the juvenile hormone analog, Pyriproxyfen. J Insect Physiol., 1993, 39:609-614
    44. Fatyol K, Illes K, Praznovszky T, Langridge WH, Hadlaczky G, Szalay AA. Molecular characterization of a stably transformed Bombyx mori cell line: identification of alternative transcriptional initiation sites of the A3 cytoplasmic actin gene. MoL Gen. Genet. ,1998, 260(1): 1-8
    45. Felipe Alves CA, lkeda M, Kobayashi M. Identification and characterization of Hyphantria cunea nucleopolyhedrovirus homologous repeated region. Virus Genes, 2002, 25(3): 281-290.
    46. Fink AL. Chaperone-mediated protein folding. Physiological Rev., 1999, 79(2): 425-449
    47. Fujii T, Sakuraki H, Izumi S et al. Structure of the gene for the arylphorin-type storage protein 2 of Bombyx mori. J Bio. Chem., 1989, 264:11020-11025
    48. Fujiwara Y, Yamashita O. A Iarval serum protein of the silkworm, Bombyx mori:cDNA sequence and developmental specificity of the transcript, Insect Biochem., 1991, 21(7): 735-742
    49. Fujiwara Y, Yamashita O. Purification characterization and developmental changes in the titer of a new larval serum protein of the silkworm, Bombyx mori. Insect Biochem., 1990, 20(7): 751-759
    50. Fujiwara, Y, Yamashita O. Gene structure of Bombyx mori larval serum protein (BmLSP). Insect Mol. Biol., 1992,1(2): 63-69
    51. Fukuta M, Matsuno K, Hui CC, Nagata T, Takiya S, Xu PX, Ueno K, Suzuki Y. Molecular cloning of a POU domain-containing factor involved in the regulation of the Bombyx sericin-1 gene. J Biol. Chem., 1993,268(26):19471-19475
    52. Gage L P. The Bombyx mori genome analysis by DNA reassociation kinetics. Chromosoma, 1974, 45, 27-42.
    53. Garel A, Deleage G, Prudhomme JC. Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser 1B cDNA. Insect Biochem. Mol. Biol., 1997, 27(5): 469-477
    54. Gerasimova TI, Cortes VG. Chromatin insulator and boundaries: effects on transcription and nuclear organization. Annu. Rev. Genet., 2001, 35: 193-208
    55. Gomi S, Majima K, and Maeda S. Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus, J. Gen. Virol., 1999, 80: 1323-1337
    56. Graham A, Papalopulu N, Krumlauf R. The murine and Drosophilla homobox gene complexes have common features of organization and expression. Cell, 1989, 57: 367-378
    57. Harshman LG, James AA. Differential gene expression in insects: transcriptional control. Annu. Rev. Entomol., 1998, 43:671-700
    58. Haunerland NH. Insect storage proteins: gene families and receptors, Insect Biochem. Mot. Biol., 1996, 26(8-9): 755~765
    59. Hirose S, Suzuki Y. In vitro transcription of eukaryotic genes is affected differently by the degree of DNA supercoiling. Proc. Natl. Acad. Sci. USA., 1988, 85(3):718-722.
    60. Hiruma K, Hardie J, Riddiford LM. Hormonal regulation of epidermal metamorphosis in vitro, control of expression of a larval-specific cuticle gene. Devel Biol., 1991, 144: 369-368
    61. Hiruma K, Riddiford LM. Molecular mechanisms of cuticular melanization in the tobacco hornworm, Manduc Sexta, (L)(Lepidoptera: Sphingidae). Int. J. Embryol. Morpho., 1993,22:103-117
    62. Horard B, Julien E, Nony P et al. Differential binding of the Bombyx silk gland-specific factor SGFB to its target DNA sequence drives posterior-cell-restricted expression. Mol. Cell Biol., 1997,
    
    17:1572-1579
    63. Horard B, Mange A, Pelissier B, Couble P. Bombyx gene promoter analysis in transplanted silk gland transformed by particle delivery system. Insect Mol. Biol.,1994, 3(4): 261-265.
    64. Hua YJ, Tanaka Y, Nakamura K et al. Identification of a prothoracicostatic peptide in the larval brain of the silkworm, Bombyx mori. J Bio. Chem., 1999, 274(44): 31169-31173
    65. Hui CC, Matsuno K, Suzuki Y. Fibroin gene promoter contains a cluster ofhomeodomain binding sites that interact with three silk gland factors. J Mol. Biol., 1990, 213(4): 651-670.
    66. Hui CC, Suzuki Y, Kikuchi Y, Mizuno S. Homeodomain binding sites in the 5' flanking region of the Bombyx mori silk fibroin light-chain gene. J Mol. Biol. 1990, 213(3): 395-398.
    67. Hung JJ, Cheng TJ, Chang MD, Chen KD, Huang HL and Lai YK. Involvement of heat shock elements and basal transcription elements in the differential induction of the 70-kDa heat shock protein and its cognate by cadmium chloride in 9L rat brain tumor cells. J Cell Biochem., 1998, 71(1):21-35
    68. Hunt CR, Parsian A J, Goswami PC and Kozak CA.. Characterization and expression of the mouse Hsc70 gene. Biochim. Biophys. Acta., 1999, 1444(3):315-25
    69. Iatrou K, Meidinger RG. Tissue-specific expression of silkmoth chorion genes in vivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector. Proc. Natl. Acad. Sci. USA., 1990, 87(10): 3650-3654
    70. Idahl LA, Sandatom PE, Sehlin J. Measurements of serum glucose using the luciferin/luciferase system and a liquid scintillation spectrometer. Analyt. Biochem., 1986, 155:177—181
    71. Ikeda M, Su Z-H, Saito H et al. Induction of embryomic diapause and its stimulation of avarytrehalase activity in the silkworm, Bombyx mori, by synthetic diapause hormone. J Insect Physiol., 1993, 39:889-895
    72. Imamura M, Nakai J, Inoue S, Quan GX, Kanda T and Tamura T. Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics, 2003, 165(3): 1329-1340
    73. Ingraham JA, Chan R, Mangalam HJ et al. A tissue specific factor containing a homeodomain domain specifies a pituitary phenotype. Cell, 1988, 55:519-529
    74. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K and Mizuno S. Silk fibroin ofBombyx mori is secreted, assembling a high molecilar mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol. Chem., 2000, 275(51): 40517-40528
    75. Jeffrey H. M. eds. Experiments Molecular Genetics, 11th printing, Cold Spring Harbor Laboratory Press, New York, 1992
    76. Jones G, Sharp PA. Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proc. Natl. Acad. Sci. USA, 1997, 94(25): 13499-13503.
    77. Julien E, Bordeaux MC, Garel A, Couble P. Fork head alternative binding drives stage-specific gene expression in the silk gland of Bombyx mori. Insect Biochem. Mol. Biol., 2002, 32(4):377-387
    78. Kadono-Okuda K, Kuwano E, E Eto, et al. Inhibitory action of an imidazole compound on ecdysone synthesis in prothoratic glands of the silkworm, Bombyx mori.. Dev. Growth Diff., 1987(29): 527-533
    79. Kadono-Okuda K, Kosegawa E, Mase K and Hara W. Linkage analysis of maternal EST cDNA clones covering all twenty-eight chromosomes in the silkworm, Bombyx mori. Insect Mol. Biol., 2002, 11, 443-451
    80. Karouna-Renier NK, Yang WJ and Rao KR. Cloning and characterization of a 70 kDa heat shock
    
    cognate gene (HSC70) from two species of Chironomus. Insect. Mol. Biol.,2003, 12(1): 19-26
    81. Kellum R, Schedl P. A position-effect assay for boundaries of higher order chromosomal domains. Cell, 1991, 64: 941-950
    82. Kiguchi K, Agui N. Eedysteroid levels and developmental events during larval molting in the silkworm, Bombyx mori. J Insect Physiol., 1981, 27: 805-812
    83. Kiguchi K. Ecdysteroid levels and developmental events larvae moulting in the silkworm, Bombyx mori. J Insect Physiol., 1986, 23: 242-247
    84. Kikuchi Y, Mori K, Suzuki S, et al. Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain. Gene, 1992, 110(2): 151-158
    85. Kimura K, Oyama F, Ueda H, Mizuno S, Shimura K. Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia. 1985, 41 (9): 1167-1171
    86. Koopmanschap A, Lammers J, De Kort C. The structure of the gene encoding diapause proteinl of the Colorado potato beetle. J Insect Physiol., 1995, 41:509-518
    87. Kravariti L, Lecanidou R, Rodakis GC. Sequence analysis of a small early ehorion gene subfamily interspersed within the late gene locus in Bombyx mori. J Mol. Evol., 1995, 41(1): 24-33
    88. Kravariti L, Thomas J, Sourmeli S, Rodakis GC, Mauchamp B, Chavancy G, Lecanidou R. The biolistic method as a tool for testing the differential activity of putative silkmoth chorion gene promoters. Insect Biochem. Mol. Biol., 2001, 31 (4-5):473-479
    89. Kumaran AK, Ray A, Tertadian JA et al, Effects of juvenile hormone, ecdysteriods and nutrition on larval hemolymph protein gene expression in Galleria mellonella. Insect Biochem., 1987, 17:1053-1058
    90. Kumaresan G, Mathavan S. Molecular diversity and phylogenetic analysis of mariner-like transposons in the genome of the silkworm Bombyx mori. Insect Mol. Biol., 2004, 13(3):259-271
    91. Kusuda et al, The sequence around the 5' end of the fibroin gene from the wild silkworm, Bombyx mandarina, and comparison with that of the domesticated specieces, B. mori. Mol. Gen. Genet., 1986, 203: 359-364
    92. Kutach AK, Kadonaga. The downstream promoter element DPE appears to be as widely used as the TATA box in drosophila core promoters. Mol. Cell. Biol., 2000, 20: 4754-4764
    93. Lamp DJ, Willis JH. Characterization of a a cDNA and gene encoding a cutieular protein from rigid cuticles of the giant silk moth, Hyalophora cecropia. Insect Biochem. Mol. Biol., 1994, 24: 419-435
    94. Lecanidou R, Rodakis GC, Eickbush TH, Kafatos FC. Evolution of the silk moth chorion gene superfamily: gene families CA and CB. Proc. Natl. Acad. Sci. USA, 1986, 83(17): 6514-6518
    95. Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet., 2000, 34:77-137
    96. Lee JM, Kusakable T, Kawaguchi Y, Yasunnaga-Aiki C, Nho S, Nakajima Y and Koga K. Molecular characterization of a heat shock cognate 70-4 promoter from the silkworm, Bombyx mori. Journal of insect biotechnology and sericology, 2003, 72:33-39
    97. Liang P, Pardee AB. Differential display of eukaryotie messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967-971
    98. Lindquist S, EA Craig. The heat-shock proteins. Annu. Rev. Genet., 1988, 22: 631-677
    99. Lizabeth AP, John SD, Kang Z, Leslie S, Norbert P and EA Craig. Molecular and developmental
    
    characterization of heat shock cognate 4 gene of Drosophila melanogaster. Mol. Cell. Biol., 1990, 10(6): 3232-3238
    100. Lo HR, Chou CC, Wu TY, Yuen JP and Chao YC. Novel baculovirus DNA elements strongly stimulate activities of exogenous and endogenous promoters. J. Biol. Chem., 2002, 277:5256-5264
    101. Lu M, Farrell PJ, Johnson R and Iatrou K. A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells. J. Biol. Chem., 1997, 272: 30724-30728
    102. Ludwig MZ et al. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature, 2000, 403: 564-567
    103. Ludwig MZ, Kreitman M. Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development, 1998, 125: 949-958
    104. Mackay TF. Quantitative trait loci in Drosophila. Nat. Rev. Genet., 2001, 2:11-20
    105. Mange A, Couble P, Prudhomme JC. Two alternative promoters drive the expression of the cytoplasmic actin A4 gene of Bombyx mori. Gene, 1996, 183(1-2):191-199
    106. Mange A, Julien E, Prudhomme JC, Couble P. A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actin gene of Bombyx mori, Mol. Biol., 1997, 265(3):266-274.
    107. Mange A, Prudhomme JC. Comparison of Bombyx mori and Helicoverpa armigera cytoplasmic actin genes provides clues to the evolution of actin genes in insects. Mol. Biol. Evol., 1999, 16(2): 165-172.
    108. Martinez E, Givel F, Wahli W. A common ancestor DNA motif for invertebrate and vertebrate hormone response elements. EMBO J, 1991, 10:263-268
    109. Matinez L, et al. Sequence variability in the fibroin-H intron of domesticated and wild silk moths. Insect Biochem. Mol. Biol., 2004, 34: 343-352
    110. Matsumoto N, Nakanishi Y, Natori S. Homologies of nucleotide sequences in the 5'-end region of two developmentally regulated genes of Sarcophaga peregrina. Nucl. Acids Res., 1986(14): 2685-2698
    111. Matsunami K, Kokubo H, Ohno K, Suzuki Y. Expression pattern analysis of SGF-3/POU-M1 in relation to sericin-1 gene expression in the silk gland. Dev. Growth Differ., 1998, 40(6):591-597
    112. Matsuno K, Hui CC, Takiya S, Suzuki T, Ueno K, Suzuki Y. Transcription signals and protein binding sites for sericin gene transcription in vitro. J Biol. Chem., 1989, 264(31): 18707-18713
    113. Matsuno K, Takiya S, Hui CC, Suzuki T, Fukuta M, Ueno K, Suzuki Y. Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3. Nucl. Acids Res., 1990, 18(7): 1853-1858
    114. Memmel NA, Trewitt PM, Grzelak K, et al. Nucleotide sequence, structure and developmental regulation of Lhp82, a juvenile hormone suppressible hexamerin gene from the waxmoth, Galleria mellonella, Insect Biochem. Mol. Biol., 1994, 24:133-144
    115. Memmel NA, Trewitt PM, Silhacek DL et al. Nucleotide sequence and structure the arylphorin gene from the waxmoth, Galleria mellonella. Insect Biochem. Mol. Biol., 1992, 22: 333-342
    116. Mestril R, Schiller P, Amin J et al. Heat shock and ecdysterone activation of the Drosophila melanogaster hsp23 gene: a sequence element implied in developmental regulation. EMBO J, 1986, 5:1667~1673
    117. Michaille JJ, Garel A, Prudhomme JC. Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene, 1990, 86(2):177-184
    
    
    118. Mine E, Sakurai H, Izumi S, et al. The fat body cell-free system for tissue-specific transcription of plasma protein gene of Bombyx mori. Nucleic. Acids Res., 1995, 23(14): 2648~2653
    119. Mira K., et al. The genome sequence of silkworm, Bombyx mori. DNA Res., 2004, 11: 27-35
    120. Mita, K., Morimyo, M., Okano, K. et al. The construction of an EST database for Bombyx mori and its application. Proc. Natl. Acad. Sci. USA, 2003, 100, 14121-14126.
    121. Moos M. Analysis of proteins. 1995. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K eds. Short Protocols in Molecular Biology, John Wiley & Sons, Inc
    122. Mounier N, Gaillard J, Prudhomme JC. Nucleotide sequence of the coding region of two actin genes in Bombyx mori. Nucleic. Acids Res. 1987, 15(6):2781
    123. Mounier N, Prudhomme JC. Isolation of actin genes in Bombyx mori: the coding sequence of a cytoplasmic actin gene expressed in the silk gland is interrupted by a single intron in an unusual position. Biochimie., 1986, 68(9): 1053-1061
    124. Naar AM, Lemon BD, Tijian R. Transcriptional coactivator complex. Annu. Rev. Biochem., 2001, 70: 475-501
    125. Nakata H, Izumi S, Tomino S. Structure and expression of a gene coding for a pupal cuticular protein of Bombyx mori. Biochem. Biophys. Acta, 1992, 1132: 161-167
    126. Nelson CR, Abert VR, Elsholtz HP et al. Activation of cell specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science, 1988, 239: 1400-14505
    127. Nony P, Prudhomme JC, Couble P. Regulation of the P25 gene transcription in the silk gland of Bombyx. Biol. Cell., 1995, 84(1-2): 43-52
    128. Ohbayashi F, Suzuki MG, Mira K, Okanoc K, Shimada T. A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comparative Biochemistry and Physiology Part B, 2001, 128:145-158
    129. Okamoto H, Ishikawa W, Suzuki Y. Structural analysis of sericin genes. J Biol. Chem., 1982, 257(24):15192-15199
    130. Papadimitriou E, Kritikou D, Mavroidis M, Zacharopoulou A and Mintzas AC. The heat shock 70 gene family in the Mediterranean fruit fly Ceratitis capitata. Insect. Mol. Biol., 1998, 7:279-290
    131. Pelham H. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 1986, 46: 959-961
    132. Peterson NS, Mitchell HK. 1985. Heat shock proteins. In: Kerkut, G. A., Gilbert, L. I.(Eds), Comprehensive Insect Physiology, Biochemistry and pharmacology, vol. 10. Pregamon Press, Oxford, pp. 347-360
    133. Promboon A, Shimada T, Fujiwara H and Kobayashi M. Linkage map of random amplified polymorphic DNAs (RA PDs) in the silkworm, Bombyx mori. Genet. Res., 1995, 66:1-7
    134. Purnell BA, Emanual PA, Gilmour DS. TFIID sequence recongnition of the initiator and sequences farther downstream in Drosophila class Ⅱ genes. Genes Dev., 1994, 8:830-842
    135. Reddy KD, Abraham EG and Nagaraju J. Microsatellites in the silkworm, Bombyx mori: abundance, polymorphism, and strain characterization. Genome, 1999, 42: 1057-1065
    136. Reisler E. Actin molecular structure and function. Curr. Opin. Cell Biol., 1993, 5:41-47
    137. Riddiford LM. Celluar and molecular actions of juvenile hormone Ⅰ. General considerations and premetamorphic actions. Adv. Insect Physiol., 1994, 24:213-274
    138. Riddiford LM, Hiruma K. Hormone control of sequenstial gene expression in lipidopeteran epidermis. In Molting and Metamorphosis, 1990, ed. E Ohnishi,H lshizaki, pp.207-222, Tokyo, Japan Sci Soc
    
    
    139. Riddiford LM. 1985, Hormone action at the cellular level. In:Kerkut, G., Gilbert, L.I. (Eds.); Comprehensive insect biochemistry, physiology, and pharmacology, vol. 8. Pergamon Press, New York, pp. 37-84.
    140. Riddiford LM. Cellular and molecular actions of juvenile hormone, Ⅰ. General considerations and premetamorphic actions. Advances in Insect Physiology, 1994, 24: 213-274
    141. Riddiford LM. 1996. Molecular aspects of juvenile hormone action in insect metamorphosis. In: Gilbert, LI. Tara, JR, Atkinson, BG (Eds.), Metamorphosis: postembryonic reprogramming of gene expression in amphibian and insect cells. Academic Press, San Diego, pp. 223-251.
    142. Riddiford LM, Ashburner M. Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophilamelanogaster. General and Comparative Endocrinology, 1991, 82:172-183.
    143. Riddihough G, Pelham HRB. An ecdysone response element in the Drosophila hsp 27 promoter, EMBO J., 1987, 6:3729-3734
    144. Rinehart JP, Yocum GD and Denlinger DL. Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Ssarcophaga crassipalpis. Insect Biochem. Mol. Biol., 2000, 30(6): 515-521.
    145. Robertson HM, Asplund ML. Bmmarl: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem. Mol. Biol., 1996, 26(8-9): 945-954
    146. Romans P, Tu Z, Ke Z et al. Analysis of a vitellogenin gene of the mosquito, Aedes aegyti and comparisons to vitellogenins from other organism. Insect Biochem. Mol. Biol., 1995,26:939-958
    147. Rubenstein RC, Zeitlin PL. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am. J. Physiol. Cell Physiol., 2000, 278(2): C259-267
    148. Rybczynski R, Gilbert LI. cDNA cloning and expression of a hormone-regulated heat shock protein (hsc70) from the prothoracic gland ofManduca Sexta. Insect Biochem. Mol. Biol., 2000, 30: 579-589
    149. Sakurai H, Fujii T, lzumi S et al. Structure and expression of a gene coding for sex-specific storage protein of Bombyx mori. J Biol. Chem.. 1988, 263:7876-7880
    150. Sakurai H, Fujii T, Izumi S, et al. Complete nucleotide sequence of gene for specific storage protein of Bombyx mori. Nucl. Acids Res., 1988, 16:7717-7718
    151. Sakurai H, Izumi S, Tomino S. In vitro transcription of the protein genes of Bombyx mori. B.B.A., 1990, 1087:18-24
    152. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989
    153. Sato H, Takeuchi Y, Takeda R et al. The core complementary sequence responsible for biological activity of the diapause hormone of the silkworm, Bombyx mori. Peptides, 1994: 1173-1178
    154. Shei Y, Thomas JO. The transport of proteins into the nucleus requires the 70kDa heat shock protein or its cytosolic cognate. Mol. Cell, Biol., 1992, 12:2186-2192
    155. Shi J, Heckel DG and Goldsmith MR. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphisms. Genet. Res., 1995, 66: 109-126.
    156. Skeiky YA, Iatrou K. Synergistic interactions of silkmoth chorion promoter-binding factors. Mol. Cell Biol., 1991, 11 (4): 1954-1964
    157. Spieth J, Nettleton M, Zucker-Aprison E et al. Vitellogenin motif conserved in nematodes and vertebrates. J Mol. Evol., 1991,32:429-438
    
    
    158. Statistical Analysis System User's Guide, Version 6.12, SAS, Institute Inc. Cary. North Carolina: Institute Inc. Cary. North Carolina, Vols. 1. 2. 1990
    159. Su Z-H, Ikeda M, Sato Y et al. Molecular characterization of ovary trehalase of the silkworm, Bombyx mori and its transcriptional activation by diapause hormone. Biochim Biophys Acta, 1994, 218: 366-374
    160. Summers MD, Smith GE. A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experiment Station Bulletin, No. 1555, 1987
    161. Suzuki MG, Funaguma S, Kanda T, Tamura T, Shimada T. Analysis of the biological functions of a doublesex homologue in Bombyx mori. Dev. Genes Evol., 2003, 213(7): 345-354
    162. Suzuki MG, Ohbayashi F, Mita K, Shimada T. The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori. Insect Biochem. Mol. Biol. 2001, 31(12):1201-1211
    163. Swevers L, Eystathioy T, Iatrou K. The orphan nuclear receptors BmE75A and BmE75C of the silkmoth Bombyx mori: hornmonal control and ovarian expression. Insect Biochem. Mol. Biol., 2002, 32(12): 1643-1652
    164. Takiya S, Kokubo H, Suzuki Y. Transcriptional regulatory elements in the upstream and intron of the fibroin gene bind three specific factors POU-M1, Bm Fkh and FMBP-1. Biochem J. 1997, 321 (Pt 3):645-653
    165. Takiya S, Hui C C, Suzuki Y. A contribution of the core-promoter and its surrounding regions to the preferential transcription of the fibroin gene in posterior silk gland extracts. EMBO J, 1990, 9(2): 489-496
    166. Tamura T, et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat. Biotechnol., 2000, 18(1):81-84
    167. Tan YD, Wan C, Zhu Y, Lu C, Xiang Z and Deng HW. An amplified fragment length polymorphism map of the silkworm. Genetics, 2001, 157(3): 1277-1284
    168. Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Ash-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem. Mol. Biol., 1999, 29(3): 269-276
    169. Tang SM, Yi YZ, Shen XJ, Zhang ZF, Li YR and He JL, Functional analysis of the larval serum protein gene promoter from silkworm, Bombyx mori. Chinese Science Bulletin, 2003, 48(23):2611-2615
    170. Tautz D. Evolution of transcriptional regulation. Curr Opin. Genet. Dev., 2000, 10:575-579
    171. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type Ⅲ procollagen in cocoons. Nat Biotechnol., 2003 J; 21 (1):52-56
    172. TsujimotoY, Suzuki Y. Structural analysis of the fibroin gene at the 5' end and its surrounding regions. Cell, 1979, 16(2): 425-436
    173. Ueno K, Hui CC, Fukuta M, Suzuki Y, Molecular analysis of the deletion mutants in the E homeotic complex of the silkworm Bombyx mori. Development, 1992, 114: 555-463
    174. Viswanathan P, Venkaiah B, Kumar MS, Rasheedi S, Vrati S, Bashyam MD and Hasnain SE. The homologous region sequence (hr1) of Autographa californica multinucleocapsid polyhedrosis virus can enhance transcription from non-baculoviral promoters in mammalian cells. J. Biol. Chem., 2003, 278: 52564-52571
    175. Webb BA, Riddiford LM. Regulation of expression of arylphorin and female specific protein
    
    mRNA in the tobacco hornworm, Manduca Sexta. Dev. Biol., 1988, 130:682-692
    176. Willott E, Wang XY, Wells MA. cDNA and gene sequence of Manduca Sexta arylphorin, an aromatic amino acid-rich larval serum protein. J Biol. Chem., 1989(264): 19052~19059
    177. Wyatt GR, Braun RP, Zhang J, Priming effect in gene activation by juvenile hormone in locust fat body. Arch. Insect Biochem. Physiol., 1996, 32:633-640
    178. Xiao QL, Zhang ZF, Yi YZ, He JL and Wu XF. Functional analysis of helicase gene promoter and homologous region 3 enhancer in Bombyx mori nuclear polyhedrosis virus. Acta Biochimica et Biophysica Sinica, 2001, 33: 525-530
    179. Xiao QL, Zhang ZF, Yi YZ, He JL and Wu XF. Identification of functional region of helicase gene promoter in Bombyx mori nuclear polyhedrosis virus. Acta Biochimica et Biophysica Sinica, 2002, 34(5): 560-564
    180. Xie XZ, Wu NH. Isolation of tomato proteinase inhibitor Ⅱ gene and the function of its intron. Chin. Sci. Bull., 2002, 47(10): 830-833
    181. Xu W-H et al. Molecular characterization of the gene encoding the precursor protein of DH-PBAN of the silkworm Bombyx mori. and its distribution in some insects. Biochim. Biophys. Acta, 1995, 1261:83-89
    182. Yamaguchi K, Kikuchi Y, Takagi T, Kikuchi A, Oyama F, Shimura K, Mizuno S. Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol. Biol., 1989, 210(1): 127-139
    183. Yamamoto K, Chadarevian A, Pelligrini A. Juvenile hormone action mediated in male accessory glands of Drosophila by calcium and kinase. Science, 1988, 239: 916-919
    184. Yamao M, Katayama N, Nakazawa H, Yamakawa M, Hayashi Y, Hara S, Kamei K, Mori H. Gene targeting in the silkworm by use ofa baculovirus. Genes Dev., 1999,13(5): 511-516
    185. Yamashita O, Yaginuma T, Hasegawa K. Hormonal and metabolic control of egg diapause of the silkworm, Bombyx mori. Entomol. Gener., 1981, 7: 195-211
    186. Yasukochi, Y. A dense genetic linkage map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics, 1998, 150, 1513-1525.
    187. Zhou CZ, Confalonieri F, Esnault C, Zivanovic Y, Jacquet M, Janin J, Perasso R, Li ZG, Duguet M. The 62-kb upstream region of Bombyx mori fibroin heavy chain gene is clustered of repetitive elements and candidate matrix association regions. Gene, 2003, 312: 189-195.
    188. Zhou CZ, et al. Fine organization of Bombyx mori fibrion heavy chain gene. Nucleic Acids Res., 2000, 28: 2413-2419
    189. Zhou YJ, Xiao QL, Zhang ZF, He JL and Zhang YX. Foreign insect hormone stimulating the transcription of the ie-1 promoter of Bombyx mori nuclear polyhedrosis virus in vivo and in vitro. Biosci. Biotechnol. Biochem., 2002 66(7): 1488-1494
    190. Zhou YJ, Yi YZ, Zhang ZF, He JL Zhang YX and Wu XF. Promoter activities in the baculovirus envelope glycoprotein gp64 gene. Acta Biochimica et Biophysica Sinica, 2003, 35(1): 18-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700