可逆交联、温度敏感的聚合物囊泡用于蛋白质的可控释放
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物囊泡载体体系在生物医学和药物控释领域的应用已经引起科学家们的广泛的关注。本论文中,作者主要设计合成了一系列结构明确的,三嵌段聚合物PEG-PAA-PNIPAM,研究了其囊泡的温度敏感性和可逆交联,并探索了该可逆交联的温度敏感的聚合物囊泡用于蛋白质药物的细胞内释放。
     (1)以大分子PEG-DMP作为链引发剂,通过序贯可逆加成-断裂链转移自由基聚合方法得到具有温度敏感的聚乙二醇-b-聚丙烯酸-b-聚-N-异丙基丙烯酰胺三嵌段聚合物(PEG-PAA-PNIPAM)。嵌段聚合物中聚乙二醇的分子量为5000 Da﹑聚丙烯酸分子量为350~1450 Da、聚丙烯酰胺分子量为11000~39000 Da。该嵌段共聚物在室温下易溶于水,当水溶液升温到37oC以上,溶液能迅速自组装形成纳米囊泡(粒径大约220 nm)。通过共聚焦光散射激光显微镜(CSLM)和静态激光光散射(SLS)方法证实了其囊泡结构。囊泡的粒径大小和粒径分布取决于聚合物浓度﹑聚丙烯酰胺的分子量﹑溶液平衡时间和晃动程度。有趣的是,用含有二硫键的胱胺以碳二亚胺化学法对囊泡进行化学交联,可以得到界面交联的囊泡。通过稀释﹑加入有机溶剂﹑改变盐浓度和改变溶液温度的方法,证实了交联后囊泡的稳定性可以显著增加。而在模拟细胞内的还原环境时,交联会因胱胺的二硫键断裂而快速降解,聚合物囊泡溶解。FITC-葡聚糖作为模拟蛋白质,能被高效地包裹到囊泡内。通过体外释放研究,即使温度降到LCST以下(如20oC),大部分FITC-葡聚糖仍保留在交联的囊泡内。但是,在加入10 mM的二硫苏糖醇时,大部分FITC-葡聚糖从已解除交联的囊泡中释放出来。这些可逆交联温度敏感的囊泡也许可以作为智能型载体,应用于生物药剂的细胞内刺激释放,例如有效控释pDNA,siRNA,蛋白质药物。
     (2)三嵌段聚合物PEG-PAA-PNIPAM的LCST受嵌段的比例、盐浓度、溶液pH的影响,可在28oC至50oC之间调节。通过设计合适的嵌段比例,使嵌段聚合物的LCST在PBS中可从38oC至43oC之间,目的是使上述聚合物囊泡能在解交联后在体温下溶解,从而释放出其包裹的药物。为此设计得到了PEG113-PAA9-PNIPAM107,PEG113-PAA24-PNIAPM193,和PEG113-PAA35-PNIPAM290。它们的LCST均在38-42oC之间。FITC-BSA作为模拟蛋白质,能被高效地包裹到该囊泡内。该界面交联的温度敏感的聚合物囊泡对其他研究的蛋白质(如细胞色素C,溶菌酶,卵清白蛋白和免疫球蛋白)的包裹效率略低,但也在35-50%,载药率为4-50wt.%。通过体外释放研究(37oC),在加入10 mM的二硫苏糖醇时,大部分蛋白质(80%)从交联的囊泡中释放出来。而没有加入10 mM二硫苏糖醇时,大部分蛋白质(80-85%)在8小时后能仍保留在囊泡内。体外细胞实验结果说明,这种蛋白质载体能有效将蛋白质运输到细胞内。所以,这些可逆交联温度敏感的囊泡可能克服现有技术的缺陷,提高囊泡对小分子药物、大分子药物以及探针分子的包载效率,提高囊泡在体内血液中循环的稳定性,提高囊泡被肿瘤细胞内吞的效率,从而提高药物的生物利用度。
Polymersomes have attracted significant attentions for biomedical applications and drug delivery systems. In this thesis, we have synthesized a series of well defined block copolymer of PEG-PAA-PNIPAM, studied their thermal sensitivity during the formation of the polymersomes and the reversible crosslinking, and explored the encapsulation of the proteins into the polymersomes and the intracellular release of the proteins.
     (1) Water-soluble temperature responsive triblock copolymers, poly(ethylene oxide)-b-poly(acrylic acid)-b-poly(N-isopropylacrylamide) (PEO-PAA-PNIPAM), were prepared in one pot by sequential reversible addition–fragmentation chain-transfer (RAFT) polymerization using a PEO-trithiocarbonate (PEO-S-1-dodecyl-S-(R,R- dimethyl-R-aceticacid) trithiocarbonate) as a macro chain transfer agent. The block copolymers have Mn PEO of 5 kDa, Mn PAA of 0.35-1.45 kDa, and Mn PNIPAM varying from 11-39 kDa. They were freely soluble in water as unimers at room temperature, but quickly self-assembled into nano-sized vesicles (about 220 nm) when raising the solution temperature to 37 oC. The vesicular structure was confirmed by confocal scanning laser microscope (CSLM) and static light scattering (SLS) measurements. The size and size distribution of the polymersomes depended on solution concentration, molecular weight of PNIPAM, the equilibrium time and shaking. Interestingly, thus formed vesicles could be readily cross-linked at the interface using cysteamine via the carbodiimide chemistry. The crosslinked polymersomes, while showed remarkable stability against dilution, organic solvent, high salt conditions and change of temperature in water, were otherwise rapidly dissociated under reductive conditions mimicking intracellular environment. Notably, FITC-dextran were shown to be encapsulated into the polymersomes with an unprecedently high loading efficiency. The release studies showed that most FITC-dextran was retained within the crosslinked polymersomes after lowering the temperature to 20°C. However, in the presence of 10 mM dithiothreitol (DTT), fast release of FITC-dextran was achieved. These reversibly crosslinked temperature responsive nano-sized polymersomes are highly promising as smart carriers for triggered intracellular delivery of biopharmaceutics such as pDNA, siRNA, pharmaceutical proteins and peptides.
     (2) The LCST of the above mentioned triblock copolymer PEO-PAA-PNIPAM can be adjusted from 28 oC to 50 oC by changing the block ratio, salt concentration, and pH. We designed copolymers with suitable proportion, in order to have their LCST in between 38 oC and 43 oC, so that after de-crosslinking the copolymer can dissolve in PBS molecularly. Notably, FITC-BSA was efficiently encapsulated into the polymersomes. For other proteins studied here, they all were encapsulated into the polymersomes with loading efficiency of 35-50%, and loading content of 4-50 wt.%. In vitro release studies showed that (37 o C in PB), in the presence of 10 mM dithiothreitol (DTT), fast release of FITC-BSA (80 % released within 7-8 hr) was achieved. However, without 10 mM DTT, most of the protein (80-85%) remains within the polymersomes after 8 hr. Cell experiments demonstrated that the proteins can effectively be transported into the cells. Thus these reversible cross-linked temperature-sensitive polymersomes can overcome the shortcomings of existing technologies, which can enhance loading efficiency of small molecule drugs, macromolecular drugs and probe molecule, enhance stability of polymersomes in the blood circulation, and enhance the endocytosis efficiency, so it can increase the bioavailability.
引文
[1] R.O. Cook, R.K. Pannu, I.W. Kellaway, Novel sustained release microspheres for pulmonary drug delivery. Journal of Controlled Release 104(1) (2005) 79-90.
    [2] E. Chambers, S. Mitragotri, Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. Journal of Controlled Release 100(1) (2004) 111-119.
    [3] H.F. Liang, T.F. Yang, C.T. Huang, M.C. Chen, H.W. Sung, Preparation of nanoparticles composed of poly([gamma]-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. Journal of Controlled Release 105(3) (2005) 213-225.
    [4] E. Garcia-Garcia, K. Andrieux, S. Gil, P. Couvreur, Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain International Journal of Pharmaceutics 298(2) (2005) 274-292.
    [5] E.S. Kawasaki, A. Player, Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: Nanotechnology, Biology andMedicine 1(2) (2005) 101-109.
    [6] C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, P. Couvreur, Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. Journal of Controlled Release 93(2) (2003) 151-160.
    [7] L. Zhang, Y. Hu, X. Jiang, C. Yang, W. Lu, Y.H. Yang, Camptothecin derivative- loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lacti- de) nanoparticles and their biodistribution in mice. Journal of Controlled Release 96(1) (2004) 135-148.
    [8] T.D. Dziubla, A. Karim, V.R. Muzykantov, Polymer nanocarriers protecting active enzyme cargo against proteolysis. Journal of Controlled Release 102(2) (2005) 427-439.
    [9] A. Gabizon, D. Goren, A.T. Horowitz, D. Tzemach, A. Lossos, T. Siegal, Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Advanced Drug Delivery Reviews 24(2-3) (1997) 337-344.
    [10] D. Needham, M.W. Dewhirst, The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Advanced Drug Delivery Reviews 53(3) (2001) 285-305.
    [11] B.C. Keller, Liposomes in nutrition. Trends in Food Science & Technology 12(1) (2001) 25-31.
    [12] M.J. Alonso, Nanomedicines for overcoming biological barriers. Biomedicine & Pharmacotherapy 58(3) (2004) 168-172.
    [13] A.N. Lukyanov, V.P. Torchilin, Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Advanced Drug Delivery Reviews 56(9) (2004) 1273-1289.
    [14] V.P. Torchilin, A.N. Lukyanov, Z.G. Gao, B. Papahadjopoulos-Sternberg, Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proceedings of the National Academy of Sciences of the United States of America 100(10) (2003) 6039-6044.
    [15] M.H. Li, P. Keller, Stimuli-responsive polymer vesicles. Soft Matter 5(5) (2009)927-937.
    [16] D.H. Levine, P.P. Ghoroghchian, J. Freudenberg, G. Zhang, M.J. Therien, M.I. Greene, D.A. Hammer, R. Murali, Polymersomes: A new multi-functional tool for cancer diagnosis and therapy. Methods 46(1) (2008) 25-32.
    [17] F. Meng, Z. Zhong, J. Feijen, Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 10(2) (2009) 197-209.
    [18] F. Ahmed, R.I. Pakunlu, A. Brannan, F. Bates, T. Minko, D.E. Discher, Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. Journal of Controlled Release 116(2) (2006) 150-158.
    [19] B.B. Li, JoEllen Welsh, and Andre F. Palmer*, Self-Assembled Poly(butadiene)-b-Poly(ethylene oxide) Polymersomes as Paclitaxel Carriers. Biotechnol Prog. 23(1) (2007 ) 278-285.
    [20] F. Ahmed, D.E. Discher, Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. Journal of Controlled Release 96(1) (2004) 37-53.
    [21] H. Lomas, I. Canton, S. MacNeil, J. Du, S. Armes, A. Ryan, A. Lewis, G. Battaglia, Biomimetic pH Sensitive Polymersomes for Efficient DNA Encapsulation and Delivery. Advanced Materials 19(23) (2007) 4238-4243.
    [22] H. Iatrou, H. Frielinghaus, S. Hanski, N. Ferderigos, J. Ruokolainen, O. Ikkala, D. Richter, J. Mays, N. Hadjichristidis, Architecturally Induced Multiresponsive Vesicles from Well-Defined Polypeptides. Formation of Gene Vehicles. Biomacromolecules 8(7) (2007) 2173-2181.
    [23] N.A. Christian, M.C. Milone, S.S. Ranka, G. Li, P.R. Frail, K.P. Davis, F.S. Bates, M.J. Therien, P.P. Ghoroghchian, C.H. June, D.A. Hammer, Tat-Functionalized Near-Infrared Emissive Polymersomes for Dendritic Cell Labeling. Bioconjugate Chemistry 18(1) (2006) 31-40.
    [24] P.P. Ghoroghchian, J.J. Lin, A.K. Brannan, P.R. Frail, F.S. Bates, M.J. Therien, D.A. Hammer, Quantitative membrane loading of polymer vesicles. Soft Matter 2(11) (2006) 973-980.
    [25] A. Kishimura, A. Koide, K. Osada, Y. Yamasaki, K. Kataoka, Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block lonomers: A physiologically available oxygen carrier. Angewandte Chemie-International Edition 46(32) (2007) 6085-6088.
    [26] L. Alina, H. Stephan, R. Anja, N. Andreas, S. Rolf, F. Stephan, M. Christian, Molecular Exchange through Membranes of Poly(2-vinylpyridine-block-ethylene oxide) Vesicles. Small 3(6) (2007) 1074-1083.
    [27] J. Wu, A. Eisenberg, Proton Diffusion across Membranes of Vesicles of Poly(styrene-b-acrylic Acid) Diblock Copolymers. Journal of the American Chemical Society 128(9) (2006) 2880-2884.
    [28] Y. Zhou, D. Yan, Real-Time Membrane Fusion of Giant Polymer Vesicles. Journal of the American Chemical Society 127(30) (2005) 10468-10469.
    [29] Z. Yongfeng, Y. Deyue, Real-Time Membrane Fission of Giant Polymer Vesicles. Angewandte Chemie International Edition 44(21) (2005) 3223-3226.
    [30] C. Nardin, J. Widmer, M. Winterhalter, W. Meier, Amphiphilic block copolymer nanocontainers as bioreactors. European Physical Journal E 4(4) (2001) 403-410.
    [31] M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences of the United States of America 104(52) (2007) 20719-20724.
    [32] H.J. Choi, H. Lee, C.D. Montemagno, Toward hybrid proteo-polymeric vesicles generating a photoinduced proton gradient for biofuel cells. Nanotechnology 16(9) (2005) 1589-1597.
    [33] M. Antonietti, S. Forster, Vesicles and liposomes: A self-assembly principle beyond lipids. Advanced Materials 15(16) (2003) 1323-1333.
    [34] B.M. Discher, Y.Y. Won, D.S. Ege, J.C.M. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymersomes: Tough vesicles made from diblock copolymers. SCIENCE 284(5417) (1999) 1143-1146.
    [35] F.H. Meng, C. Hiemstra, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes. Macromolecules 36(9) (2003) 3004-3006.
    [36] P.P. Ghoroghchian, G. Li, D.H. Levine, K.P. Davis, F.S. Bates, D.A. Hammer, M.J. Therien, Bioresorbable Vesicles Formed through Spontaneous Self-Assembly of Amphiphilic Poly(ethylene oxide)-block-polycaprolactone. Macromolecules 39(5) (2006) 1673-1675.
    [37] S. Qin, Y. Geng, D. Discher, S. Yang, Temperature-Controlled Assembly and Release from Polymer Vesicles of Poly(ethylene oxide)- block- poly(N-isopropylacrylamide). Advanced Materials 18(21) (2006) 2905-2909.
    [38] U. Borchert, U. Lipprandt, M. Bilang, A. Kimpfler, A. Rank, R. Peschka-Suss, R. Schubert, P. Lindner, S. Forster, pH-induced release from P2VP-PEO block copolymer vesicles. Langmuir 22(13) (2006) 5843-5847.
    [39] F. Checot, S. Lecommandoux, H.A. Klok, Y. Gnanou, From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly(diene-b-peptide) diblock copolymers. European Physical Journal E 10(1) (2003) 25-35.
    [40] A. Napoli, M.J. Boerakker, N. Tirelli, R.J.M. Nolte, N.A.J.M. Sommerdijk, J.A. Hubbell, Glucose-oxidase Based Self-Destructing Polymeric Vesicles. Langmuir 20(9) (2004) 3487-3491.
    [41] H.J. Lee, S.R. Yang, E.J. An, J.D. Kim, Biodegradable Polymersomes from Poly(2-hydroxyethyl aspartamide) Grafted with Lactic Acid Oligomers in Aqueous Solution. Macromolecules 39(15) (2006) 4938-4940.
    [42] S. Zengqian, Z. Yongfeng, Y. Deyue, Facile Fabrication of pH-Responsive and Size-Controllable Polymer Vesicles From a Commercially Available Hyperbranched Polyester. Macromolecular Rapid Communications 29(5) (2008) 412-418.
    [43] Y.Y. Won, A.K. Brannan, H.T. Davis, F.S. Bates, Cryogenic transmission electron microscopy (cryo-TEM) of micelles and vesicles formed in water by polyethylene oxide)-based block copolymers. Journal of Physical Chemistry B 106(13) (2002) 3354-3364.
    [44] H. Kukula, H. Schlaad, M. Antonietti, S. Forster, The Formation of Polymer Vesicles or eptosomes by Polybutadiene-block-poly(l-glutamate)s in Dilute Aqueous Solution. Journal of the American Chemical Society 124(8) (2002) 1658-1663.
    [45] H. Shen, A. Eisenberg, Block Length Dependence of Morphological Phase Diagrams of the Ternary System of PS-b-PAA/Dioxane/H2O. Macromolecules 33(7) (2000) 2561-2572.
    [46] C. Nardin, T. Hirt, J. Leukel, W. Meier, Polymerized ABA Triblock Copolymer Vesicles. Langmuir 16(3) (1999) 1035-1041.
    [47] F. Papahadjopoulos, Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc.Natl. Acad. Sci. USA(75) (1978) 4197.
    [48] G. Gregoriadis, J. Senior, Targeting of small unilamellar liposomes to the galatose receptor invivo. Biochemical Society Transactions 12(2) (1984) 337-339.
    [49] M. Dimitrov, Liposome electroformation. Faraday Discuss. Chem. Soc. (81) (1986) 303-311.
    [50] S. Pautot, B.J. Frisken, D.A. Weitz, Production of Unilamellar Vesicles Using an Inverted Emulsion. Langmuir 19(7) (2003) 2870-2879.
    [51] F. Meng, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. Journal of Controlled Release 101(1-3) (2005) 187-198.
    [52] A. Choucair, P. Lim Soo, A. Eisenberg, Active Loading and Tunable Release of Doxorubicin from Block Copolymer Vesicles. Langmuir 21(20) (2005) 9308-9313.
    [53] H. Stephan, L. Ute, R. Anja, B. Uwe, R. Anja, S. Rolf, F. Stephan, Direct Preparation and Loading of Lipid and Polymer Vesicles Using Inkjets13. Small 1(12) (2005) 1177-1180.
    [54] P.P. Ghoroghchian, P.R. Frail, G. Li, J.A. Zupancich, F.S. Bates, D.A. Hammer, M.J. Therien, Controlling Bulk Optical Properties of Emissive Polymersomes through Intramembranous Polymer luorophore Interactions. Chemistry of Materials 19(6) (2007) 1309-1318.
    [55] J.S. Katz, D.H. Levine, K.P. Davis, F.S. Bates, D.A. Hammer, J.A. Burdick, Membrane Stabilization of Biodegradable Polymersomes. Langmuir 25(8) (2009) 4429-4434.
    [56] M. Hales, C. Barner-Kowollik, T.P. Davis, M.H. Stenzel, Shell-Cross-LinkedVesicles Synthesized from Block Copolymers of Poly(d,l-lactide) and Poly(N-isopropyl acrylamide) as Thermoresponsive Nanocontainers. Langmuir 20(25) (2004) 10809-10817.
    [57] X.B. Chen, Z. H. Zheng, Y. X. Peng, Thermosensitive cross-linked polymer vesicles for controlled release system. New J. Chem(30) (2006) 577-582.
    [58] Y. Li, A.E. Smith, B.S. Lokitz, C.L. McCormick, In Situ Formation of Gold-ecorated Vesicles from a RAFT-Synthesized, Thermally Responsive Block Copolymer. Macromolecules 40(24) (2007) 8524-8526.
    [59] J. Du, S.P. Armes, pH-Responsive Vesicles Based on a Hydrolytically Self-Cross-Linkable Copolymer. Journal of the American Chemical Society 127(37) (2005) 12800-12801.
    [60] Y. Li, B.S. Lokitz, C.L. McCormick, Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation. Angewandte Chemie-International Edition 45(35) (2006) 5792-5795.
    [61] W. Chen, F. Meng, R. Cheng, Z. Zhong, pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release 142(1) 40-46.
    [62] A. Blanazs, S.P. Armes, A.J. Ryan, Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromolecular Rapid Communications 30(4-5) (2009) 267-277.
    [63] D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 58(15) (2006) 1655-1670.
    [64] M. Grabe, G. Oster, Regulation of organelle acidity. Journal of General Physiology 117(4) (2001) 329-343.
    [65] P. Watson, A.T. Jones, D.J. Stephens, Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Advanced Drug Delivery Reviews 57(1) (2005) 43-61.
    [66] P. Vaupel, F. Kallinowski, P. Okunieff, Blood-flow,oxygen and nutrient supply,and metabolic microenvironment of human-tumors-a review. Cancer Research 49(23) (1989) 6449-6465.
    [67] Y. Bae, N. Nishiyama, K. Kataoka, In Vivo Antitumor Activity of theFolate-Conjugated pH-Sensitive Polymeric Micelle Selectively Releasing Adriamycin in the Intracellular Acidic Compartments. Bioconjugate Chemistry 18(4) (2007) 1131-1139.
    [68] S.M. Lee, H. Chen, C.M. Dettmer, T.V. O'Halloran, S.T. Nguyen, Polymer- Caged Lipsomes:A pH-Responsive Delivery System with High Stability. Journal of the American Chemical Society 129(49) (2007) 15096-15097.
    [69] G.B. Sukhorukov, A.L. Rogach, M. Garstka, S. Springer, W.J. Parak, A. Munoz-Javier, O. Kreft, A.G. Skirtach, A.S. Susha, Y. Ramaye, R. Palankar, M. Winterhalter, Multifunctionalized polymer microcapsules: Novel tools for biological and pharmacological applications. Small 3(6) (2007) 944-955.
    [70] K.P. Zhang, Y.L. Luo, Z.Q. Li, Synthesis and characterization of a pH- and ionic strength-responsive hydrogel. Soft Materials 5(4) (2007) 183-195.
    [71] K. Na, E.S. Lee, Y.H. Bae, Self-Organized Nanogels Responding to Tumor Extracellular pH:pH-Dependent Drug Release and in Vitro Cytotoxicity against MCF-7 Cells. Bioconjugate Chemistry 18(5) (2007) 1568-1574.
    [72] H. Devalapally, D. Shenoy, S. Little, R. Langer, M. Amiji, Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemotherapy and Pharmacology 59(4) (2007) 477-484.
    [73] N. Rapoport, Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science 32(8-9) 962-990.
    [74] C.J.F. Rijcken, O. Soga, W.E. Hennink, C.F.v. Nostrum, Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. Journal of Controlled Release 120(3) (2007) 131-148.
    [75] J. Rodriguez-Hernandez, S. Lecommandoux, Reversible Insideut Micellization of pH-responsive and Water-Soluble Vesicles Based on Polypeptide Diblock Copolymers. Journal of the American Chemical Society 127(7) (2005) 2026-2027.
    [76] J. Du, Y. Tang, A.L. Lewis, S.P. Armes, pH-Sensitive Vesicles Based on a Biocompatible Zwitterionic Diblock Copolymer. Journal of the AmericanChemical Society 127(51) (2005) 17982-17983.
    [77] H.D. Han, B.C. Shin, H.S. Choi, Doxorubicin-encapsulated thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-acrylamide): Drug release behavior and stability in the presence of serum. European Journal of Pharmaceutics and Biopharmaceutics 62(1) (2006) 110-116.
    [78] H. Wei, X.Z. Zhang, W.Q. Chen, S.X. Cheng, R.X. Zhuo, Self-assembled thermosensitive micelles based on Poly(L-lactide-star block-N-isopropylacryl-amide) for drug delivery. Journal of Biomedical Materials Research Part A 83A (2007) 980-989.
    [79] Y.F. Zhou, D.Y. Yan, W.Y. Dong, Y. Tian, Temperature-responsive phase transition of polymer vesicles: Real-time morphology observation and molecular mechanism. Journal of Physical Chemistry B 111(6) (2007) 1262-1270.
    [80] A.-C. CouffinHoarau, J.C. Leroux, Report on the Use of Poly(organopho- sphazenes) for the Design of Stimuli-Responsive Vesicles. Biomacromolecules 5(6) (2004) 2082-2087.
    [81] C. Lin, Z. Zhong, M.C. Lok, X. Jiang, W.E. Hennink, J. Feijen, J.F.J. Engbersen, Novel Bioreducible Poly(amido amine)s for Highly Efficient Gene Delivery. Bioconjugate Chemistry 18(1) (2006) 138-145.
    [82] S. Cerritelli, D. Velluto, J.A. Hubbell, PEG-SS-PPS: Reduction-Sensitive Disulfide Block Copolymer Vesicles for Intracellular Drug Delivery. Biomacromolecules 8(6) (2007) 1966-1972.
    [83] X. Tong, G. Wang, A. Soldera, Y. Zhao, How can azobenzene block copolymer vesicles be dissociated and reformed by light? J. Phys. Chem. B 109(43) (2005) 20281-20287.
    [84] Y. Jiang, Y. Wang, N. Ma, Z. Wang, M. Smet, X. Zhang, Reversible Self-Organization of a UV-Responsive PEG-Terminated Malachite Green Derivative: Vesicle Formation and Photoinduced Disassembly. Langmuir 23(7) (2007) 4029-4034.
    [85] D.L. J. Yang, W. Deng, P. Keller and M.H. Li, Polymer vesicles formed by amphiphilic diblock copolymers containing a thermotropic liquid crystallinepolymer block Chemical Communications(1) (2005) 43-45.
    [86] J. Yang, R. Piol, F. Gubellini, D. Lvy, P.A. Albouy, P. Keller, M.H. Li, Formation of Polymer Vesicles by Liquid Crystal Amphiphilic Block Copolymers. Langmuir 22(18) (2006) 7907-7911.
    [87] D.L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, B.R. Ratna, Liquid Crystal Elastomers with Mechanical Properties of a Muscle. Macromolecules 34(17) (2001) 5868-5875.
    [88] M.H. Li, P. Auroy, P. Keller, An azobenzene-containing side-on liquid crystal polymer. Liquid Crystals 27(11) (2000) 1497-1502.
    [89] J.J. Lin, P.P. Ghoroghchian, Y. Zhang, D.A. Hammer, Adhesion of Antibody-Functionalized Polymersomes. Langmuir 22(9) (2006) 3975-3979.
    [90] L. You, H. Schlaad, An Easy Way to Sugar-Containing Polymer Vesicles or Glycosomes. Journal of the American Chemical Society 128(41) (2006) 13336-13337.
    [91] C. Houga, J.F. Le Meins, R. Borsali, D. Taton, Y. Gnanou, Synthesis of ATRP-induced dextran-b-polystyrene diblock copolymers and preliminary investigation of their self-assembly in water. Chemical Communications (2007) 3063-3065.
    [92] R. Langer, N.A. Peppas, Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49 (2003) 2990-3006.
    [93] M.A. Moses, H. Brem, R. Langer, Advancing the field of drug delivery: Taking aim at cancer. Cancer Cell 4(5) (2003) 337-341.
    [94] D.E. Discher, F. Ahmed, POLYMERSOMES. Annual Review of Biomedical Engineering 8(1) (2006) 323-341.
    [95] J.K. Vasir, M.K. Reddy, V.D. Labhasetwar, Nanosystems in drug targeting: opportunities and challenges. Current Nanoscience 1(1) (2005) 47-64.
    [96] D. Oupicky, R.C. Carlisle, L.W. Seymour, Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo. Gene Therapy 8(9) (2001) 713-724.
    [97] L. Brannon-Peppas, B. Ghosn, K. Roy, K. Cornetta, Encapsulation of nucleic acids and opportunities for cancer treatment. Pharmaceutical Research 24(4) (2007)618-627.
    [98] L. Jean-Franis, Polymerization of oligo(ethylene glycol)(meth) acrylates: Toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry 46(11) (2008) 3459-3470.
    [99] A. Kroeger, X.F. Li, A. Eisenberg, Dendrimer-influenced supramolecular structure formation of block copolymers. Langmuir 23 (2007) 10732-10740.
    [100] W. Chen, F.H. Meng, F. Li, S.J. Ji, Z.Y. Zhong, pH-Responsive Biodegradable Micelles Based on Acid-Labile Polycarbonate Hydrophobe: Synthesis and Triggered Drug Release. Biomacromolecules 10(7) (2009) 1727-1735.
    [101] P. Broz, N. Ben-Haim, M. Grzelakowski, S. Marsch, W. Meier, P. Hunziker, Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. Journal of Cardiovascular Pharmacology 51(3) (2008) 246-252.
    [102] U.S. Sharma, S.V. Balasubramanian, R.M. Straubinger, Pharmaceutical and physical-properties of paclitaxel (taxol) complexes with cyclodextrins. Journal of Pharmaceutical Sciences 84(10) (1995) 1223-1230.
    [103] R.B. Weiss, R.C. Donehower, P.H. Wiernik, T. Ohnuma, R.J. Gralla, D.L. Trump, J.R. Baker, D.A. Vanecho, D.D. Vonhoff, B. Leylandjones, Hypersensitivity reactions from taxol. Journal of Clinical Oncology 8(7) (1990) 1263-1268.
    [104] M. Ramaswamy, X.C. Zhang, H.M. Burt, K.M. Wasan, Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers. Journal of Pharmaceutical Sciences 86(4) (1997) 460-464.
    [105] G. Ruan, S.S. Feng, Preparation and characterization of poly (lactic acid)- poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 24(27) (2003) 5037-5044.
    [106] R.T. Liggins, H.M. Burt, Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Advanced Drug Delivery Reviews 54(2) (2002) 191-202.
    [107] S. Cheon Lee, C. Kim, I. Chan Kwon, H. Chung, S. Young Jeong, Polymericmicelles of poly(2-ethyl-2-oxazoline)-block-poly([var epsilon]-caprolactone) copolymer as a carrier for paclitaxel. Journal of Controlled Release 89(3) (2003) 437-446.
    [108] M.Y. Hamaguchi T, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe . NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92(7) (2005) 1240-1246.
    [109] H.M.B. X. C. Zhang, D. VonHoff, D. Dexter, G. Mangold, D.Degen, A. M. Oktaba, W. L. Hunter, In vivo efficacy of paclitaxel-loaded thermosensitive biodegradable polymeric micelles. Cancer .Chemoth. Pharm (40) (1997) 81.
    [110] S.L. Li, B. Byrne, J. Welsh, A.F. Palmer, Self-assembled poly(butadiene)-b- poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnology Progress 23 (2007) 278-285.
    [111] A. Wittemann, T. Azzam, A. Eisenberg, Biocompatible Polymer Vesicles from Biamphiphilic Triblock Copolymers and Their Interaction with Bovine Serum Albumin. Langmuir 23(4) (2007) 2224-2230.
    [112] H. Oana, A. Kishimura, K. Yonehara, Y. Yamasaki, M. Washizu, K. Kataoka, Spontaneous Formation of Giant Unilamellar Vesicles from Microdroplets of a Polyion Complex by Thermally Induced Phase Separation. Angewandte Chemie-International Edition 48(25) (2009) 4613-4616.
    [113] S. Rameez, H. Alosta, A.F. Palmer, Biocompatible and Biodegradable Polymersome Encapsulated Hemoglobin: A Potential Oxygen Carrier. Bioconjugate Chemistry 19(5) (2008) 1025-1032.
    [114] D. Demirgoz, T.O. Pangburn, K.P. Davis, S. Lee, F.S. Bates, E. Kokkoli, PR_b-targeted delivery of tumor necrosis factor-alpha by polymersomes for the treatment of prostate cancer. Soft Matter 5(10) (2009) 2011-2019.
    [115] O. Onaca, M. Nallani, S. Ihle, A. Schenk, U. Schwaneberg, Functionalized nanocompartments (Synthosomes): Limitations and prospective applications in industrial biotechnology. Biotechnology Journal 1(7-8) (2006) 795-805.
    [116] A. Ranquin, W. Versees, W. Meier, J. Steyaert, P. Van Gelder, TherapeuticNanoreactors: Combining Chemistry and Biology in a Novel Triblock Copolymer Drug Delivery System. Nano Letters 5(11) (2005) 2220-2224.
    [117] R. Koebnik, K.P. Locher, P. Van Gelder, Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular Microbiology 37(2) (2000) 239-253.
    [118] C. Nardin, S. Thoeni, J. Widmer, M. Winterhalter, W. Meier, Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chemical Communications (15) (2000) 1433-1434.
    [119] M. Nallani, S. Benito, O. Onaca, A. Graff, M. Lindemann, M. Winterhalter, W. Meier, U. Schwaneberg, A nanocompartment system (Synthosome) designed for biotechnological applications. Journal of Biotechnology 123(1) (2006) 50-59.
    [120] M.M. Hannah Lomas, Khairuddin A. Abdullah, Irene Canton, Caterina Lo Presti, Sheila MacNeil, Jianzhong Du, Adam Blanazs, Jeppe Madsen, Steven P. Armes, Andrew L. Lewis and Giuseppe Battaglia, Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss. Chem. Soc.(139) (2008) 143-159.
    [1] B.M. Discher, Y.Y. Won, D.S. Ege, J.C.M. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymersomes: Tough vesicles made from diblock copolymers. SCIENCE 284(5417) (1999) 1143-1146.
    [2] D.E. Discher, F. Ahmed, Polymersomes. Annual Review of Biomedical Engin- eering 8 (2006) 323-341.
    [3] J.A. Opsteen, J. Cornelissen, J.C.M. van Hest, Block copolymer vesicles. Pure and Applied Chemistry 76(7-8) (2004) 1309-1319.
    [4] Y.F. Zhou, D.Y. Yan, Real-time membrane fission of giant polymer vesicles. Angewandte Chemie-International Edition 44(21) (2005) 3223-3226.
    [5] Y.F. Zhou, D.Y. Yan, Real-time membrane fusion of giant polymer vesicles. Journal of the American Chemical Society 127(30) (2005) 10468-10469.
    [6] D.E. Discher, A. Eisenberg, Polymer vesicles. Science 297(5583) (2002) 967-973.
    [7] F.H. Meng, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. Journal of Controlled Release 101(1-3) (2005) 187-198.
    [8] D.E. Discher, V. Ortiz, G. Srinivas, M.L. Klein, Y. Kim, C.A. David, S.S. Cai, P. Photos, F. Ahmed, Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Progress in Polymer Science 32 (2007) 838-857.
    [9] F. Meng, Z. Zhong, J. Feijen, Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 10(2) (2009) 197-209.
    [10] S.H. Qin, Y. Geng, D.E. Discher, S. Yang, Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacryl amide). Advanced Materials 18(21) (2006) 2905-2908.
    [11] F.H. Meng, C. Hiemstra, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes. Macromolecules 36(9) (2003) 3004-3006.
    [12] A. Napoli, M. Valentini, N. Tirelli, M. Muller, J.A. Hubbell, Oxidation- responsive polymeric vesicles. Nature Materials 3(3) (2004) 183-189.
    [13] C. Nardin, T. Hirt, J. Leukel, W. Meier, Polymerized ABA triblock copolymer vesicles. Langmuir 16(3) (2000) 1035-1041.
    [14] H.J. Dou, M. Jiang, H.S. Peng, D.Y. Chen, Y. Hong, pH-dependent self-assembly: Micellization and micelle-hollow-sphere transition of cellulose-based copolymers. Angewandte Chemie-International Edition 42(13) (2003) 1516-1519.
    [15] H.J. Lee, S.R. Yang, E.J. An, J.D. Kim, Biodegradable polymersomes from poly(2-hydroxyethyl aspartamide) grafted with lactic acid oligomers in aqueous solution. Macromolecules 39(15) (2006) 4938-4940.
    [16] M. Yang, W. Wang, F. Yuan, X.W. Zhang, J.Y. Li, F.X. Liang, B.L. He, B. Minch, G. Wegner, Soft vesicles formed by diblock codendrimers of poly(benzyl ether) and poly(methallyl dichloride). Journal of the American Chemical Society 127(43) (2005) 15107-15111.
    [17] B.M. Discher, Y.Y. Won, J.C.M. Lee, H. Bermudez, F.S. Bates, D.A. Hammer, D.E. Discher, Robust solid giant vesicles capable of encapsulation. BiophysicalJournal 78(1) (2000) 1950Pos.
    [18] F. Ahmed, R.I. Pakunlu, A. Brannan, F. Bates, T. Minko, D.E. Discher, Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. Journal of Controlled Release 116(2) (2006) 150-158.
    [19] P.P. Ghoroghchian, P.R. Frail, K. Susumu, D. Blessington, A.K. Brannan, F.S. Bates, B. Chance, D.A. Hammer, M.J. Therien, Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proceedings of the National Academy of Sciences of the United States of America 102(8) (2005) 2922-2927.
    [20] H. Lomas, I. Canton, S. MacNeil, J. Du, S.P. Armes, A.J. Ryan, A.L. Lewis, G. Battaglia, Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Advanced Materials 19(23) (2007) 4238-4241.
    [21] U. Borchert, U. Lipprandt, M. Bilang, A. Kimpfler, A. Rank, R. Peschka-Suss, R. Schubert, P. Lindner, S. Forster, pH-induced release from P2VP-PEO block copolymer vesicles. Langmuir 22(13) (2006) 5843-5847.
    [22] S. Cerritelli, D. Velluto, J.A. Hubbell, PEG-SS-PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 8(6) (2007) 1966-1972.
    [23] J.Z. Du, S.P. Armes, pH-responsive vesicles based on a hydrolytically self-cross-linkable copolymer. Journal of the American Chemical Society 127(37) (2005) 12800-12801.
    [24] J.Z. Du, Y.P. Tang, A.L. Lewis, S.P. Armes, pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. Journal of the American Chemical Society 127(51) (2005) 17982-17983.
    [25] H. Kukula, H. Schlaad, M. Antonietti, S. Forster, The formation of polymer aqueous solution. Journal of the American Chemical Society 124(8) (2002) 1658-1663.
    [26] C.J.F. Rijcken, J.W. Hofinan, F. van Zeeland, W.E. Hennink, C.F. Van Nostrum, Photo sensitiser-loaded biodegradable polymeric micelles: Preparation,characterisation and in vitro PDT efficacy. Journal of Controlled Release 124(3) (2007) 144-153.
    [27] Y.F. Zhou, D.Y. Yan, W.Y. Dong, Y. Tian, Temperature-responsive phase transition of polymer vesicles: Real-time morphology observation and molecular mechanism. Journal of Physical Chemistry B 111(6) (2007) 1262-1270.
    [28] Y. Li, B.S. Lokitz, C.L. McCormick, Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation. Angewandte Chemie-International Edition 45(35) (2006) 5792-5795.
    [29] X.R. Chen, X.B. Ding, Z.H. Zheng, Y.X. Peng, Thermosensitive cross-linked polymer vesicles for controlled release system. New Journal of Chemistry 30(4) (2006) 577-582.
    [30] B.M. Discher, H. Bermudez, D.A. Hammer, D.E. Discher, Y.Y. Won, F.S. Bates, Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. Journal of Physical Chemistry B 106(11) (2002) 2848-2854.
    [31] M. Hales, C. Barner-Kowollik, T.P. Davis, M.H. Stenzel, Shell-cross-linked vesicles synthesized from block copolymers of poly(D,L-lactide) and poly (N-isopropyl acrylamide) as thermoresponsive nanocontainers. Langmuir 20(25) (2004) 10809-10817.
    [32] F.H. Meng, W.E. Hennink, Z. Zhong, Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30(12) (2009) 2180-2198.
    [33] E.P. Feener, W.C. Shen, H.J.P. Ryser, Cleavage of disulfide bonds in endocytosed macromolecules a processing not associated with lysosomes or endosomes. Journal of Biological Chemistry 265(31) (1990) 18780-18785.
    [34] G.D. McIntyre, C.F. Scott, J. Ritz, W.A. Blattler, J.M. Lambert, Preparation and characterization of interleukin-2-gelonin conjugates made using different cross-linking reagents. Bioconjugate Chemistry 5(1) (1994) 88-97.
    [35] C. Lin, Z.Y. Zhong, M.C. Lok, X.L. Jiang, W.E. Hennink, J. Feijen, J.F.J. Engbersen, Novel bioreducible poly(amido amine)s for highly efficient gene delivery. Bioconjugate Chemistry 18(1) (2007) 138-145.
    [36] E.S. Read, S.P. Armes, Recent advances in shell cross-linked micelles. ChemicalCommunications(29) (2007) 3021-3035.
    [37] B.S. Lokitz, S.P. Armes, C.L. McCormick, Synthesis of Reversible Shell Cross-Linked Micelles for Controlled Release of Bioactive Agentsg. Macromolecules 39(8) (2006) 2726-2728.
    [38] D.L. Elbert, J.A. Hubbell, Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2(2) (2001) 430-441.
    [39] J.T. Lai, D. Filla, R. Shea, Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35(18) (2002) 6754-6756.
    [40] A. Vora, M.J. Nasrullah, D.C. Webster, Synthesis and characterization of novel epoxy- and oxetane-functional reversible addition-fragmentation chain transfer agents. Macromolecules 40 (2007) 8586-8592.
    [41] A.J. Convertine, N. Ayres, C.W. Scales, A.B. Lowe, C.L. McCormick, Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules 5(4) (2004) 1177-1180.
    [42] Y. Cao, X.X. Zhu, J.T. Luo, H.Y. Liu, Effects of substitution groups on the RAFT polymerization of N-Alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules 40(18) (2007) 6481-6488.
    [43] S. Muthukrishnan, E.H. Pan, M.H. Stenzel, C. Barner-Kowollik, T.P. Davis, D. Lewis, L. Barner, Ambient temperature RAFT polymerization of acrylic acid initiated with ultraviolet radiation in aqueous solution. Macromolecules 40(9) (2007) 2978-2980.
    [44] A. Aqil, C. Detrembleur, B. Gilbert, R. Jerome, C. Jerome, Controlled RAFT synthesis of polyacrylonitrile-b-poly(acrylic acid) diblocks as precursors of carbon nanocapsules with assistance of gold nanoparticles. Chemistry of Materials 19(9) (2007) 2150-2154.
    [45] Y.Z. You, D.S. Manickam, Q.H. Zhou, D. Oupicky, A versatile approach to addition fragmentation chain transfer polymerization. Biomacromolecules 8(6) (2007) 2038-2044.
    [46] Y. Xia, X.C. Yin, N.A.D. Burke, H.D.H. Stover, Thermal response ofnarrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 38(14) (2005) 5937-5943.
    [47] Y. Xia, N.A.D. Burke, H.D.H. Stover, End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39(6) (2006) 2275-2283.
    [48] T. Nie, Y. Zhao, Z.W. Xie, C. Wu, Micellar formation of poly(caprolactone- block-ethylene oxide-block-caprolactone) and its enzymatic biodegradation in aqueous dispersion. Macromolecules 36(23) (2003) 8825-8829.
    [49] C.J.F. Rijcken, T.F.J. Veldhuis, A. Ramzi, J.D. Meeldijk, C.F. van Nostrum, W.E. Hennink, Novel fast degradable thermosensitive polymeric micelles based on PEG-block-poly(N-(2-hydroxyethyl)methacrylamide-oligolactates). Biomacromolecules 6(4) (2005) 2343-2351.
    [1] N. Mizuno, T. Niwa, Y. Yotsumoto, Y. Sugiyama, Impact of drug transporter studies on drug discovery and development. Pharmacological Reviews 55(3) (2003) 425-461.
    [2] H. Harashima, H. Kiwada, Liposomal targeting and drug delivery: Kinetic consideration. Advanced Drug Delivery Reviews 19(3) (1996) 425-444.
    [3] H. Pinto-Alphandary, A. Andremont, P. Couvreur, Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. International Journal of Antimicrobial Agents 13(3) (2000) 155-168.
    [4] D.J.A. Crommelin, G. Storm, W. Jiskoot, R. Stenekes, E. Mastrobattista, W.E. Hennink, Nanotechnological approaches for the delivery of macromolecules.
    Journal of Controlled Release 87(1-3) (2003) 81-88.
    [5] L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews 56(11) (2004) 1649-1659.
    [6] V.P. Torchilin, Multifunctional nanocarriers. Advanced Drug Delivery Reviews 58(14) (2006) 1532-1555.
    [7] O.C. Farokhzad, R. Langer, Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews 58(14) (2006) 1456-1459.
    [8] H.B. James C-M. Lee 1, Bohdana M. Discher *, Maureen A. Sheehan 1, You-Yeon Won 2, Frank S. Bates 2, Dennis E. Discher *, Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnology and Bioengineering 73(2) (2001) 135-145.
    [9] F. Ahmed, R.I. Pakunlu, G. Srinivas, A. Brannan, F. Bates, M.L. Klein, T. Minko, D.E. Discher, Shrinkage of a Rapidly Growing Tumor by Drug-Loaded Polymersomes: pH-Triggered Release through Copolymer Degradation. Molecular Pharmaceutics 3(3) (2006) 340-350.
    [10] A. Wittemann, T. Azzam, A. Eisenberg, Biocompatible Polymer Vesicles from Biamphiphilic Triblock Copolymers and Their Interaction with Bovine Serum Albumin. Langmuir 23(4) (2007) 2224-2230.
    [11] P. Broz, S. Driamov, J. Ziegler, N. Ben-Haim, S. Marsch, W. Meier, P. Hunziker, Toward Intelligent Nanosize Bioreactors: A pH-Switchable, Channel-Equipped, Functional Polymer Nanocontainer. Nano Letters 6(10) (2006) 2349-2353.
    [12] M. Wolfgang, N. Corinne, W. Mathias, Reconstitution of Channel Proteins in (Polymerized) ABA Triblock Copolymer Membranes. Angewandte Chemie International Edition 39(24) (2000) 4599-4602.
    [13] S. Rameez, H. Alosta, A.F. Palmer, Biocompatible and Biodegradable Polymersome Encapsulated Hemoglobin: A Potential Oxygen Carrier. Bioconjugate Chemistry 19(5) (2008) 1025-1032.
    [14] K. Akihiro, K. Aya, O. Kensuke, Y. Yuichi, K. Kazunori, Encapsulation of Myoglobin in PEGylated Polyion Complex Vesicles Made from a Pair of Oppositely Charged Block Ionomers: A Physiologically Available OxygenCarrier13. Angewandte Chemie International Edition 46(32) (2007) 6085-6088.
    [15] Z. Pang, W. Lu, H. Gao, K. Hu, J. Chen, C. Zhang, X. Gao, X. Jiang, C. Zhu, Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. Journal of Controlled Release 128(2) (2008) 120-127.
    [16] D.A. Christian, S. Cai, D.M. Bowen, Y. Kim, J.D. Pajerowski, D.E. Discher, Polymersome carriers: From self-assembly to siRNA and protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics 71(3) (2009) 463-474.
    [17] Y. Geng, D.E. Discher, Hydrolytic Degradation of Poly(ethylene oxide)-block-Polycaprolactone Worm Micelles. Journal of the American Chemical Society 127(37) (2005) 12780-12781.
    [18] S. Qin, Y. Geng, D. Discher, S. Yang, Temperature-Controlled Assembly and Release from Polymer Vesicles of Poly(ethylene oxide)- block- poly(N-isopropylacrylamide). Advanced Materials 18(21) (2006) 2905-2909.
    [19] G. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. Journal of Controlled Release 29(1-2) (1994) 17-23.
    [20] F. Lecomte, J. Siepmann, M. Walther, R.J. MacRae, R. Bodmeier, pH-Sensitive polymer blends used as coating materials to control drug release from spherical beads: Elucidation of the underlying mass transport mechanisms. Pharmaceutical Research 22(7) (2005) 1129-1141.
    [21] F.T. Liu, A. Eisenberg, Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine). Journal of the American Chemical Society 125(49) (2003) 15059-15064.
    [22] W. Chen, F.H. Meng, F. Li, S.J. Ji, Z.Y. Zhong, pH-Responsive Biodegradable Micelles Based on Acid-Labile Polycarbonate Hydrophobe: Synthesis and Triggered Drug Release. Biomacromolecules 10(7) (2009) 1727-1735.
    [23] Y.F. Zhou, D.Y. Yan, W.Y. Dong, Y. Tian, Temperature-responsive phase transition of polymer vesicles: Real-time morphology observation and molecular mechanism. Journal of Physical Chemistry B 111(6) (2007) 1262-1270.
    [24] L. Yuting, S.L. Brad, L.M. Charles, Thermally Responsive Vesicles and Their Structural ldquoLockingrdquo through Polyelectrolyte Complex Formation13. Angewandte Chemie International Edition 45(35) (2006) 5792-5795.
    [25] D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 58(15) (2006) 1655-1670.
    [26] D.L. Elbert, J.A. Hubbell, Conjugate Addition Reactions Combined with Free-Radical Cross-Linking for the Design of Materials for Tissue Engineering. Biomacromolecules 2(2) (2001) 430-441.
    [27] Y. Cao, X.X. Zhu, J.T. Luo, H.Y. Liu, Effects of substitution groups on the RAFT polymerization of N-Alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules 40(18) (2007) 6481-6488.
    [28] S. Muthukrishnan, E.H. Pan, M.H. Stenzel, C. Barner-Kowollik, T.P. Davis, D. Lewis, L. Barner, Ambient temperature RAFT polymerization of acrylic acid initiated with ultraviolet radiation in aqueous solution. Macromolecules 40(9) (2007) 2978-2980.
    [29] A. Aqil, C. Detrembleur, B. Gilbert, R. Jerome, C. Jerome, Controlled RAFT synthesis of polyacrylonitrile-b-poly(acrylic acid) diblocks as precursors of carbon nanocapsules with assistance of gold nanoparticles. Chemistry of Materials 19(9) (2007) 2150-2154.
    [30] Y.Z. You, D.S. Manickam, Q.H. Zhou, D. Oupicky, A versatile approach to reducible vinyl polymers via oxidation of telechelic polymers prepared by reversible addition fragmentation chain transfer polymerization. Biomacromolecules 8(6) (2007) 2038-2044.
    [31] M.F. Xu HF, Zhong ZY, Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. J. Mater. Chem. 19 (2009) 4183-4190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700