羟基喜树碱亚微乳细胞内动力学及其抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题在前期研究基础上,采用微射流技术制备了羟基喜树碱(HPCT)亚微乳,对HCPT亚微乳的细胞内动力学特征、细胞器的分布规律,细胞摄取机制和体内外抗肿瘤作用进行了探讨;研究了亚微乳中药物分布和其药物释放,以及HCPT-SAE克服肿瘤细胞多药耐药作用。本研究为亚微乳成为抗肿瘤药物载体的进一步研究开发提供了理论和实验依据。
     本课题首先建立了羟基喜树碱的HPLC分析方法,测定其在水和正辛醇中的表观溶解度分别为2.98和47.06μg/mL,正辛醇/水中的表观分配系数为12.62,其脂溶性比水溶性好;考察HCPT在不同pH条件下的表观开环平衡常数,以及其在多种油中的溶解度,为设计处方确定工艺条件及建立体内分析方法提供了依据。
     本课题以注射用大豆油、大豆磷脂、十八酰胺或胆固醇和维生素E为油相,Poloxamer188或(和)大豆磷脂和甘油为水相,采用微射流技术制备了两种HCPT亚微乳(HCPT-SAE和HCPT-LipoE)。HCPT亚微乳理化性质研究显示,HCPT-SAE和HCPT-LipoE经高压灭菌后,外观、乳滴粒径、粒径分布和Zeta电位均未发生显著改变;pH值有所下降,但符合注射液质量要求;药物含量略有下降,但仍占标示量的96%以上。HCPT亚微乳经高压灭菌后理化性质稳定。亚微乳中HCPT相分布研究表明,HCPT主要分布于O/W界面层构成的界面膜中,占亚微乳中药物总量80%以上,油相(14%以上)中分布高于水相;体外释放实验表明,HCPT-SAE和HCPT-LipoE两者体外释放行为相似,释药速度较慢,具有缓释作用,此作用可能与药物在乳剂中的相分配有关。稳定性研究表明,HCPT亚微乳减慢了其在血浆和细胞培养液中由内酯型向羧酸盐型的转化速率,增加其以内酯形式存的浓度。
     采用建立的细胞内HCPT含量测定方法,研究HCPT亚微乳细胞内动力学和HCPT在细胞器的分布。摄取动力学结果表明,与对照制剂HCPT-I相比,相同药物量HCPT亚微乳与细胞孵育后,能显著提高细胞内和细胞核内药物量。
     细胞内消除动力学研究表明,在SGC7901细胞中,HCPT-SAE和HCPT-LipoE的AUC显著高于HCPT-I(P<0.01),分别为HCPT-I的9.88和7.69倍;t_(1/2)也显著比HCPT-I延长(P<0.01),分别为HCPT-I的1.67和2.1倍。HCPT亚微乳细胞核AUC和t_(1/2)均显著高于HCPT-I(P<0.01),HCPT-SAE细胞核AUC比HCPT-LipoE高1.76倍;细胞质中两亚微乳AUC也均显著高于HCPT-I(P<0.01)。两亚微乳细胞核AUC均比细胞质低。
     SGC7901/VCR细胞中HCPT-SAE和HCPT-LipoE的AUC显著高于HCPT-I(P<0.01),分别为HCPT-I的29.16和8.54倍,HCPT-SAE为HCPT-LipoE的3.41倍;t_(1/2)也显著比HCPT-I长(P<0.01),分别为HCPT-I的5.37和6.23倍。两亚微乳细胞核AUC均显著高于细胞质(P<0.01),HCPT-LipoE细胞核内t_(1/2)比细胞质显著延长(P<0.05);HCPT-SAE组细胞核和细胞质AUC均显著比HCPT-LipoE组高(P<0.01),两亚微乳细胞核t_(1/2)无差异,而细胞质中HCPT-SAE比HCPT-LipoE显著延长(P<0.05)。
     HeLa细胞中HCPT-SAE和HCPT-LipoE的AUC显著高于HCPT-I(P<0.01),分别为HCPT-I的35.26和15.44倍;t_(1/2)也显著比HCPT-I长(P<0.05),分别为HCPT-I的1.67和1.75倍。两亚微乳细胞核AUC均显著高于细胞质(P<0.05),HCPT-LipoE细胞核内t_(1/2)比细胞质显著延长(P<0.05);HCPT-SAE组细胞核和细胞质AUC均显著比HCPT-LipoE组高(P<0.01)。
     HCPT亚微乳细胞摄取机理研究显示,在一定浓度范围内,细胞摄取HCPT量随HCPT亚微乳浓度升高而增加,表现出明显的浓度依赖性,高浓度时则表现为饱和性;细胞摄取HCPT亚微乳时呈现明显的温度依赖性,该过程需要消耗能量;内吞抑制剂(叠氮钠、甘露醇和氯喹)显著降低细胞内HCPT聚积。初步证实,细胞摄取HCPT亚微乳为能量依赖性的内吞方式。
     HCPT亚微乳能增强对肿瘤细胞增殖的抑制作用,抑制作用呈时间和剂量依赖性;HCPT-SAE对SGC7901、SGC7901/VCR和HeLa细胞的增殖均有较显著的抑制作用,HCPT-LipoE和HCPT-I仅对敏感的细胞有较强抑制作用,而对耐药细胞(SGC7901/VCR细胞)的抑制作用很弱。肿瘤细胞增殖抑制、胞内药物聚积等实验确证,阳离子亚微乳(HCPT-SAE)可增强药物对肿瘤细胞抑制增殖作用,克服肿瘤细胞多药耐药性。
     体内药动学研究结果表明,HCPT-SAE和HCPT-LipoE可以显著延长HCPT的体内循环时间,提高血浆中药物浓度,其消除半衰期分别为HCPT-I的5.75和3.72倍,AUC为HCPT-I的4.03和4.01倍。荷S180肿瘤小鼠体内分布研究结果表明,HCPT亚微乳可提高HCPT在肿瘤内的分布,HCPT-SAE的肿瘤靶向作用最明显,其AUC和峰浓度分别为HCPT-I组的11.57和1.91倍。
     HCPT-I的抗肿瘤活性最差,在4 mg/kg时其抑瘤率为31.03%,同剂量的HCPT-SAE和HCPT-LipoE抑瘤效率分别为90.75%和70.21%;2 mg/kg的HCPT-SAE的抑瘤率为64.31%,为HCPT-I(4 mg/kg)的两倍,对小鼠体重无显著影响;肿瘤病理切片显示,HCPT-SAE对肿瘤细胞抑制作用也较其他制剂显著。结果表明,HCPT-SAE毒性低,抗肿瘤作用强。
Hydrocamptothecin (HCPT) submicroemulsions were prepared by microfluid technology. The physicochemical characteristics, intracellular kinetics, subcellular biodistribution, mechanism of cellular uptake and antitumor effect of HCPT submicroemulsions (HCPT-SE) were studied. The relation between phase distribution and in vitro release of HCPT submicroemulsions, and overcoming multidrug resistance were also investigated. In the present work we provide some academic and experimental data for submicroemulsions as carrier of anticacer agents.
     The method of high performance liquid chromatography (HPLC) was set up to determine the concentration of HCPT. The apparent solubility of HCPT in distilled water and octanol was 2.98μg/mL and 47.06μg/mL, respectively. The apparent partition coefficient of HCPT in octanol/distilled water was 12.62. Lipophilicity of HCPT is more than hydrophilicity. The pKa was calculated from the process of carboxylate form of HCPT into lactones form in diferent pH solution. The solubility of HCPT in different oil was also determined.
     HCPT-SE containing HCPT, soybean oil, lecithin, stearylamine cholesterol and vitamine E as oily phase and Poloxamer188 and (or) as lecithin emulsifier were prepared by microfluid technology. As a result, HCPT-SE of different charge, cationic submicroemulsion (HCPT-SAE) and anionic charged submicroemulsion (HCPT-LipoE) were prepared. The HCPT-SE were characterized in terms of physical appearance, droplet size, polydispersity and zeta potential. The result showed that the characterizations of HCPT-SE were not significantly affected by autoclaving. HCPT-SE accorded with the quality standards of injections, although the pH value and content of HCPT were slight decrease. The HCPT in submicroemulsions mainly distributed in oil/water interface (~80%). Distribution of HCPT in oil phase (~14%) was more than that in water phase. In vitro, the release of HCPT from HCPT-SAE and HCPT-LipoE were similar. The release pattern of HCPT was slow and related to distribution of HCPT in submicroemulsions. HCPT-SE significantly decreased the conversion of lactone to carboxylate and enhanced proportion of the serum HCPT with the lactone fragment.
     To study the intracellular kinetics behavior and distribution of HCPT-SE, reversed-phase HPLC mothod was established to determine intracellular HCPT concentration. The cellular uptake kinetics study showed that HCPT-SE could significantly increase intracellular accumulation and nuclear delivery of HCPT compared with HCPT-I at same dose.
     The intracellular elimination kinetics study in SGC7901 cells showed that the AUC of HCPT-SAE and HCPT-LipoE were 9.88 and 7.69 folds higher than that of HCPT-I, when half-life was enhanced by 1.67 and 3.1 folds, respectively. The AUC and halt-life of HCPT-SE in nuclei and cytoplasm were significantly higher than that of HCPT-I (P < 0.01), whereas the AUC of HCPT-SAE extended the AUC of HCPT-LipoE by 1.76 times. The AUC of HCPE-SE in nuclei was lower than that in cytoplasm.
     In SGC7901/VCR cells, the AUC of HCPT-SAE and HCPT-LipoE were 29.16 and 8.54 folds higher than that of HCPT-I, when half-life was enhanced by 5.37 and 6.23 folds, respectively. The AUC of HCPT-SE in nuclei were significantly higher than that in cytoplasm (P< 0.01), whereas the half-life of HCPT-LipoE in nuclei was longer than that in cytoplasm. The AUC of HCPT-SAE in nuclei and cytoplasm was significantly higher than that of HCPT-LipoE (P < 0.01). The half-life of HCPT-SE in nuclei was no difference although the half-life of HCPT-SAE in cytoplasm was significently longer than that of HCPT-LipoE (P < 0.01).
     The AUC of HCPT-SAE and HCPT-LipoE were 35.26 and 15.44 folds higher than that of HCPT-I in HeLa cells, when half-life was enhanced by 1.67 and 1.75 folds, respectively. The AUC of HCPT-SE in nuclei were significantly higher than that in cytoplasm (P<0.01), whereas the half-life of HCPT-LipoE in nuclei was longer than that in cytoplasm. The AUC of HCPT-SAE in nuclei and cytoplasm was significantly higher than that of HCPT-LipoE (P < 0.01).
     The cellular uptake of HCPT-SE was in proportion to the concentrtion, and the pathway was saturable in high concentrtion (1.0μg/mL). The uptake of HCPT-SE was energy-dependent and was influenced by temperature. Endocytosis inhibitors (sodium azide, mannitol and chloroquine) decreased significantly accumulation of HCPT (p<0.01). The result revealed that HCPT-SE was uptaken through the endocytosis of energy-dependent.
     HCPT-SE showed higher antiproliferative activity than HCPT-Injection (HCPT-I), and the antiproliferative activity of HCPT-SE was in proportion to the incubation time and HCPT concentration. The proliferation of SGC7901cells, SGC7901/VCR cells and HeLa cells were signifcantly inhibited by HCPT-SAE (p<0.01). Whereas HCPE-LipoE only inhibited proliferation of SGC7901cells and HeLa cells and did not show significantly cytotoxicity in SGC7901/VCR (multidrug resistance cells). HCPT-SAE was suggested to overcome multidrug resistance in SGC7901/VCR cells by many approaches, such as fluorescence microscopy, flow cytometric ananlysis and HPLC, etc.
     After IV administration of HCPT-SE and HCPT-I to rat, pharmacokinetics parameters were calculated. It turned out that HCPT-SE significantly prolonged half-life of HCPT, and ehanced bioavailability. HCPT-SAE and HCPT-LipoE could extend the half-life of HCPT-I by 5.75 and 3.72 times, when AUC was enhanced by 4.03 and 4.01folds, respectively.The biodistribution test was carried out on S-180 tumor bearing mice. HCPT-SAE enhanced HCPT content of tumor, and had significantly tumor targeting effects. The AUC and C_(max) of HCPT-SAE in tumor were 11.57 and 1.91 folds higher than that of HCPT-I, respectively.
     Pharmacological test showed that HCPT-I at 4 mg/kg induced a 31.03% tumor inhibition rate. Compared with HCPT-I, HCPT-SAE and HCPT-LipoE showed tumor inhibiton rate of 90.75% and 70.21%, respectively. HCPT-SAE had tumor inhibiton rate of 64.31% at 2 mg/kg, which was 2 folds higher than that of HCPT-I at 4 mg/kg. Pathologic slice of tumor tissue also showed the effect of antitumor was higher than that of HCPT-LipoE and HCPT-I.
引文
[1]Tamilvanan S.Oil-in-water lipid emulsions:implications for parenteral and ocular delivering systems.Prog Lipid Res.2004,43(6):489-533.
    [2]陆彬.纳米乳与亚微乳给药系统.中国药师.2004,7(10):759-761
    [3]Groth,D.,Keil,O.,Lehmann,C.,Schneider,M.,Rudolph,M.,Reszka,R.Preparation and characterization of a new lipospermine for gene delivery into various cell-lines.Int J Pharm.1998,162(1-2):143-157.
    [4]Cortesi,R.,Esposito,E.,Menegatti,E.,Gambari,R.,Nastruzzi,C.Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA.Int J Pharm.1996,139(1-2):69-78.
    [5]Reddy PR,Venkateswarlu V.Pharmacokinetics and tissue distribution of etoposide delivered in long circulating parenteral emulsion.J Drug Target.2005,13(10):543-553.
    [6]Liu F,Liu D.Long-circulating emulsions(oil-in-water)as carriers for lipophilic drugs.Pharm Res.1995,12(7):1060-1064.
    [7]Goldstein D,Sader O,Benita S.Influence of oil droplet surface charge on the performance of antibody-emulsion conjugates.Biomed Pharmacother.2007,61(1):97-103.
    [8]Davis,S.S.,Illum,L.,Washinghton,C.,Harper,G.,.Studies on the interaction of charge reversed emulsions with reticuloendothelial system.Int J Pharm.1992,82:99-105
    [9]Gershanik T,Benzeno S,Benita S.Interaction of a self-emulsifying lipid drug delivery system with the everted rat intestinal mucosa as a function of droplet size and surface charge.Pharm Res.1998,15(6):863-869.
    [10]Samama JP,Lee KM,Biellmann JF.Enzymes and microemulsions.Activity and kinetic properties of liver alcohol dehydrogenase in ionic water-in-oil microemulsions.Eur J Biochem.1987,163(3):609-617.
    [11]Calvo P,Remuna-Lopez C,Vila-Jato JL,Alonso MJ.Development of positively charged colloidal drug carriers:chitosan-coated polyester nanocapsules and submicro-emulsions. Colloid Polym Sci. 1997,275(1):46-53.
    [12] Jumaa M, Muller BW. Physicochemical properties of chitosan lipid emulsions and their stability during the autoclaving process. Int J Pharm. 1999, 183(2):175-184.
    [13]Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985, 260(27): 14873-14878.
    [14] Zhang RW, Li Yf, Cai QY, et al. Preclinical pharmacology of the natural product anticancer agent 10-hydroxycamptothecin, an inhibitor of topoisomerase I. Cancer Chemother Pharmacol. 1998,41(7): 257-267.
    [15] Zhou JJ, Liu J, Xu B. Relationship between lactone ring forms of HCPT and their antitumor activities. Acta Pharmacol Sin. 2001,22(9): 827-830.
    [16]Sugarman SM, Zou Y, and Wasan K, et al. Lipid-complexed camptothecin: formulation and initial biodistribution and antitumor activity studies. Cancer Chemother Pharmacol. 1996,37(6): 531-538.
    [17]Mallery SR, Shenderova A, Pei P, et al. Effects of 10-hydroxycamptothecin, delivered from locally injectable poly(lactide-co-glycolide) microspheres, in a murine human oral squamous cell carcinoma regression model. Anticancer Res. 2001,21(3B): 1713-1722.
    [18] Zhao YX, Gao JQ, Qiao HL, Chen HL, Liang WQ. Development and validation of a sensitive reversed-phase HPLC method to determine intracellular accumulation of hydroxycamptothecin. J Pharm Biomed Anal. 2006, 41(3):1007-1010.
    [19] Williams J, Lansdown R, Sweitzer R, Romanowski M, LaBell R, Ramaswami R, Unger E. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. J Control Release. 2003, 91(1-2): 167-172.
    [20] Emerson DL. Liposomal delivery of camptothecins. Pharm Sci Technolo Today. 2000,3(6): 205-209.
    [21]Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. Influence of serum and albumins from different species on stability of camptothecin-loaded micelles.J Control Release.2005,104(2):313-321.
    [22]Lundberg BB.Biologically active camptothecin derivatives for incorporation into liposome bilayers and lipid emulsions.Anticancer Drug Des.1998,13(5):453-461.
    [23]Shenderova A,Burke TC.Schwendeman SP.Stabilization of 10-hydroxycamptothecin in poly(lactide-co-glycolide)microsphere delivery vehicles.Pharm Res.1997,14(10):1406-1414.
    [24]Li YF,Zhang R.Reversed-phase high-performance liquid chromatography method for the simultaneous quantitation of the lactone and carboxylate forms of the novel natural product anticancer agent 10-hydroxycamptothecin in biological fluids and tissues.J Chromatogr B Biomed Appl.1996,686(2):257-265.
    [25]孙静霞,王雷娜,尹莉,张正行.HPLC-FD法测定羟基喜树碱在大鼠体内组织分布.中国药科大学学报.2004,35(6):540-544.
    [26]苏德森,王思玲.物理药剂学.北京:化学工业出版社,2004:97-117.
    [27]Fassberg J,Stella VJ.A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues.J Pharm Sci.1992,81(7):676-684.
    [28]Underberg WJ,Goossen RM,Smith BR,Beijnen JH.Equilibrium kinetics of the new experimental anti-tumour compound SK&F 104864-A in aqueous solution.J Pharm Biomed Anal.1990,8(8-12):681-693.
    [29]崔福德.药剂学.第4版.北京:中国医药科技出版社,2002:38-39.
    [30]Wheeler JJ,Wong KF,Ansell SM,Masin D,Bally MB.Polyethylene glycol modified phospholipids stabilize emulsions prepared from tfiacylglycerol.J Pharm Sci.1994;83(11):1558-1564.
    [31]Han J,Washington C.Partition of antimicrobial additives in an intravenous emulsion and their effect on emulsion physical stability.Int J Pharm.2005,288(2):263-271.
    [32]高晓黎,孙殿甲,程利勇,毕殿州.去氢骆驼蓬碱注射用乳剂中药物的相分布和体外释放研究.中成药.2002,22(2):111-115.
    [33]Teagarden DL,Anderson BD,Petre WJ.Determination of the pH-dependent phase distribution of prostaglandin E1 in a lipid emulsion by ultrafiltration. Pharm Res.1988,5(8):482-487.
    [34]Levy MY,Benita,S.Drug release from submicronized o/w emulsion:new in vitro kinetic evaluation model,Int J Pharm.1990,66(1-3):29-37.
    [35]董隽,郭建新,平其能.羟基喜树碱脂肪乳的制备及其在人血浆中稳定性考察.中国新药杂志.2005,14(6):723-723.
    [36]Washington C.The electrokinetic properties of phospholipid stabilized fat emulsions Ⅵ.Zeta potentials of Intralipid 20%in TPN mixtures.Int J Pharm.1992,87(1-3):167-174.
    [37]Roland I,Piel G,Delattre L,Evrard B.Systematic characterization of oil-in-water emulsions for formulation design.Int J Pharm.2003,263(1-2):85-94.
    [38]Levy MY,Schutze W,Cjuhreret et al.Characterization of diazepam submicronemulsion interface:role of oleic acid,J Microencapsulation.1994,11(1):79-92.
    [39]Klang SH,Frucht-Pery J,Hoffman A,Benita S.Physicochemical characterization and acute toxicity evaluation of a positively-charged submicron emulsion vehicle.J Pharm Pharmacol.1994,46(12):986-993.
    [40]陈海靓.阳离子脂质体基因载体的研究.博士论文.2004.5:14-22
    [41]Washington C,Davis SS.Ageing effects in patenterai fat emulsions:the role of fatty acids.Int.J.Pharm.1987,39(1-2):33-37.
    [42]Herman CJ,Groves MJ.The influence of free fatty acid formation on the pH of phospholipid-stabilized triglyceride emulsions.Pharm Res.1993,10(5):774-776.
    [43]陆彬.药物新剂型与新技术.第2版.北京:人民卫生出版社,2005:51-119.
    [44]Chollet DF,Goumaz L,Renard A,Montay G,Vernillet L,Arnera V,Mazzo DJ.Simultaneous determination of the lactone and carboxylate forms of the camptothecin derivative CPT-11 and its metabolite SN-38 in plasma by high-performance liquid chromatography.J Chromatogr B Biomed Sci Appl.1998,718(1):163-175.
    [45]Zhang L,Li S,Liao H,Jiang WQ,Guan ZZ.Phase Ⅰ Trial of Pharmacokinetics and Human Tolerability to 10-Hydroxycamptothecin in Patients with Advanced Malignancy.Chin J Cancer.2001,20(12):1391-1395
    [46]Croce AC, Bottiroli G, Supino R, Favini E, Zuco V, Zunino F. Subcellular localization of the camptothecin analogues, topotecan and gimatecan. Biochem Pharmacol. 2004, 67(6): 1035-1045.
    [47]Nori A., Kopecek J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv Drug Deliv Rev. 2005, 57(4): 609-636.
    [48] Lahiri DK, Ge Y. Electrophoretic mobility shift assay for the detection of specific DNA-protein complex in nuclear extracts from the cultured cells and frozen autopsy human brain tissue. Brain Res Brain Res Protoc. 2000, 5(3):257-265.
    [49]Spector D.; Goldman R.; Leinwand L., Cells: A Laboratory Manual Volume 1: Culture and Biochemical Analysis of cells. Cold Spring Harbor Laboratory Press, USA, 1997.
    [50] Ren YH, Wei DZ. Quantification intracellular levels of oligodeoxynucleotide doxorubicin conjugate in human carcinoma cells in situ.J Pharm Biomed Anal. 2004, 36(2):387-391.
    [51] Rodriguez AM, Sastre S, Ribot J, Palou A. Beta-carotene uptake and metabolism in human lung bronchial epithelial cultured cells depending on delivery vehicle. Biochim Biophys Acta. 2005,1740(2):132-138.
    [52]Harashima H, Hirai N, Kiwada H. Kinetic modelling of liposome degradation in peritoneal macrophages. Biopharm Drug Dispos. 1995,16(2):113-123.
    [53]Zhao YX, Gao JQ, Sun XY, Chen HL, Wu LM, Liang WQ. Enhanced nuclear delivery and cytotoxic activity of hydro -xycamptothecin using o/w emulsions. J Pharm Pharmaceut Sci (www.cspscanada.org). 2007,10(1):61-70.
    [54]Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V.Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles. Int J Pharm. 2003,262(1-2):1-11.
    [55]Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res. 2003, 20(2):212-220.
    [56]Ruenraroengsak P, Al-Jamal KT, Hartell N, Braeckmans K, De Smedt SC, Florence AT. Cell uptake, cytoplasmic diffusion and nuclear access of a 6.5 nm diameter dendrimer. Int J Pharm. 2007,331(2):215-219.
    [57]Hashida M, Kawakami S, Yamashita F. Lipid carrier systems for targeted drug and gene delivery. Chem Pharm Bull. 2005, 53(8):871-880.
    [58]Sauer I, Dunay IR, Weisgraber K, Bienert M, Dathe M. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry. 2005,44(6):2021-2029.
    [59]Bajoria R, Sooranna SR, Contractor SF. Endocytotic uptake of small unilamellar liposomes by human trophoblast cells in culture. Hum Reprod. 1997, 12(6):1343-1348.
    [60]Muller WJ, Zen K, Fisher AB, Shuman H. Pathways for uptake of fluorescently labeled liposomes by alveolar type II cells in culture. Am J Physiol. 1995, 269(1 Pt 1):L11-L19.
    [61]Nielsen HM, Aemisegger C, Burmeister G, Schuchter U, Gander B. Effect of oil-in-water emulsions on 5-aminolevulinic acid uptake and metabolism to PpIX in cultured MCF-7 cells. Pharm Res. 2004, 21(12):2253-2260.
    [62]Managit C, Kawakami S, Yamashita F, Hashida M. Uptake characteristics of galactosylated emulsion by HepG2 hepatoma cells.Int J Pharm. 2005, 301(1-2):255-261.
    [63] Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, Lee KH, Sohn BH, Park SB, Lee JK, Cho MH. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci. 2006, 7(4):321-326.
    [64]Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A.2001,98(15):8786-8791.
    [65]Nieland TJ, Ehrlich M, Krieger M, Kirchhausen T. Endocytosis is not required for the selective lipid uptake mediated by murine SR-BI. Biochim Biophys Acta. 2005,1734(1):44-51.
    
    [66]Ka-yun Ng, Kathleen A. Stringer, Zoe Cohen, Robert Serravo, Bin Tian, Jeffrey D. Meyer, Richard Falk, Theodore Randolph, Mark C. Manning and David C. Thompson. Alveolar macrophage cell line is not activated by exposure to polymeric microspheres. Int J Pharm. 1998,170(1): 41-49.
    [67] Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000, 50(1):147-160.
    [68]Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev. 2001, 53(3):341-358.
    [69] Wang Y, Eksborg S, Lewensohn R, Lindberg A, Liliemark E. In vitro cellular accumulation and cytotoxicity of liposomal and conventional formulations of daunorubicin and doxorubicin in resistant K562 cells. Anticancer Drugs, 1999, 10(10):921-928.
    [70] Serpe L, Guido M, Canaparo R, Muntoni E, Cavalli R, Panzanelli P, Delia Pepal C, Bargoni A, Mauro A, Gasco MR, Eandi M, Zara GP. Intracellularaccumulation and cytotoxicity of doxorubicin with different pharmaceutical formulations in human cancer cell lines. J Nanosci Nanotechnol. 2006, 6(9-10):3062-3069.
    [71]Xiong X.B., Huang Y., Lu W.L., Zhang H., Zhang X., Zhang Q. Enhanced intracellular uptake of sterically stabilized liposomal Doxorubicin in vitro resulting in improved antitumor activity in vivo. Pharm Res, 2005, 22(6):933-939.
    [72]Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65(1-2):55-63.
    [73]Liu J, Xu WF, Cui SX, Zhou Y, Yuan YX, Chen MH, Wang RH, Gai RY, Makuuchi M, Tang W, Qu XJ. Inhibition of human gastric carcinoma cell growth by atofluding derivative N3-o-toluyl-fluorouracil. World J Gastroenterol. 2006, 12(42):6766-6770.
    [74] Chan HS, Haddad G, Zheng L, Bradley G, Dalton WS, Ling V. Sensitive immunofluorescence detection of the expression of P-glycoprotein in malignant cells.Cytometry.1997,29(1):65-75.
    [75]Beck WT,Grogan TM,Wiliman CL,Cordon-Cardo C,Parham DM,Kuttesch JF,Andreeff M,Bates SE,Berard CW,Boyett JM,Brophy NA,Broxterman HJ,Chan HS,Dalton WS,Dietel M,Fojo AT,Gascoyne RD,Head D,Houghton PJ,Srivastava DK,Lehnert M,Leith CP,Paietta E,Pavelic ZP,Weinstein R.Methods to detect P-glycoprotein-associated multidrug resistance in patients' tumors:consensus recommendations.Cancer Res.1996,56(13):3010-3020.
    [76]Chavanpatil MD,Patil Y,Panyam J.Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug effiux.Int J Pharm.2006,320(1-2):150-156.
    [77]Stormer E,Perloff MD,von Moltke LL,Greenblatt DJ.Methadone inhibits rhodamine123 transport in Caco-2 cells.Drug Metab Dispos.2001,29(7):954-956.
    [78]Dabholkar RD,Sawant RM,Mongayt DA,Devarajan PV,Torchilin VP.Polyethylene glycol-phosphatidylethanolamine conjugate(PEG-PE)-based mixed micelles:some properties,loading with paclitaxel,and modulation of P-glycoprotein-mediated effiux.Int J Pharm.2006,315(1-2):148-157.
    [79]Jin J,Wang FP,Wei H,Liu G.Reversal of multidrug resistance of cancer through inhibition of P-glycoprotein by 5-bromotetrandrine.Cancer Chemother Pharmacol.2005,55(2):179-188.
    [80]Sands H,Mishra A,Stoeckler JD,Hollister B,Chen SF.Preclinical activity of an i.v.formulation of rubitecan in IDD-P against human solid tumor xenografts.Anticancer Drugs.2002,13(9):965-975.
    [81]龚明涛,张钧寿,戴晓鸣.羟喜树碱纳米乳在大鼠体内的药代动力学研究.中国药科大学学报.2004,35(4):324-327.
    [82]施斌,方超,游美羡,裴元英.不同聚乙二醇相对分子质量对包载羟基喜树碱的PEG-PHDCA纳米囊泡体外释放和体内药动学行为的影响.中国药学杂志.2005.40(21):1643-1646.
    [83]徐叔云,卞如濂,陈修.药理实验方法学(第二版).北京:人民卫生出版 社,1994:180-192.
    [84]周卫,平其能,王丽杰.羟喜树碱脂质体的粒径对组织分布的影响.中国药科大学学报.2005,36(2):125-128.
    [85]Yang SC,Benita S.Ehanced absorption and drug targeting by positively charged submicro emulsions.Drud Dev Res.2000,50(3):476-486.
    [86]Tamilvanan S,Schmidt S,Muller RH,Benita S.In vitro adsorption of plasma proteins onto the surface(charges)modified-submicron emulsions for intravenous administration.Eur J Pharm Biopharm.2005,59(1):1-7
    [87]Gallo JM,Gupta PK,Hung CT,Perrier DG.Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamycin to the rat.J Pharm Sci.1989,78(3):190-194.
    [1]陆彬.药物新剂型与新技术.第2版.北京:人民卫生出版社,2005:51-119.
    [2]Tamilvanan S.Oil-in-water lipid emulsions:implications for parenteral and ocular delivering systems.Prog Lipid Res.2004,43(6):489-533.
    [3]Han J,Davis SS,Papandreou C,Melia CD,Washington C.Design and evaluation of an emulsion vehicle for paclitaxel.I.Physicochemical properties and plasma stability.Pharm Res.2004,21(9):1573-1580.
    [4]Goldstein D,Sader O,Benita S.Influence of oil droplet surface charge on the performance of antibody--emulsion conjugates.Biomed Pharmacother.2007,61(1):97-103
    [5]Takino T,Koreeda N,Nomura T,Sakaeda T,Yamashita F,Takakura Y,Hashida M.Control of plasma cholesterol-lowering action of probucol with various lipid carrier systems.Biol Pharm Bull.1998,21(5):492-497.
    [6]Yang SC,Benita S.Ehanced absorption and drug targeting by positively charged submicro emulsions.Drud Dev Res.2000,50(3):476-486.
    [7]Rensen PC,Herijgers N,Netscher MH,Meskers SC,van Eck M,van Berkel TJ.Particle size determines the specificity of apolipoprotein E-containing triglyceride-rich emulsions for the LDL receptor versus hepatic remnant receptor in vivo.J Lipid Res.1997,38(6):1070-1084.
    [8]Kurihara A,Shibayama Y,Yasuno A,Ikeda M,Hisaoka M.Lipid emulsions of palmitoylrhizoxin:effects of particle size on blood dispositions of emulsion lipid and incorporated compound in rats.Biopharm Drug Dispos.1996,17(4):343-53.
    [9]Takino T,Konishi K,Takakura Y,Hashida M.Long circulating emulsion carrier systems for highly lipophilic drugs.Biol Pharm Bull.1994,17(1):121-125.
    [10]Hashida M,Kawakami S,Yamashita F.Lipid cartier systems for targeted drug and gene delivery.Chem Pharm Bull(Tokyo).2005,53(8):871-880.
    [11]Lenzo NP,Martins I,Mortimer BC,Redgrave TG.Effects of phospholipid composition on the metabolism of triacylglycerol,cholesteryl ester and phosphatidylcholine from lipid emulsions injected intravenously in rats.Biochim.Biophys.Acta.1988,960(1):111-118.
    [12]Madhusudhan B,Rambhau D,Apte SS,Gopinath D.1-O-alkylglycerol stabilized carbamazepine intravenous o/w nanoemulsions for drug targeting in mice.J Drug Target.2007,15(2):154-161.
    [13]Suzuki Y,Masumitsu Y,Okudaira K,Hayashi M.The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.Drug Metab Pharmacokinet.2004,19(1):62-67.
    [14]Yeeprae W,Kawakami S,Higuchi Y,Yamashita F,Hashida M.Biodistribution characteristics of mannosylated and fucosylated O/W emulsions in mice.J Drug Target.2005,13(8-9):479-487.
    [15]Maranhao RC,Tercyak AM,Redgrave TG.Effects of cholesterol content on metabolism of protein-free emulsion models of lipoproteins.Biochim Biophys Acta.1986,875(2):247-255.
    [16]Wang JJ,Sung KC,Hu OY,Yeh CH,Fang JY.Submicron lipid emulsion as a drug delivery system for nalbuphine and its prodrugs.J Control Release.2006,115(2):140-149.
    [17]Tamilvanan S,Schmidt S,Muller RH,Benita S.In vitro adsorption of plasma proteins onto the surface(charges)modified-submicron emulsions for intravenous administration Eur J Pharm Biopharm.2005,59(1):1-7.
    [18]Klang SH,Parnas M,Benita S.Emulsions as drug carriers --possibilities,limitations and future perspectives.In:Muller RH,Benita S,Bohm B,editors.Emulsions and nanosuspensions for the formulation of poorly soluble drugs.Stuttgart:Medpharm Scientific.1998;31-65.
    [19]赵永星.羟基喜树碱亚微乳细胞内动力学及其抗肿瘤作用研究.博士论文.2007.
    [20]Senior J,Delgado C,Fisher D,Tilcock C,Gregoriadis G.Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta. 1991,1062(1):77-82.
    [21]Ishida T, Harashima H, Kiwada H. Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr Drug Metab. 2001,2(4):397-409.
    [22]Takeuchi H, Kojima H, Yamamoto H, Kawashima Y. Evaluation of circulation profiles of liposomes coated with hydrophilicpolymers having different molecular weights in rats. J Control Release. 2001, 75(1-2):83-91.
    [23]Reddy PR, Venkateswarlu V. Pharmacokinetics and tissue distribution of etoposide delivered in long circulating parenteral emulsion. J Drug Target. 2005, 13(10):543-553.
    [24] Liu F, Liu D. Long-circulating emulsions (oil-in-water) as carriers for lipophilic drugs. Pharm Res. 1995,12(7): 1060-1064.
    [25]Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv. 2005, 2(4):369-381.
    [26]Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005,4(2): 145-60.
    [27]Shao K, Hou Q, Duan W, Go ML, Wong KP, Li QT. Intracellular drug delivery by sulfatide-mediated liposomes to gliomas. J Control Release. 2006, 115(2): 150-157.
    [28]Takae S, Akiyama Y, Otsuka H, Nakamura T, Nagasaki Y, Kataoka K. Ligand density effect on biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules. 2005,6(2):818-824.
    [29]Yeeprae W, Kawakami S, Yamashita F, Hashida M. Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions bymacrophages. J Control Release.2006,114(2): 193-201.
    [30]Lundberg BB, Griffiths G, Hansen HJ. Conjugation of an anti-B-cell lymphoma onoclonal antibody, LL2, to long-circulating drug-carrier lipid emulsions. J Pharm Pharmacol. 1999, 51(10):1099-105.
    [31]Kawakami S, Yamashita F, Hashida M. Disposition characteristics of emulsions and incorporated drugs after systemic or local injection. Adv Drug Deliv Rev. 2000,45(1):77-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700