用于生物人工肝反应器的半乳糖化壳聚糖/聚已内酯复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝组织工程主要研究内容和应用包括两大方面:即体外生物人工肝支持系统中的应用和可植入体内的细胞支架的应用。无论是体外还是体内的应用,都需要制备能长时间维持肝细胞的增殖和肝特异性功能水平的胞外基质材料。
     本文首先利用水溶性碳二亚胺(EDC))和N-羟基琥珀酰亚胺(NHS)为活化剂,将乳糖酸共价连接到壳聚糖分子上,得到了含有β-半乳糖基结构的半乳糖化壳聚糖(GC)。利用碱解反应处理聚己内酯(PCL)膜,利用碱解反应引入的羧基与GC上剩余氨基的反应,将GC固定到PCL膜上,得到了可用于肝细胞培养的GC/PCL复合材料。结果表明碱解可以增加PCL膜表面的羧基密度,并且羧基密度受溶液浓度、反应时间和反应温度的影响。而碱解带来材料表面化学和物理性质的改变也引起了材料亲水性的变化,碱解PCL膜的亲水性得到了一定程度的改善。固定在膜上的GC的量也随着碱解处理时间的改变而发生变化
     在此基础上,用碱解涂层的方法制备了GC/PCL复合多孔支架。首先用无规明胶粒子致孔剂法制备了PCL多孔支架,然后用碱解涂层的办法将GC固定在支架内外表面得到了GC/PCL复合支架。并对支架的微观形貌,羧基密度和GC含量变化,以及力学性能等进行了研究。
     在用复合支架材料对人肝癌细胞HepG2进行体外培养的过程中,复合支架表现出了良好的细胞相容性。并在对肝细胞白蛋白分泌功能的维持上有着显著的优越性。该GC/PCL复合支架能够作为一种合适的支架材料用于生物人工肝支持系统的应用中。
Tissue engineering for liver treatment has two major applications.One is the application in extracorporeal bioartificial liver(BLA) assist system,and the other one is for liver regeneration with implantable cell-scaffold constructs.A suitable extracellular matrix which can sustain long-term hepatocytes proliferation and maintenance of liver-specific functions is essential for both applications.
     In this work,a kind of galatosylated chitosan(GC) was prepared by coupling Lactobionic Acid(LA) to chitosan under the catalyzation of 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide(EDC) and N-hydroxysuccinimide(NHS).The obtained GC having galatose moieties was characterized by infrared spectroscopy(IR), nuclear magnetic resonance(NMR) and elemental analysis,confirming the resultant molecular structure.Polycaprolactone(PCL) membrane was hydrolyzed in alkaline solution to introduce carboxyl groups which can react with GC to form a GC/PCL hybrid materials for hepatocytes culture.The results showed that hydrolysis could increase the density of carboxyl on the PCL membrane,which was controled by the concentration of solution,reaction time and reaction temperature.The hydrolysis could also change hydrophilicity of the PCL membrane due to the change of these surface chemical and physical properties.The amount of immobilized GC on the membrane could be altered by the change of hydrolysis time.
     Next,a hybrid porous three-dimensional scaffold was fabricated by using the same method.The polycaprolactone(PCL) scaffold was firstly prepared by a particle leaching method,which was then integrated with galactosylated chitosan(GC) via a method of hydrolysis to obtain a hybrid GC/PCL scaffold.The micro morphology, the density of carboxyl,the GC content and mechanical property of the hybrid scaffold were analyzed as well.
     In vitro culture of HepG2 cells on the hybrid scaffold demonstrated a good cell viability and long-term maintenance of liver-specific functions.All the results suggest that the GC/PCL scaffold could be a potential candidate applied for scaffolds bioreactor in bioartificial liver assist system.
引文
[1] Langer, R.; Vacanti, J. P., Tissue Engineering. Science 1993, 260, (5110), 920-926.
    
    [2] Tabata, Y., Recent progress in tissue engineering. Drug Discovery Today 2001, 6, (9), 483-487.
    
    [3] Vacanti, J. P.; Langer, R., Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999, 354, Si32-Si34.
    
    [4] Strain, A. J.; Neuberger, J. M., A bioartificial liver - State of the art. Science 2002, 295, (5557), 1005-1009.
    
    [5] Lee, W. M., Acute liver failure. N Engl J Med 1993, 329, (25), 1862-72.
    
    [6] Allen, J. W.; Hassanein, T.; Bhatia, S. N., Advances in bioartificial liver devices. Hepatology 2001, 34, (3), 447-455.
    
    [7] Martinez-Hernandez, A.; Amenta, P. S., The extracellular matrix in hepatic regeneration. Faseb J 1995, 9, (14), 1401-10.
    
    [8] Patzer, J. F., 2nd, Advances in bioartificial liver assist devices. Ann N Y Acad Sci 2001,944,320-33.
    
    [9] Gerlach, J. C.; Zedinger, K.; Patzer, J. F., Bioartificial liver systems: why, what, whither? Regenerative Medicine 2008, 3, (4), 575-595.
    
    [10] Fourneau, I.; Yap, P., Bioartificial liver support: recent advances. Acta Chir Belg 2000,100, (6), 276-8.
    
    [11] Carpentier, B.; Gautier, A.; Legallais, C., Artificial and bioartificial liver devices: present and future. Gut 2009, 58, (12), 1690-1702.
    
    [12] Berthiaume, F.; Moghe, P. V.; Toner, M., et al., Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: Hepatocytes cultured in a sandwich configuration. Faseb J. 1996, 10, (13), 1471-1484.
    [13] Landry, J.; Bernier, D.; Ouellet, C., et al., Spheroidal Aggregate Culture of Rat-Liver Cells - Histotypic Reorganization, Biomatrix Deposition, and Maintenance of Functional Activities. J. Cell. Biol. 1985,101, (3), 914-923.
    
    [14] Brophy, C. M.; Luebke-Wheeler, J. L.; Amiot, B. P., et al., Rat hepatocyte spheroids formed by rocked technique maintain differentiated hepatocyte gene expression and function. Hepatology 2009,49, (2), 578-86.
    
    [15] Hansen, L. K.; Hsiao, C. C.; Friend, J. R., et al., Enhanced morphology and function in hepatocyte spheroids: A model of tissue self-assembly. Tissue Eng. 1998, 4,(1), 65-74.
    
    [16] Khor, E.; Lim, L. Y., Implantable applications of chitin and chitosan. Biomaterials 2003, 24, (13), 2339-2349.
    
    [17] Okamoto, Y.; Watanabe, M.; Miyatake, K., et al., Effects of chitin/chitosan and their oligomers/monomers on migrations of fibroblasts and vascular endothelium. Biomaterials 2002,23, (9), 1975-1979.
    
    [18] Cho, Y. W.; Cho, Y. N.; Chung, S. H., et al., Water-soluble chitin as a wound healing accelerator. Biomaterials 1999, 20, (22), 2139-2145.
    
    [19] Pan, J. L.; Bao, Z. M.; Li, J. L., et al., Chitosan-based scaffolds for hepatocyte culture. Asbm6: Advanced Biomaterials Vi 2005, 288-289, 91-94.
    
    [20] Wang, X. H.; Li, D. P.; Wang, W. J., et al., Covalent immobilization of chitosan and heparin on PLGA surface. Int J Biol Macromol 2003, 33, (1-3), 95-100.
    
    [21] Li, J. L.; Pan, J. L.; Zhang, L. G., et al., Culture of primary rat hepatocytes within porous chitosan scaffolds. Journal of Biomedical Materials Research Part A 2003, 67A, (3), 938-943.
    
    [22] Mi, F. L.; Lin, Y. M.; Wu, Y. B., et al., Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior. Biomaterials 2002, 23, (15), 3257-3267.
    
    [23] Li, K. G.; Wang, Y.; Miao, Z. C., et al., Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnol Lett 2004, 26, (11), 879-883.
    
    [24] Risbud, M. V.; Karamuk, E.; Schlosser, V., et al., Hydrogel-coated textile scaffolds as candidate in liver tissue engineering: II. Evaluation of spheroid formation and viability of hepatocytes. Journal of Biomaterials Science-Polymer Edition 2003, 14, (7), 719-731.
    [25] Li, J. L.; Pan, J. L.; Zhang, L. G., et al., Culture of primary rat hepatocytes on porous chitosan scaffolds. Chemical Journal of Chinese Universities-Chinese 2004, 25, (1), 63-66.
    
    [26] Yagi, K.; Michibayashi, N.; Kurikawa, N., et al., Effectiveness of fructose-modified chitosan as a scaffold for hepatocyte attachment. Biol Pharm Bull 1997, 20, (12), 1290-1294.
    
    [27] Li, K.; Wang, Y.; Miao, Z., et al., Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnol Lett 2004,26, (11), 879-83.
    
    [28] Wang, X. H.; Li, D. P.; Wang, W. J., et al., Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 2003,24, (19), 3213-3220.
    
    [29] Chung, T. W.; Yang, J.; Akaike, T., et al., Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 2002, 23, (14), 2827-34.
    
    [30] Wang, X. H.; Wang, W. J.; Li, D. P., et al., Surface modification of biodegradable PLGA scaffold with chitosan for cell culture. Functionally Graded Materials Vii 2003,423-4, 341-345.
    
    [31] Chu, X. H.; Shi, X. L.; Feng, Z. Q., et al., Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol Lett 2009, 31, (3), 347-52.
    
    [32] Drury, J. L.; Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24, (24), 4337-4351.
    
    [33] Shu, X. Z.; Zhu, K. J.; Song, W. H., Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. International Journal of Pharmaceutics 2001,212,(1), 19-28.
    
    [34] Gupta, S.; Kim, S. K.; Vemuru, R. P., et al., Hepatocyte Transplantation - an Alternative System for Evaluating Cell-Survival and Immunoisolation. International Journal of Artificial Organs 1993, 16, (3), 155-163.
    
    [35] Hirai, S.; Kasai, S.; Mito, M., Encapsulated Hepatocyte Transplantation for the Treatment of D-Galactosamine-Induced Acute Hepatic-Failure in Rats. European Surgical Research 1993, 25, (4), 193-202.
    
    [36] Bazou, D.; Coakley, W. T.; Hayes, A. J., et al., Long-term viability and proliferation of alginate-encapsulated 3-D HepG2 aggregates formed in an ultrasound trap. Toxicology in Vitro 2008, 22, (5), 1321-1331.
    
    [37] Nair, L. S.; Laurencin, C. T., Biodegradable polymers as biomaterials. Progress in Polymer Science 2007, 32, (8-9), 762-798.
    
    [38] Lam, C. X. F.; Hutmacher, D. W.; Schantz, J. T., et al., Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research Part A 2009, 90A, (3), 906-919.
    
    [39] Chua, K. N.; Lim, W. S.; Zhang, P. C., et al., Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 2005, 26, (15), 2537-2547.
    
    [40] Hodgkinson, C. P.; Wright, M. C.; Paine, A. J., Fibronectin-mediated hepatocyte shape change reprograms cytochrome p450 2C11 gene expression via an integrin-signaled induction of ribonuclease activity. Mol. Pharmacol. 2000, 58, (5), 976-981.
    
    [41] Kim, S. H.; Kim, J. H.; Akaike, T., Regulation of cell adhesion signaling by synthetic glycopolymer matrix in primary cultured hepatocyte. Febs Lett. 2003, 553, (3), 433-439.
    
    [42] Chung, T. W.; Yang, J.; Akaike, T., et al., Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 2002, 23, (14), 2827-2834.
    
    [43] Park, I. K.; Yang, J.; Jeong, H. J., et al., Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 2003, 24, (13), 2331-2337.
    
    [44] Yang, J.; Goto, M.; Ise, H., et al., Galactosylated alginate as a scaffold for hepatocytes entrapment. Biomaterials 2002, 23, (2), 471-479.
    
    [45] Gotoh, Y.; Niimi, S.; Hayakawa, T., et al., Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment. Biomaterials 2004, 25, (6), 1131-1140.
    
    [46] Tobe, S.; Takei, Y.; Kobayashi, K., et al., Receptor-Mediated Formation of Multilayer Aggregates of Primary Cultured Adult-Rat Hepatocytes on Lactose-Substituted Polystyrene. Biochem. Biophys. Res. Commun. 1992, 184, (1), 225-230.
    [47] Yoon, J. J.; Nam, Y S.; Kim, J. H., et al., Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Biotechnol. Bioeng. 2002, 78, (1), 1-10.
    
    [48] Tan, H. P.; Lao, L. H.; Wu, J. D., et al., Biomimetic modification of chitosan with covalently grafted lactose and blended heparin for improvement of in vitro cellular interaction. Polym. Adv. Technol. 2008,19, (1), 15-23.
    
    [49] Ying, L.; Yin, C.; Zhuo, R. X., et al., Immobilization of galactose ligands on acrylic acid graft-copolymerized poly(ethylene terephthalate) film and its application to hepatocyte culture. Biomacromolecules 2003, 4, (1), 157-165.
    
    [50] Seo, S. J.; Akaike, T.; Choi, Y. J., et al., Alginate microcapsules prepared with xyloglucan as a synthetic extracellular matrix for hepatocyte attachment. Biomaterials 2005, 26, (17), 3607-3615.
    
    [51] Seo, S. J.; Park, I. K.; Yoo, M. K., et al., Xyloglucan as a synthetic extracellular matrix for hepatocyte attachment. J. Biomat. Sci-Polym. E. 2004, 15, (11), 1375-1387.
    
    [52] Kim, S. H.; Hoshiba, T.; Akaike, T., Hepatocyte behavior on synthetic glycopolymer matrix: inhibitory effect of receptor-ligand binding on hepatocyte spreading. Biomaterials 2004, 25, (10), 1813-1823.
    
    [53] Kim, S. H.; Hoshiba, T.; Akaike, T., Effect of carbohydrates attached to polystyrene on hepatocyte morphology on sugar-derivatized polystyrene matrices. J. Biomed. Mater. Res. Part A 2003, 67A, (4), 1351-1359.
    
    [54] Glicklis, R.; Merchuk, J. C.; Cohen, S., Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol. Bioeng. 2004, 86, (6), 672-680.
    
    [55] Harris, A. L., Hypoxia - A key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2,(1), 38-47.
    
    [56] Du, Y. N.; Chia, S. M.; Han, R. B., et al., 3D hepatocyte monolayer on hybrid RGD/galactose substratum. Biomaterials 2006, 27, (33), 5669-5680.
    
    [57] Du, Y.; Han, R. B.; Wen, F., et al., Synthetic sandwich culture of 3D hepatocyte monolayer. Biomaterials 2008, 29, (3), 290-301.
    [58] Chew, S. Y.; Mi, R. F.; Hoke, A., et al., Aligned protein-polymer composite fibers enhance nerve regeneration: A potential tissue-engineering platform. Adv. Funct. Mater. 2007,17, (8), 1288-1296.
    
    [59] Yim, E. K. F.; Wen, J.; Leong, K. W., Enhanced extracellular matrix production and differentiation of human embryonic germ cell derivatives in biodegradable poly(epsilon-caprolactone-co-ethyl ethylene phosphate) scaffold. Acta Biomater. 2006,2, (4), 365-376.
    
    [60] Chew, S. Y.; Wen, J.; Yim, E. K. F., et al., Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005, 6, (4), 2017-2024.
    
    [61] Chew, S. Y.; Hufnagel, T. C.; Lim, C. T., et al., Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology 2006, 17, (15), 3880-3891.
    
    [62] Feng, Z. Q.; Chu, X. H.; Huang, N. P., et al., The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials 2009, 30, (14), 2753-2763.
    
    [63] Koide, N.; Sakaguchi, K.; Koide, Y., et al., Formation of Multicellular Spheroids Composed of Adult-Rat Hepatocytes in Dishes with Positively Charged Surfaces and under Other Nonadherent Environments. Exp. Cell. Res. 1990, 186, (2), 227-235.
    
    [64] Ijima, H.; Matsushita, T.; Nakazawa, K., et al., Hepatocyte spheroids in polyurethane foams: Functional analysis and application for a hybrid artificial liver. Tissue Eng. 1998,4, (2), 213-226.
    
    [65] Matsushita, T.; Nakano, K.; Nishikura, Y., et al., Spheroid formation and functional restoration of human fetal hepatocytes on poly-L-amino acid-coated dishes after serial proliferation. Cytotechnology 2003,42, (2), 57-66.
    
    [66] Kidambi, S.; Lee, I.; Chan, C., Controlling primary hepatocyte adhesion and spreading on protein-free polyelectrolyte multilayer films. J. Am. Chem. Soc. 2004, 126, (50), 16286-16287.
    
    [67] Janorkar, A. V.; Rajagopalan, P.; Yarmush, M. L., et al., The use of elastin-like polypeptide-polyelectrolyte complexes to control hepatocyte morphology and function in vitro.Biomaterials 2008,29,(6),625-632.
    [68]Ma,Z.W.;Mao,Z.W.;Gao,C.Y.,Surface modification and property analysis of biomedical polymers used for tissue engineering.Colloids and Surfaces B-Biointerfaces 2007,60,(2),137-157.
    [69]彭承宏,韩宝三,高长有等.人肝细胞L-02/聚丙烯杂化界面的初步研究.中华外科杂志(Chinese Journal of Surgery)2004,42(17):1064-1068.
    [70]彭承宏,韩宝三,高长有等.人肝细胞/微孔聚丙烯超滤膜生物界面构建的研究.中华医学杂志(National Medical Journal of China) 2004,84(17):1460-146.
    [71]Bhatia,S.N.;Balis,U.J.;Yarmush,M.L.,et al.,Effect of cell-cell interactions in preservation of cellular phenotype:cocultivation of hepatocytes and nonparenchymal cells.Faseb Journal 1999,13,(14),1883-1900.
    [72]Flemming,R.G;Murphy,C.J.;Abrams,G.A.,et al.,Effects of synthetic micro-and nano-structured surfaces on cell behavior.Biomaterials 1999,20,(6),573-588.
    [73]Krasteva,N.;Seifert,B.;Albrecht,W.,et al.,Influence of polymer membrane porosity on C3A hepatoblastoma cell adhesive interaction and function.Biomaterials 2004,25,(13),2467-2476.
    [74]Tsai,W.B.;Lin,J.H.,Modulation of morphology and functions of human hepatoblastoma cells by nano-grooved substrata.Acta Biomater.2009,5,(5),1442-1454.
    [75]Fukuda,J.;Nakazawa,K.,Orderly arrangement of hepatocyte spheroids on a microfabricated chip.Tissue Eng.2005,11,(7-8),1254-1262.
    [76]Huang,H.;Oizumi,S.;Kojima,N.,et al.,Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network.Biomaterials 2007,28,(26),3815-3823.
    [77]Lee,J.;Cuddihy,M.J.;Cater,G.M.,et al.,Engineering liver tissue spheroids with inverted colloidal crystal scaffolds.Biomaterials 2009,30,(27),4687-4694.
    [78]Liu,Y.X.;He,T.;Gao,C.Y.,Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells.Colloids and Surfaces B-Biointerfaces 2005,46,(2),117-126.
    [79]Imoto,T.;Yagishit.K,Simple Activity Measurement of Lysozyme.Agricultural and Biological Chemistry 1971,35,(7),1154-1156.
    [80]Hong,Y.;Gao,C.Y.;Xie,Y.,et al.,Collagen-coated polylactide microspheres as chondrocyte microcarriers.Biomaterials 2005,26,(32),6305-6313.
    [81]Ma,L.;Gao,C.Y.;Mao,Z.W.,et al.,Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering.Biomaterials 2003,24,(26),4833-4841.
    [82]司徒镇强,吴正军。细胞培养,北京:世界图书出版社。1996,186-187.
    [83]Brayman,A.A.;Coppage,M.L.;Vaidya,S.,et al.,Transient poration and cell surface receptor removal from human lymphocytes in vitro by 1 MHZ ultrasound.Ultrasound in Medicine and Biology 1999,25,(6),999-1008.
    [84]Andras,S.C.;Hartman,T.P.;Alexander,J.,et al.,Combined PI-DAPI staining (CPD) reveals NOR asymmetry and facilitates karyotyping of plant chromosomes.Chromosome Res 2000,8,(5),387-91.
    [85]Komen,J.;Wolbers,F.;Franke,H.R.,et al.,Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device:effect of cytostatic drugs.Biomed Microdevices 2008,10,(5),727-37.
    [86]Adami,R.;Choquet,D.;Grazi,E.,Rhodamine phalloidin F-actin:critical concentration versus tensile strength.Eur J Biochem 1999,263,(1),270-5.
    [87]Darzynkiewicz,Z.;Juan,G.;Bedner,E.,Determining cell cycle stages by flow cytometry.Curr Protoc Cell Biol 2001,Chapter 8,Unit 8 4.
    [88]Lu,H.F.;Lim,W.S.;Zhang,P.C.,et al.,Galactosylated poly(vinylidene difluoride) hollow fiber bioreactor for hepatocyte culture.Tissue Eng 2005,11,(11-12),1667-77.
    [89]Tzanakakis,E.S.;Hansen,L.K.;Hu,W.S.,The role of actin filaments and microtubules in hepatocyte spheroid self-assembly.Cell Motility and the Cytoskeleton 2001,48, (3), 175-189.
    
    [90] Hamilton, G. A.; Jolley, S. L.; Gilbert, D., et al., Regulation of cell morphology and cytochrome P450 expression in human hepatocytes by extracellular matrix and cell-cell interactions. Cell and Tissue Research 2001, 306, (1), 85-99.
    
    [91] Weigel, P. H., Rat hepatocytes bind to synthetic galactoside surfaces via a patch of asialoglycoprotein receptors. J Cell Biol 1980, 87, (3 Pt 1), 855-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700