聚苯胺/辣根过氧化酶或多酚氧化酶生物传感器的构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子酸溶液中合成的聚苯胺在pH大于4时失去氧化还原活性和导电性。这一缺点限制了它在酶生物传感器中的应用。我们通过改变实验条件来提高聚苯胺的性能。在含有离子液体的溶液中合成的聚苯胺,当溶液pH大于4时仍是电活性的聚合物。结果表明:此种方法合成的聚苯胺是制作酶生物传感器的理想材料。
     在导电玻璃上,用交联剂戊二醛把辣根过氧化酶和聚苯胺进行交联制备过氧化氢生物传感器。掺氟导电玻璃良好的光透明性使得传感器的表征非常容易。酶的固定过程十分温和,并且与酶的等电点无关。当过氧化氢浓度低于20 mmol dm~(-3)时,响应电流随过氧化氢浓度增加线性增长。最大响应电流I_(max)和米氏常数k_m'分别是1.189μA和27.11 mmol dm~(-3)。低于40℃时,该生物传感器的响应电流随着温度的升高而增大。活化能Ea是39.1 kJ mol~(-1)。扫描电镜和交流阻抗被用于表征此生物传感器。聚苯胺的合适多孔结构可延长传感器的寿期。
     用交联剂戊二醛把多酚氧化酶和聚苯胺进行交联制备邻苯二酚生物传感器。聚苯胺的生物兼容微环境可以保护多酚氧化酶。邻苯二酚为底物时,生物传感器的线性范围高达80μmol dm-3。最大响应电流I_(max)和米氏常数k_m'分别是9.44μA和117μmol dm~(-3)。表观米氏常数值表明:固定化的多酚氧化酶和邻苯二酚间的亲和力强于自由多酚氧化酶和邻苯二酚间的亲和力。pH值和工作电位的影响被研究以便优化测量条件。在B-R缓冲溶液中,多酚氧化酶催化反应的活化能E_a是30.23 kJ mol~(-1)。阻抗、紫外和扫描电镜被用于表征这个传感器。此传感器有好的长期稳定性。
     基于苯甲酸对多酚氧化酶催化活性的抑制作用,我们研究了检测苯甲酸的多酚氧化酶传感器。该传感器在不同浓度抑制剂中的米氏常数k_m'和最大响应电流I_(max)也被检测。动力学分析表明:苯甲酸对多酚氧化酶的抑制作用是可逆的,竞争抑制常数为28.7μmol dm~(-3)。苯甲酸的检测下限为0.3μmol dm~(-3)。酶活性下降到原来一半时,苯甲酸浓度为35μmol dm~(-3)。该传感器比较稳定且灵敏性较好,因此可作为一种新的用于检测苯甲酸的手段。
PANI synthesized in proton acid solution losts its redox activity and conductivity at pH over 4. The drawback restricts its application in enzyme biosensor. So we will improve the properties of PANI through changing the experiment conditions. The PANI synthesized in a solution containing ionic liquid, 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES), is an electroactive polymer at pH over 4. The following results indicate that PANI is an ideal material for the construction of biosensor.
     The hydrogen peroxide biosensor is constructed by cross-linking between horseradish peroxidase (HRP) and polyaniline (PANI) using glutaraldehyde as a cross linking agent on F-doped tin oxide (FTO) electrode. It is easy to characterize the biosensor due to the excellent optical transparency of FTO. The process of immobilized HRP is unrelated to isoelectric point of the enzyme and is particularly mild. The response current increases linearly with increasing hydrogen peroxide concentration up to 20 mmol dm~(-3). The maximum response current (I_(max)) and the Michaelis-Menten constant ( k_m') are 1.189μA and 27.11 mmol dm~(-3) respectively. The response current of the biosensor increases with increasing temperature below 40℃. The activation energy (E_a) of the HRP catalytic reaction is 39.1 kJ mol~(-1) in the B-R buffer. The biosensor is also characterized with SEM and CV.
     The catechol biosensor is constructed by cross-linking between polyphenol oxidase (PPO) and polyaniline (PANI) using glutaraldehyde as a cross-linking agent. The PANI can protect the immobilized PPO due to the biocompatible microenvironment of PANI film. In the presence of catechol as a substrate, the biosensor exhibits a linear range up to 80μmol dm~(-3). The maximum response current (I_(max)) and the Michaelis-Menten constant ( k_m') are 9.44μA and 117μmol dm~(-3), respectively. The value of the Michaelis-Menton constant k_m' indicates that the interaction between immobilized PPO and catechol is stronger than that between free PPO and catechol. The effects of pH and operating potential are also explored to optimize measurement conditions. The activation energy (E_a) of the PPO catalytic reaction is 30.23 kJ mol~(-1) in the B-R buffer. Electrochemical impedance spectroscopy (EIS), UV-vis and SEM are used to characterize the PANI-PPO biosensor. The biosensor exhibits good long-term stability.
     A PANI/PPO biosensor for the determination of benzoic acid is reported. The biosensor functioning is based on the inhibition effect of benzoic acid on the biocatalytic activity of the enzyme. The kinetic parameters Michaelis-Menten constant (k_m') and maximum current (I_(max)) in the absence and in the presence of benzoic acid are also evaluated. The kinetic analyses show that the inhibition of benzoic acid on the PPO activity is reversible and competitive with the inhibition constant determined to be 28.7μmol dm~(-3). A limit of detection of 0.3μmol dm~(-3) benzoic acid is obtained. The I_(0.5) value is estimated to be 35μmol dm~(-3). The biosensor has good sensivity and high stability. So it can be used as a new approach for the determination of benzoic acid.
引文
[1] A.F.Diaz, J.I.Castillo, J.A.Logan, W.Y.Lee, Electrochemistry of conducting polypyrrole films, J. Electroanal. Chem., 129 (1981) 115.
    [2] C.E.Brown, P.Kovacic, C.A.Wilkie, J.A.Kinsinger, R.E.Hein, S.I.Yaniger, R.B.Cody, Polynuclear and halogenated structures in polyphenylenes synthesized from benzene, biphenyl, and p-terphenyl under various conditions: characterization by laser desorption/Fourier transform mass spectrometry, J. Polym. Sci., Part A: Polym. Chem., 24(2) (1986) 55.
    [3] H.Shirakawa, E.J.Louis, A.G.MacDiarmid, C.K.Chiang, A.J.Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc. Chem. Commun., 16 (1977) 578.
    [4] N.Basescu, Z.X.Liu, D.Moses, A.J.Heeger, H.Naarmann, N.Theophilou, High electrical conductivity in doped polyacetylene, Nature, 327 (1987) 403.
    [5] P.N.Bartlett, P.R.Birkin, F.Palmisano, G.D.Benedetto, Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)-poly(styrenesulfonate) composite films, J. Chem. Soc. Faraday Trans., 92 (1996) 4137.
    [6] M.Ma, H.Liu, J.Xu, Y.Li, Y.Wan, Electrochemical Polymerization of o-Dihydroxybene and Characterization of Its Polymers as Polyacetylene Derivatives, J. Phys. Chem. C, 111(18) (2007) 6889.
    [7] S.D.Patil, S.C.Raghavendra, M.Revansiddappa, P.Narsimha, M.V.N.A.Prasad, Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites, Bull. Mater. Sci., 30(2) (2007) 89.
    [8] L.C.Folgueras, E.L.Nohara, R.Faez, M.C.Rezende, Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline, Materials Research (Sao Carlos, Brazil), 10(1) (2007) 95.
    [9] R.Patil, Y.Harima, K.Yamashita, K.Komaguchi, Y.Itagaki, M.Shiotani, Charge carriers in polyaniline film: a correlation between mobility and in-situ ESR measurements, J. Electroanal. Chem., 518(1) (2002) 13.
    [10] A.Ramanavicius, A.Ramanaviciene, A.Malinauskas, Electrochemical sensors based on conducting polymer-polypyrrole, Electrochim. Acta, 51 (2006) 6025.
    [11] O.Ekinci, A.E.Boyukbayram, S.Kiralp, L.Toppare, Y.Yagci, Characterization and potential applications of immobilized glucose oxidase and polyphenol oxidase, J. Macromol. Sci., Pure Appl. Chem., 44(8) (2007) 801.
    [12]万梅香,导电高聚物的现状与挑战,中国基础科学研究进展,9 (2000) 24。
    [13]敬松,结构性导电高分子材料,四川化工,2 (1990) 32。
    [14]王保成,许并社,导电聚苯胺的研究现状评述,太原理工大学学报,33 (2002) 54。
    [15]李英,赵地顺,导电高分子材料,河北科技大学学报,21 (2000) 9。
    [16]蓝立文,功能高分子材料,西安:西北工业大学出版社,(1995) 124。
    [17]王东周,李光,江建明,导电高分子研究概述,合成技术及应用,16(3) (2001) 36。
    [18]林静,刘丽敏,李长江等,炭黑-聚酯复合型导电高分子材料的电热性能研究,高分子材料科学与工程,16(5) (2000) 107。
    [19]黄英,李郁忠,炭黑/聚烯烃导电复合材料PTC效应的研究,塑料科技,1 (2001) 4。
    [20]郦华兴,王松林,彭少贤等,金属填充导电高分子材料研究进展,中国塑料,13(1) (1999) 18。
    [21]崔部博,导电高分子材料,北京:科学出版社(1989) 145。
    [22]王利祥,王佛松,导电聚苯胺的研究进展:合成链结构和凝聚态结构,应用化学,7(5) (1990) 1。
    [23]高宇,导电聚合物聚苯胺的研究进展,渝州大学学报(自然科学版),3(18) (2001) 68。
    [24]祝伟,导电高分子材料研究进展,黎明化工,5 (1997) 31。
    [25]曾幸荣,龚克成,聚苯胺的掺杂及其性能的研究,高分子材料科学与工程,6 (1991) 73。
    [26]谭焰,肖静知,谢乃贤,聚苯胺在金属腐蚀保护中的应用,电镀与涂饰,3 (1998) 49。
    [27] A.G.Macdiarmid, A.J.Epstein, Secondary doping in polyaniline, Synth. Met., 69 (1995) 85.
    [28] D.Zhang, Y.Wang, Synthesis and applications of one-dimensional nano-structured polyaniline: An overview, Mater. Sci. Eng., B, 134 (2006) 9.
    [29]王佛松,王利祥,景遐斌,聚苯胺的掺杂反应,武汉大学学报,6 (1993) 65。
    [30]于黄中,陈明光,贝承训,黄河,导电聚苯胺的特性,应用及进展,高聚物材料科学与工程,19 ( 2003) 18。
    [31] A.Ray, A.F.Richter, A.G.Macdiarmid, A.J.Epstein, Polyaniline-protonation deprotonation of amine and imine sites, Synth. Met., 29 (1989) 151.
    [32] X.Wei, A.J.Epstein, Synthesis of highly sulfonated polyaniline, Synth. Met., 74 (1995) 123.
    [33] J.P.Travers, E.M.Genies, C.Tsintavis, Transport and Magnetic Resonance Studies of Polyaniline, Mol. Cryst. Liq. Cryst., 121 (1985) 195.
    [34] A.Yasuda, T.Shimidzu, Chemical and electrochemical analyses of polyaniline prepared with FeCl3, Synth. Met., 61(3) (1993) 239.
    [35]生榆,陈建宝,朱德钦,功能高分子学报, 15 (2002) 383.
    [36] A.F.Diaz, J.A.Logan, Electroactive Polyaniline Film, Electroanal. Chem., 111(1) (1980) 111.
    [37] M.X.Wan, The influence of polymerization method and temperature on the absorption spectra and morphology of polyaniline, Synth. Met., 31 (1989) 51.
    [38] R.J.Cushman, P.M.McManus, S.C.Yang, Influence of oxidation and protonation on the electrical conductivity of polyaniline, J. Phys. Chem., 91(3) (1987) 744.
    [39]傅谊,马建标,何炳林,聚苯胺固定化葡萄糖氧化酶电极的生物电化学性质,自然科学进展,8(3) (1998) 292。
    [40]张占恩,张丽君,电化学聚合N,N-二甲基苯胺固定过氧化物酶生物传感器,苏州城建环保学院学报,12 (3) (1999) 17。
    [41] M.Gerard, K.Ramanathan, A.Chaubey, Immobilization of lactate dehydrogenase on electrochemically prepared polyaniline films, Electroanalysis, 11(6) (1999) 450.
    [42] H.Shinohara, M.Aizawa, Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film, Sens. Actuators, 13 (1988) 79.
    [43]阚锦晴,穆绍林,聚苯胺尿酸酶电极性能的研究,物理化学学报,9(3) (1993) 345。
    [44]穆绍林,薛怀国,聚苯胺黄嘌呤氧化酶电极的生物电化学活性,化学学报,53(6) (1995) 521。
    [45] X.Pan, J.Kan, L.Yuan, Polyaniline glucose oxidase biosensor prepared with template process, Sens. Actuators B, 102 (2004) 325.
    [46] J.Kan, X.Pan, C.Chen, Polyaniline-uricase biosensor prepared with template process, Biosens. Bioelectron., 19 (2004) 1635.
    [47] A.Bagheri, M.R.Nateghi, A.Massoumi, Electrochemical synthesis of highly electroactive polydiphenylamine/polybenzidine copolymer in aqueous solutions, Synth. Met., 97 (1998) 85.
    [48] P.M.Beadle, Y.F.Nicolau, E.Banka, P.Rannou, D.Djurado, Controlled polymerization of aniline at sub-zero temperatures, Synth. Met., 95 (1998) 29.
    [49] S.C.Ng, L.G.Xu, H.S.O.Chan, Alternating block copolymers incorporating 3-alkyl-substituted thiophene and aniline repeat units: novel electrically conductive and fluorescent polymers, Synth. Met., 94 (1998) 185.
    [50] S.Mu, Electrochemical copolymerization of aniline and o-aminophenol, Synth. Met., 143 (2004) 259.
    [51]桑潇,离子液体的物理化学性质研究,科技信息,6 (2008) 257。
    [52] I.C.Quarmby, R.A.Mantz, L.M.Goldenberg, R.A.Osteryoung, Stoichiometry of Latent Acidity in Buffered Chloroaluminate Ionic Liquids, Anal. Chem., 66 (1994) 3558.
    [53] I.C.Quarmby, R.A.Osteryoung, Latent acidity in buffered chloroaluminate ionic liquids, J. Am.Chem. Soc., 116 (1994) 2649.
    [54] P.Wasserscheid, C.M.Gordon, C.Hilgers, M.J.Muldoon, I.R.Dunkin, Ionic liquids: polar, but weakly coordination solvents for the first biphasic oligomerisation of ethene to higher aolefins with cationic Nicomplexes, Chem. Commun., ( 2001) 1186.
    [55]韩金玉,黄鑫,王华等,绿色溶剂离子液体的性质和应用研究进展,化学工业与工程, 22(1) (2005) 62。
    [56]石家华,孙逊,杨春和等,离子液体研究进展,化学通报,65(4) (2002) 243。
    [57]张霞,于志刚,离子液体研究进展,内蒙古石油化工,3 (2008) 10。
    [58] A.Saheb, J.Janata, M.Josowicz, Reference Electrode for Ionic Liquids, Electroanalysis, 18(4) (2006) 405.
    [59] H.Gao, T.Jiang, B.Han, Y.Wang, J.Du, Z.Liu, J.Zhang, Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles, Polymer, 45(9) (2004)3017.
    [60] J.L.Zhang, X.G.Zhang, X.Fang, F.P.Hu, Effect of polar solvent acetonitrile on the electrochemical behavior of polyaniline in ionic liquid electrolytes, J. Colloid Interface Sci., 287 (1) (2005) 67.
    [61] S.L.Mu, Pronounced effect of the ionic liquid on the electrochromic property of the polyaniline film: Color changes in the wide wavelength range, Electrochim. Acta, 52 (2007) 7827.
    [62] Q.Shi, Y.Zhang, G.Jing, J.Kan, Properties of polyaniline synthesized in ionic liquid (1-Ethyl-3-methylimidazolium-ethyl sulphate), Iran. Polym. J., 16(5) (2007) 337.
    [63] L.C.Clark, C.Lyones, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 102 (1962) 29.
    [64] S.J.Updike, G.P.Hicks, The enzyme electrode, Nature, 214 (1967) 986.
    [65]张先恩,生物传感技术原理与应用,长春:吉林科技出版社,1991。
    [66]周炯亮,施利春,生物传感器的研究现状和发展方向,安徽电子信息职业技术学院学报,4(6)(2005) 79。
    [67] A.Tarushee, A.M.Irfan, K.Devendra, Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials, 28 (2007) 791.
    [68]司士辉,生物传感器,北京:化学工业出版社,2002。
    [69]罗贵民,酶工程,北京:化学工业出版社,2002。
    [70]罗九甫,酶和酶工程,上海:上海交通大学出版社,1996。
    [71]吴少慧,陈誉华,刘军,乙型肝炎病毒核酸探针压电晶体传感器的初步研究,中国公共卫生,16 (2000) 429。
    [72]李家洲,刘耘,刘仲明,用石英晶体DNA传感器检测单链DNA的探索,生物技术通报,1 (2000) 38。
    [73] J.Wang, X.Cai, G.Rivas, D.Raimundo, M.H.Marques, M.A.L.Scalea, DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus, Anal. Chem., 68 (1996) 2629.
    [74] A.M.O.Brett, S.H.P.Serrano, T.A.Macedo, D.Raimundo, M.H.Marques, M.A.L.Scalea Electrochemical determination of carboplatin in serum using a DNA-modified glassy carbon electrode, Electroanalysis, 8 (1996) 992.
    [75] J.Wang, P.E.Nielsen, M.Jiang, X.Cai, J.R.Fernandes, D.H.Grant, M.Ozsoz, A.Beglieter, M.Mowat, Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance, Anal. Chem., 69 (1997) 5200.
    [76]宋丽,宋宝东,蒋亚庆,酶的固定化及在生物传感器的应用,化学与生物工程,23(11) (2006) 54。
    [77] I.Karube, T.Matsunaga, S.Mitsuda, S.Suzuki, Microbial electrode BOD sensors, Biotechnol Bioeng, 19(10) (1977) 1534.
    [78] S.Rastogi, A.Kumar, N.K.Mehra, S.D.Makhijani, A.Manoharan, V.Gangal, R.Kumar, Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial wastewaters, Biosens. Bioelectron., 18(1) (2003) 23.
    [79] G.Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, 277 (1997) 1232.
    [80]李晔,酶的固定化及其应用,分子催化, 22(1) ( 2008) 86。
    [81] N.C.Foulds, C.R.Lowe, Enzyme entrapment in electrically conducting polymers. Immobilization of glucose oxidase in polypyrrole and its application in amperometric glucose sensors, J. Chem. Soc., Faraday Tran. I, 82 (1986) 1259.
    [82] M.Umana, J.Waller, Protein-modified electrodes. The glucose oxidase/polypyrrole system, Anal. Chem., 58 (1986) 2979.
    [83] D.Belanger, J.Nadrean, G.Fortier, Electrochemistry of the polypyrrole glucose oxidase electrode, J. Electroanal. Chem., 274 (1989) 143.
    [84] J.Kan, Y.Jiang, S.Li, Studies on a uric biosensor based on ferrocene and copolymer of o-aminophenol-aniline, Bull. Electrochem., 21(10) (2005) 451.
    [85] X.Pan, S.Zhou, C.Chen, J.Kan, Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline, Sens. Actuators B, 113 (2006) 329.
    [86] H.B.F.Y.Yon, C.R.Lowe, Amperometric response of polypyrrole entrapped bienzyme films, Sens. Actuators B, 7 (1992) 339.
    [87] F.Mizutani, Y.Sato, Y.Hirata, S.Lijima. Interference-free, amperometric measurement of urea in biological samples using an electrode coated with tri-enzyme/polydimethylsiloxane-bilayer membrane, Anal. Chim. Acta, 441 (2001) 175.
    [88] F.Tian, B.Xu, L.Zhu, G.Zhu, Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode Anal. Chim. Acta, 443 (2001) 9.
    [89] B.Wang, S.Dong, Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film, Talanta, 51 (2000) 565.
    [90] G.Cui, J.H.Yoo, S.W.Lee, H.Nam, G.S.Cha, Differential Thick-Film Amperometric Glucose Sensor with an Enzyme-Immobilized Nitrocellulose Membrane, Electroanalysis, 13 (2001) 224.
    [91] A.Kros, S.W.F.M.van H?vel, R.J.M.Nolte, N.A.J.M.Sommerdijk, A printable glucose sensor based on a poly(pyrrole)-latex hybrid material, Sens. Actuators B, 80(3) (2001) 229.
    [92]任湘菱,唐芳琼,纳米铜颗粒-酶-复合功能敏感膜生物传感器,催化学报,21(5) (2000) 455。
    [93] J.L.Besombes, S.Cosnier, P.Labbe, Improvement of poly(amphiphilic-pyrrole) enzyme electrodes via the incorporation of synthetic laponite-clay-nanoparticles, Talanta, 44 (1997) 2209.
    [94]禹邦超等,应用酶学导论,华中师范大学出版社,1995。
    [1] F.Lacy, D.T.O'Connor, G.W.Schmid-Schonbein, Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension, J. Hypertens., 16(3) (1998) 291.
    [2] S.D.Varma, P.S.Devamanoharan, Hydrogen peroxide in human blood, Free Radic. Res. Commun., 14 (1991) 125.
    [3] N.Kuge, M.Kohzuki, T.Sato, Relation between natriuresis and urinary excretion of hydrogen peroxide. Free Radic. Res., 30 (1999) 119.
    [4] E.C.Hurdis, J.H.Romeyn, Accuracy of determination of hydrogen peroxide by cerate oxidimetry, Anal.Chem., 26 (1954) 320.
    [5] S.Hanaoka, J.M.Lin, M.Yamada, Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin, Anal. Chim. Acta., 426 (2001) 57.
    [6] L.S.Zhang, G.T.F.Wong, Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method. Talanta, 48 (1999) 1031.
    [7] C.Matsubara, N.Kawamoto, K.Takamura, Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato] titanium(IV):an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide, Analyst, 117 (1992) 1781.
    [8] C.Esseghaier, Y.Bergaoui, H.ben Fredj, A.Tlili, S.Helali, S.Ameur, A.Abdelghani, Impedance spectroscopy on immobilized streptavidin horseradish peroxidase layer for biosensing, Sens. Actuators B, 134 (2008) 112.
    [9] J.H.Yu, H.X.Ju, Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method, Anal. Chem., 74 (2002) 3579.
    [10] U.Wollenberger, V.Bogdanovskaya, S.Bobrin, F.Scheller, M.Tarasevich, Enzyme electrodes using bioelectrocatalytic reduction of hydrogen peroxide, Anal. Lett., 23(10) (1190) 1795.
    [11] T.Tatsuma, M.Gondaira, T.Watanabe, Peroxidase-incorporated polypyrrole membrane electrodes, Anal. Chem., 64 (1992) 1183.
    [12] M.Morita, S.Miyazaki, M.Ishikawa, Y.Matsuda, H.Tajima, K.Adachi, F.Anan, Layeredpolyaniline composites with cation-exchanging properties for positive electrodes of rechargeable lithium batteries, J. Electrochem. Soc., 142(1) (1995) 3.
    [13] Y.F.Yang, S.L.Mu, Bioelectrochemical responses of the polyaniline horseradish peroxidase electrodes, J. Electroanal. Chem., 432 (1997) 71.
    [14] W.S.Huang, B.D.Humphrey, A.G.Macdiarid, Polyaniline, a novel conducting polymer: morphology and chemistry of its oxidation and reduction in aqueous electrolytes, J. Chem. Soc. Faraday Trans. I, 82 (1986) 2385.
    [15] W.W.Focke, G.E.Wnek, Y.Wei. Influence of oxidation state, pH, and counterion on the conductivity of polyaniline, J. Phys. Chem., 91 (1987) 5813.
    [16] Q.Shi, Y.Zhang, G.Jing, J.Kan, Properties of polyaniline synthesized in ionic liquid (1-Ethyl-3-methylimidazolium-ethyl sulphate), Iran. Polym. J., 16(5) (2007) 337.
    [17] H.X.Gao, T.Jiang, B.X.Han, Y.Wang, J.M.Du, Z.M.Liu, J.L.Zhang, Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles, Polymer, 45 (2004) 3017.
    [18] M.C.Li, C.A.Ma, B.Y.Liu, Z.M.Jin, A novel electrolyte 1-ethylimidazolium trifluoroacetate used for electropolymerization of aniline, Electrochem. Commun., 7 (2005) 209.
    [19] D.Belanger, J.Nadreau, G.Fortier, Electrochemistry of the polypyrrole glucose oxidase electrode, J. Electroanal. Chem., 274 (1989) 143.
    [20] S.Korkut, B.Keskinler, E.Erhan, An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives, Talanta, 76 (2008) 1147.
    [21] H.Shinohara, T.Chiba, M.Aizawa, Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film, Sens. Actuators B, 13 (1988) 79.
    [22] S.Mu, H.Xue, B.Qian, Bioelectrochemical responses of the polyaniline glucose oxidase electrode, J. Electroanal. Chem., 304 (1991) 7.
    [23] J.Kan, H.Xue, S.Mu, H.Chen, Effects of conducting polymers on immobilized galactose oxidase, Synth. Met., 87 (1997) 205.
    [24] J.Kan, X.Pan, C.Chen, Polyaniline-uricase biosensor prepared with template process, Biosens. Bioelectron., 19 (2004) 1635.
    [25] K.Arora, G.Sumana, V.Saxena, R.K.Gupta, S.K.Gupta, J.V.Yakhmi, M.K.Pandey, S.Chand, B.D.Malhotra, Improved performance of polyaniline-uricase biosensor, Anal. Chim. Acta,594 (2007) 17.
    [26] J.H.Lin, L.J.Zhang, S.S.Zhang, Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode, Anal. Biochem., 370 (2007) 180.
    [27] A.E.Rakhshani, Y.Makdisi, H.A.Ramazaniyan, Electronic and optical properties of fluorine-doped tin oxide films, J. Appl. Phys., 83 (1998) 1049.
    [28] D.Mackey, A.J.Killard, A.Ambrosi, M.R.Smyth, Optimizing the ratio of horseradish peroxidase and glucose oxidase on a bienzyme electrode: Comparison of a theoretical and experimental approach, Sens. Actuators B, 122 (2007) 395.
    [29] A.Navalon, R.Blanc, L.Reyes, N.Navas, J.L.Vílchez, Determination of the antibacterial enrofloxacin by differential-pulse adsorptive stripping voltammetry, Anal. Chim. Acta, 454 (2002) 83.
    [30] E.Csoregi, L.Gorton, G.M.Varga, Carbon fibres as electrode materials for the construction of peroxidase-modified amperometric biosensors, Anal. Chim. Acta, 273 (1993) 59.
    [31] N.Kobayashi, H.Lam, W.A.Nevin, P.Janda, C.C.Leznoff, T.Koyama, A.Monden, H.Shirai, Synthesis, spectroscopy, electrochemistry, spectroelectrochemistry, Langmuir-Blodgett film formation, and molecular orbital calculations of planar binuclear phthalocyanines, J. Am. Chem. Soc., 116 (1994) 879.
    [32] Y.F.Yang, S.L.Mu, The bioelectrochemical response of the polyaniline sarcosine oxidase electrode, J. Electroanal. Chem., 415 (1996) 71.
    [33] F.Qu, M.Yang, J.Jiang, G.Shen, R.Yu, Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film, Anal. Biochem., 344 (2005) 108.
    [34] G.L.Kedderis, P.F.Hollenberg, Characterization of the N-demethylation reactions catalyzed by horseradish peroxidase, J. Biol. Chem., 258 (1983) 8129.
    [35] J.K.Chen, K.Nobe, Oxidation of dimethylaniline by horseradish peroxidase and electrogenerated peroxide, J. Electrochem. Soc., 140 (1993) 299.
    [36] J.K.Chen, K.Nobe, Oxidation of dimethylaniline by horseradish peroxidase and electrogenerated peroxide, J. Electrochem. Soc., 140 (1993) 304.
    [37] Y.Sun, J.Zhang, S.Huang, S.Wang, Hydrogen peroxide biosensor based on thebioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film,Sens. Actuators B, 124 (2007) 494.
    [38] W.Li, R.Yuan, Y.Chai, L.Zhou, S.Chen, N.Li,Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor, J. Biochem. Bioph. Methods, 70 (2008) 830.
    [39] L.Qian, X.Yang, Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor,Talanta, 68 (2006) 721.
    [40] C.Chen, Y.Gu, Enhancing the sensitivity and stability of HRP/PANI/Pt electrode by implanted bovine serum albumin, Biosens. Bioelectron., 23 (2008) 765.
    [41] X.Luo, A.J. Killard, A.Morrin, M.R. Smyth, Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline, Anal. Chim. Acta, 575 (2006) 39.
    [42] E.M.I.Mala Ekanayake, D.M.G.Preethichandra, K.Kaneto, Bi-functional amperometric biosensor for low concentration hydrogen peroxide measurements using polypyrrole immobilizing matrix, Sens. Actuators B, 132 (2008) 166.
    [43] F.R.Shu, G.S.Wilson, Rotating ring-disk enzyme electrode for surface catalysis studies, Anal. Chem., 48 (1976) 1679.
    [44] Y.Xiao, H.X.Ju, H.Y.Chen, A reagentless hydrogen peroxide sensor based on incorpora- tion of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode, Anal. Chim. Acta, 391 (1999) 299.
    [45] P.W.Carr, L.D.Bowers, Immobilized enzymes in analytical and clinical chemistry, John Wiley & Sons, New York, 1980.
    [46] J.Wang, J.Liu, G.Cepra, Thermal stabilization of enzymes immobilized within carbon paste electrodes, Anal. Chem., 69 (1997) 3124.
    [47] N.G.Chalkias, E.P.Giannelis, An avidin-biotin immobilization approach for horseradish peroxidase and glucose oxidase on layered silicates with high catalytic activity retention and improved thermal behavior, Industrial Biotechnology., 3(1) (2007) 82.
    [48] Y.Liu, R.Yuan, Y.Q.Chai, D.P.Tang, J.Y.Dai, X.Zhong, Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode, Sens. Actuators B, 115 (2006) 109.
    [49] F.Xi, L.Liu, Q.Wu, X.Lin, One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition, Biosens. Bioelectron., 24 (2008) 29.
    [1] M.T.Huang, C.T.Ho, C.Y.Lee, Phenolic compounds in food and their effects on health II: Antioxidants and cancer prevention, American Chemical Society, Washington, DC, 1992.
    [2] H.Notsu, T.Tatsuma, Simultaneous determination of phenolic compounds by using a dual enzyme electrodes system, J. Electroanal. Chem., 566 (2004) 379.
    [3] J.Poerschmann, Z.Zhang, F.D.Kopinke, J.Pawliszyn, Solid Phase Microextraction for Determining the Distribution of Chemicals in Aqueous Matrices, Anal. Chem., 69 (1997) 597.
    [4] C.D.Chriswell, R.C.Chang, J.S.Fritz, Chromatographic Determination of Phenols in Water, Anal. Chem., 47 (1975) 1325.
    [5] G.F.Hall, D.J.Best, A.P.F.Turner, The determination of p-cresol in chloroform with an enzyme electrode used in the organic phase, Anal. Chim. Acta, 213 (1988) 113.
    [6] C.R.Tillyer, P.T.Gobin, The development of a catechol enzyme electrode and its possible use for the diagnosis and monitoring of neutral crest tumours, Biosens. Bioelectron., 6 (1991) 569.
    [7] T.Zhang, B.Tian, J.Kong, P.Yang, B.Liu, A sensitive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix, Anal. Chim. Acta, 489 (2003) 199.
    [8] B.Wang, J.Zhang, S.Dong, Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor, Biosens. Bioelectron., 15 (2000) 397.
    [9] T.Tatsuma, T.Sato, Self-wiring from tyrosinase to an electrode with redox polymers, J. Electroanal. Chem., 572 (2004) 15.
    [10] Q.Fan, D.Shan, H.Xue, Y.He, S.Cosnier, Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix, Biosens. Bioelectron., 22 (2007) 816.
    [11] Rajesh, W.Takashima, K.Kaneto, Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film, Sens. Actuators B, 102 (2004) 271.
    [12] V.Carralero, M.L.Mena, A.Gonzalez-Cortes, P.Yanez-Sedeno, J.M.Pingarron, Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles, Biosens. Bioelectron., 22 (2006) 730.
    [13] M.E.Kaoutit, I.N.Rodriguez, K.R.Temsamani, J.L.H.H.d.Cisneros, The Sonogel-Carbon materials as basis for development of enzyme biosensors for phenols and polyphenols monitoring: A detailed comparative study of three immobilization matrixes, Biosens. Bioelectron., 22 (2007) 2958.
    [14] Y.C.Tsai, C.C.Chiu, Amperometric biosensors based on multiwalled carbon nanotube-Nafion- tyrosinase nanobiocomposites for the determination of phenolic compounds, Sens. Actuators B, 125 (2007) 10.
    [15] Q.Chen, G.L.Kenausis, A.Heller, Stability of oxidase immobilized in silica gels, J. Am. Chem. Soc., 120 (1998) 4582.
    [16] B.C.Dave, B.Dunn, J.S.Valentine, J.I.Zink, Sol-gel encapsulation methods for biosensors, Anal. Chem., 66 (1994) 1120A.
    [17] O.Lev, M.Tsionsky, L.Rabinovich, V.Glezer, S.Sampath, I.Pankratov, J.Gun, Organically modified sol-gel sensors, Anal. Chem., 67 (1995) 22A.
    [18] M.Umana, J.Waller, Protein-Modified Electrodes. The Glucose Oxidase/Polypyrrole System, Anal. Chem., 58 (1986) 2979.
    [19] N.C.Foulds, C.R.Lowe, Enzyme entrapment in electrically conducting polymers, J. Chem. Soc. Faraday Trans. I, 82 (1986) 1259.
    [20] P.N.Bartlett, R.G.Whitaker, Strategies for the development of amperometric enzyme electrodes, Biosensors, 3 (1987/88) 359.
    [21] H.Shinohara, T.Chiba, M.Aizawa, Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film, Sens. Actuators, 13 (1988) 79.
    [22] P.C.Pandey, A new conducting polymer-coated glucose sensor, J. Chem. Soc., Faraday Trans. 1, 84 (1988) 2259.
    [23] A.J.Killard, S.Zhang, H.Zhao, R.John, E.I.Iwuoha, M.R.Smyth, Development of an electrochemical flow injection immunoassay (FIIA) for the real-time monitoring of biospecific interactions, Anal. Chim. Acta, 400 (1999) 109.
    [24] H.Xue, Z.Shen, A highly stable biosensor for phenols prepared by immobilizing polyphenol oxidase into polyaniline-polyacrylonitrile composite matrix, Talanta, 57 (2002) 289.
    [25] W.S.Huang, B.D.Humphrey, A.G.Macdiarid, Polyaniline, a novel conducting polymer: morphology and chemistry of its oxidation and reduction in aqueous electrolytes, J. Chem.Soc. Faraday Trans. I, 82 (1986) 2385.
    [26] W.W.Focke, G.E.Wnek, Y.Wei. Influence of oxidation state, pH, and counterion on the conductivity of polyaniline, J. Phys. Chem., 91 (1987) 5813.
    [27] S.Mu, Electrochemical copolymerization of aniline and o-aminophenol, Synth. Met., 143 (2004) 259.
    [28] X.Pan, S.Zhou, C.Chen, J.Kan, Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline, Sens. Actuators B, 113 (2006) 329.
    [29] Q.Shi, Y.Zhang, G.Jing, J.Kan, Properties of polyaniline synthesized in ionic liquid (1-Ethyl-3-methylimidazolium-ethyl sulphate), Iran. Polym. J., 16(5) (2007) 337.
    [30] S.Mu, Pronounced effect of the ionic liquid on the electrochromic property of the polyaniline film: Color changes in the wide wavelength range, Electrochimica Acta, 52 (2007) 7827.
    [31] D.Belanger, J.Nadream, G.Fortier, Electrochemistry of the polypyrrole glucose oxidase electrode, J. Electroanal. Chem., 274 (1989) 143.
    [32] H.Shinohara, T.Chiba, M.Aizawa, Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film, Sens. Actuators B, 13 (1988) 79.
    [33] J.Kan, X.Pan, C.Chen, Polyaniline-uricase biosensor prepared with template process, Biosens. Bioelectron., 19 (2004) 1635.
    [34] K.Arora, G.Sumana, V.Saxena, R.K.Gupta, S.K.Gupta, J.V.Yakhmi, M.K.Pandey, S.Chand, B.D.Malhotra, Improved performance of polyaniline-uricase biosensor, Anal. Chim. Acta, 594 (2007) 17.
    [35] S.Mu, Bioelectrochemical response of the polyaniline galactose oxidase electrode, J. Electroanal. Chem., 370 (1–2) (1994) 135.
    [36] J.Kan, H.Xue, S.Mu, H.Chen, Effects of conducting polymers on immobilized galatose oxidase, Synth. Met., 87 (3) (1997) 205.
    [37] X.Pan, J.Kan, L.Yuan, Polyaniline glucose oxidase biosensor prepared with template process, Sens. Actuators B, 102 (2004) 325.
    [38] Y.Jiang, A.Wang, J.Kan, Selective uricase biosensor based on polyaniline synthesized in ionic liquid, Sens. Actuators B, 124 (2007) 529.
    [39] A.Navalon, R.Blanc, L.Reyes, N.Navas, J.L.Vilchez, Determination of the antibacterial enrofloxacin by differential-pulse adsorptive stripping voltammetry, Anal. Chim. Acta, 454(2002) 83.
    [40] S.Mu, H.Xue, B.Qian, Bioelectrochemical responses of the polyaniline glucose oxidase electrode, J. Electroanal. Chem., 304 (1991) 7.
    [41] J.Zhang, J.Lei, Y.Liu, J.Zhao, H.Ju, Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite, Biosens. Bioelectron., 24 (2009) 1858.
    [42] N.Kobayashi, H.Lam, W.A.Nevin, P.Janda, C.C.Leznoff, T.Koyama, A.Monden, H.Shirai, Synthesis, spectroscopy, electrochemistry, spectroelectrochemistry, Langmuir-Blodgett film formation, and molecular orbital calculations of planar binuclear phthalocyanines, J. Am. Chem. Soc ., 116 (1994) 879.
    [43] J.Li, L.S.Chia, N.K.Goh, S.N.Tan, Silica sol-gel immobilized amperometric biosensor for the determination of phenolic compounds, Anal. Chim. Acta, 362 (1998) 203.
    [44] R.Bru, A.Sanchez-Ferrer, F.Garcia-Carmona, Characteristics of tyrosinase in AOT-isooctane reverse micelles, Biotechnol. Bioeng., 34(3) (1989) 304.
    [45] Integrated Wastewater Discharge Standard (GB8978-1996), China.
    [46] F.R.Shu, G.S.Wilson, Rotating ring-disk enzyme electrode for surface catalysis studies, Anal. Chem., 48 (1976) 1679.
    [47] R.S.Brown, K.B.Male, J.H.T.Luong, A Substrate Recycling Assay for Phenolic Compounds Using Tyrosinase and NADH, Anal. Biochem., 222 (1994) 131.
    [48] I.H.Segel, Biochemical Calculations, second ed. Wiley, New York, 1976 p.152.
    [49] S.K?ralp, L.Toppare, Polyphenol content in selected Turkish wines, an alternative method of detection of phenolics, Process Biochemistry, 41 (2006) 236.
    [50] J.Wang, J.Liu, G.Cepra, Thermal stabilization of enzymes immobilized within carbon paste electrodes, Anal. Chem., 69 (1997) 3124.
    [51] S.E.Stanca, I.C.Popescu, Phenols monitoring and Hill coefficient evaluation using tyrosinase- based amperometric biosensors, Bioelectrochemistry , 64 (2004) 47.
    [52] J.P.H.Perez, M.S.P.Lopez, E.L.Cabarcos, B.L.Ruiz, Amperometric tyrosinase biosensor based on polyacrylamide microgels, Biosens. Bioelectron., 22 (2006) 429.
    [53] J.H.Yu, S.Q.Liu, H.X.Ju, Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method, Biosens. Bioelectron.,19 (2003) 509.
    [54] C.Vedrine, S.Fabiano, C.Tran-Minh, Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support, Talanta, 59 (2003) 534.
    [55] H.W.Duckworth, J.E.Coleman, Physicochemical and Kinetic Properties of Mushroom Tyrosinase, J. Biol. Chem., 245 (1970) 1613.
    [56] D.Shan, S.Cosnier, C.Mousty, Layered Double Hydroxides: An Attractive Material for Electrochemical Biosensor Design, Anal. Chem., 75 (2003) 3872.
    [57] D.Shan, M.Zhu, E.Han, H.Xue, S.Cosnier, Calcium carbonate nanoparticles: A host matrix for the construction of highly sensitive amperometric phenol biosensor, Biosens. Bioelectro ., 23 (2007) 648.
    [58] C.Lei, S.Hu, N.Gao, G.Shen, R.Yu, An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode, Bioelectrochemistry, 65 (2004) 33.
    [59] J.Kochana, A.Gala, A.Parczewski, J.Adamski, Titania sol-gel-derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects, Anal. Bioanal. Chem., 391 (2008) 1275.
    [60] M.A.Kim, W.Y.Lee, Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film, Anal. Chim. Acta, 479 (2003) 143.
    [1] D.A.Robb, Tyrosinase, Copper Proteins and Copper Enzymes, 2 (1984) 207.
    [2] M.Friedman, Food Browning and Its Prevention: An Overview, J. Agric. Food Chem., 44 (1996) 631.
    [3] D.B.Mosher, M.A.Pathak, T.B.Fitzpatrick, Vitiligo, Etiology, Pathogenesis Diagnosis and Treatment. In update: Dermatology in General Medicine. In Fitapatrick, T. B., Eisen, A. Z., Wolff, K., Freedberg, I. M., Austen, K. F., Eds.; McGraw-Hill: New York, 1983, 205.
    [4] K.Maeda, M.Fukuda, In vitro effectiveness of several whitening cosmetic components in human melanocytes, J. Soc. Cosmet. Chem., 42 (1991) 361.
    [5] P.A.Riley, Tyrosinase kinetics: A semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrate-reply, J Theor.Biol., 203(1) ( 2000) 1.
    [6] H.Kamahldin, W.T.Eng, Direct spectrophotometric assay of monoxygenase and oxidase activities of mushroom tyrosinase in the presence of synthetic and natural substrates, Anal. Bioch., 312(1) (2003) 23.
    [7] G.F.Lorena, N.R.Jose, G.Francisco, A.G.Pedro, V.Ramon, G.C.Francisco, T.Jose, Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinines, Biochim. Biophys. Acta, 1548(1) ( 2001) 1.
    [8] C.Dong, W.Wang, Headspace solid-phase microextraction applied to the simultaneous determination of sorbic and benzoic acids in beverages, Anal. Chim. Acta, 562 (2006) 23.
    [9] M.Thomassin, E.Cavalli, Y.Guillaume, C.Guinchard, Comparison of quantitative high performance thin layer chromatography and the high performance liquid chromatography of parabens, J. Pharm. Biomed. Anal ., 15 (1997) 831.
    [10] S.H.Khan, M.P.Murawski, J.Sherma, Quantitative high performance thin layer chromatographic determination of organic acid preservatives in beverages, J. Liq. Chromatogr., 17 (1994) 855.
    [11] M.C.Smith, J.Sherma, Determination of benzoic and sorbic acid preservatives by solid phase extraction and quantitative TLC, J. Planar. Chromatogr .-Mod.TLC, 8 (1995) 103.
    [12] C.Dong, Y.Mei, L.Chen, Simultaneous determination of sorbic and benzoic acids in food dressing by headspace solid-phase microextraction and gas chromatography, J. Chromatogr. A, 1117 (2006) 109.
    [13] A.J.Reviejo, C.Fernandez, F.Liu, J.M.Pingarron, J.Wang, Advances in amperometric enzyme electrodes in reversed micelles, Anal. Chim. Acta, 315 (1995) 93.
    [14] Q.Deng, S.J.Dong, Amperometric biosensor for tyrosinase inhibitors in a pure organic phase, Analyst, 121 (1996) 1979.
    [15] K.Streffer, H.Kaatz, C.G.Bauer, A.Markower, T.Schulmeister, F.W.Scheller, M.G.Peter, U.Wollenberger, Application of a sensitive catechol detector for determination of tyrosinase inhibitors, Anal. Chim. Acta, 362 (1998) 81.
    [16] M.D.Morales, S.Morante, A.Escarpa, M.C.Gonzalez, A.J.Reviejo, J.M.Pingarron, Design of a composite amperometric enzyme electrode for the control of the benzoic acid content in food, Talanta, 57 (2002) 1189.
    [17] S.Topcu, M.K.Sezginturk, E.Dinckaya, Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: investigation of certain phenolic compounds and some inhibitor effects, Biosens. Bioelectron., 20 (2004) 592.
    [18] D.Shan, Q.F.Shi, D.B.Zhu, H.G. Xue, Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline-polyacrylonitrile composite matrix, Talanta, 72 (2007) 1767.
    [19] A.Navalon, R.Blanc, L.Reyes, N.Navas, J.L.Vilchez, Determination of the antibacterial enrofloxacin by differential-pulse adsorptive stripping voltammetry, Anal. Chim. Acta, 454 (2002) 83.
    [20] R.Bru, A.Sanchez-Ferrer, F.Garcia-Carmona, Characteristics of tyrosinase in AOT-isooctane reverse micelles, Biotechnol. Bioeng., 34(3) (1989) 304.
    [21] R.C.Krueger, The Inhibition of Tyrosinase, Arch Biochem., 57(1) (1955) 52.
    [22] G.A.Ballou, J.M.Luck, Buffer influence on taka-diastase, J. Biol. Chem., 136 (1940) 111.
    [23] G.A.Ballou, J.M.Luck, The effects of different buffers on the activity ofβ-amylase, J. Biol. Chem., 139 (1941) 233.
    [24] E.D.Wills, A.Wormall, Studies on suramin. 9. The action of the drug on some enzymes, Biochem. J., 47 (1950) 158.
    [25] J.Wang, J.Liu, G.Cepra, Thermal stabilization of enzymes immobilized within carbon paste electrodes, Anal. Chem., 69 (1997) 3124.
    [26] D.Belanger, J.Nadream, G.Fortier, Electrochemistry of the polypyrrole glucose oxidase electrode, J. Electroanal. Chem., 274 (1989) 143.
    [27]颜思旭,蔡红玉,酶催化动力学原理与方法,厦门大学出版社,(1987) 104。
    [28] B.J.Ludwig, J.M.Nelson, Inactivation of Tyrosinase in the Oxidation of Catechol, J. Am. Chem. Sot., 61 (1939) 2601.
    [29] D.C.Gregg, J.M.Nelson, Further Studies on the Enzyme, Tyrosinase, J. Am. Chem. Sot., 62 (1940) 2500.
    [30] A.Amine, H. Mohammadi, I. Bourais, G. Palleschi, Enzyme inhibition-based biosensors forfood safety and environmental monitoring, Biosens. Bioelectron., 21 (2006) 1405.
    [31] B.Saab, M.F.Bari, M.I.Saleh, K.Ahmad, M.K.M.Talib, Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography, J. Chromatogr. A, 1073 (2005) 393.
    [32] Z.Pan, L.Wang, W.Mo, C.Wang, W.Hu, J.Zhang, Determination of benzoic acid in soft drinks by gas chromatography with on-line pyrolytic methylation technique, Anal. Chim. Acta, 545 (2005) 218.
    [33] V.Kahn, A.Andrawis, Inhibition of mushroom tyrosinase by tropolone, Phytochemistry, 24 (1985) 90.
    [34] J.Wang, V.B.Nascimento, S.A.Kane, K.Rogers, M.R.Smyth, L.Angnes, Screen-printed tyrosinase-containing electrodes for the biosensing of enzyme inhibitors, Talanta, 43 (1996) 1903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700