基于偶应力理论的局部彼得洛夫—伽辽金无网格(MLPG)法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应变梯度理论是为解释材料在微米尺度下的尺寸效应现象而发展起来的一种理论。偶应力理论是应变梯度理论的一种。局部彼得洛夫-伽辽金无网格法在求解过程中不需要背景网格,是一种“真正”的无网格法。本文基于对偶应力理论和局部彼得洛夫-伽辽金无网格(MLPG)法的深入分析研究,将偶应力理论与MLPG有机的结合,发展了一种新型的无网格法,并在此基础上编写了MATLAB程序,通过实例验证了此方法的可行性及有效性。
     本文主要研究内容和结论有:
     对一般偶应力理论的力学行为进行了系统的描述。引入了独立的微观转动矢量,与位移矢量互相独立,这是一般偶应力理论与传统偶应力理论最重要的区别。研究并推导了一般偶应力理论的平衡方程、应变位移关系和本构关系等。
     系统地研究分析了MLPG法,将控制方程的子域积分“弱”形式引入到该方法中,使得对试探函数的连续性要求降低了,对实际问题能给出更好的近似解。这一方法中试探函数与测试函数可以取自不同的函数空间,子域构造形式多样,具有灵活多样的实施方案。MLPG法不需要额外的背景网格,刚度矩阵的形成不需要装配过程。
     将偶应力理论的本构关系代入到MLPG法的离散方程中,发展了一种基于偶应力理论的新型的MLPG法。
     利用本文推导出的方法对带中心小孔的无限平板在单轴拉伸及纯剪状态下的应力集中情况进行数值计算与分析。计算结果表明,偶应力的存在对圆孔周围应力集中起了缓解作用,当小孔半径与材料内禀长度相当时,应力集中因子小于经典弹性理论中的3,应力集中因子随α/ι的增大而增大,最终趋近于经典弹性理论解;并且应力集中因子还与泊松比有关,随泊松比的减小而减小。此外,本文还用该方法分析边界层问题。探讨了偶应力对层合板变形的影响,在边界层区域内,存在一定的转动梯度效应,考虑偶应力时,剪应变的分布是连续的;分析了不同布点方式对计算结果的影响,选择合适的布点方式是提高MLPG法计算精度的有效途径。本文推导出的基于偶应力理论的MLPG法为求解实际工程中具有尺寸效应的复杂结构的数值计算提供了一种强有力的方法。
     最后,对基于一般偶应力理论的无网格法的应用及发展做了展望。
In order to explain the size effect for materials in the scale of micron meters,the strain gradient theory was developed.The general couple stress theory is one of the strain gradient theories.The meshless local Petrov-Galerkin(MLPG)method is a truly meshless method,as it does not need any "finite element mesh".Based on the analysis and research of the gmeral couple stress theory and MLPG method,the couple stress theory is combined with MLPG in this paper,and developed a new meshless method. MATLAB programs are compiled on this method,together with some classical experiments,proved its accuracy,feasibility and efficiency.
     The main research content and conclusion are stated as followed:
     The mechanics character of the general couple stress theory is analyzed systemically.The micro-rotation is introduced in this theory,which is treated as an independent kinematic quantity with no direct dependence upon the displacement vector. This is the most prominent difference between the general couple stress theory and the classical theory.The equilibrium relations and the constitutive relations are derived for the general couple stress.
     The current study,application and development trends of meshless methods are summarized and analyzed in this paper.The approaximation,discretization,integration scheme and treatment of essential boundary conditions used in meshless methods are overviewed.MLPG method,using a local weak form of the equilibrium equations and shape functions from the moving least squares(MLS)approaximation,attracted much attention.As the trial and test functions can be chosen from different functional spaces and the construction types of the sub-domain is flexible,the MLPG method is a generalized method to construct different meshless methods as the trial and test functions and the integration schemes are selected appropriately.MLPG method is a truly meshless method and the assembly process of global stiffness matrix is avoided.A new MLPG method is derived,with the couple stress theory combined with MLPG method.
     In order to deal with stress concentration problems,the problems of the circular hole in a field of uniform tension and compressions in two perpendicular directions are studied.The couple stress has great effect on the stress concentration around the circle. When couple stress must be considered,the stress concentration factor increases withα/l(hole radius/characteristic length)increases,and finally it approaches classical solution 3.The stress concentration factor also depends on Poisson's ration,decreasing with variations of Poisson's ration.
     In addition to this,the boundary layer problem is studied.A bimaterial system composed of two perfectly bonded half planes of elastic strain gradient solids,subjected to a remote shear stress.For this bimaterial system,the conventional elasticity couple stress theory dictates that the shear stress is uniform;but the shear strain jumps in magnitude at the interface.By including the strain gradient effects,a continuously distributed shear strain can be obtained.The numerical solution converges quickly to the exact solution,with an increasing refinement of nodal distances.It is interesting to note that the strain caculated at the interface is accurate even for a coarse nodal pattern.
     All of these show that the new MLPG method possesses several advantages,such as high accuracy,high stability,and high efficiency.
     Lastly,the development of the MLPG method based on general couple stress theory is forecasted.
引文
1 Fleck N A, Mukker G M, et al. Strain gradient plasticity: theory and experiment [J]. Acta Metall Mater, 1994, 42: 475-487.
    2 Stolken J S, Evans A G. A microbend test method for measuring the plasticity length scale [J]. Harvard University Report Mech 320, Division of Engineering and Applied Scienced, Harvard University, Combridge, 1997.
    3 Nix W D. Mechanical properties of thin films [J]. Met Trans A, 1959, 20A: 2217-2245.
    4 Steimashenko N A, Walls A G, Brown L M, et al. Microindentation on W and Mo oriented single crystals: an STM study [J]. Acta Metal et Mater, 1993, 41: 2855-2865.
    5 Ma Q, Clarke D R. Size dependent hardness of silver single crystals [J]. J Mater Res, 1995, 10: 853-863.
    6 Pooie W J, Ashby F M, Fleck N A. Micro-hardness of annealed and work-hardened copper polcrystals [J]. Scripta Metallet Mater, 1996, 34: 559—564.
    7 McElhaney K W, Vlassak J J, Nix W D. Determination of indentertip geometry and indentation contact area for depth-sensing indentation experiments [J]. J Mat Res, 1998, 13: 1300—1306.
    8 Lloyd D J. Particle reinforced aluminum and magnedium matrix composites [J]. Int Mater Reviews, 1994, 39: 1—23.
    9 Huang Y, Zhang L, Guo T F, et al. Fracture of materials with strain gradient effects. Advances in fracture research[J]. In: Karihaloo B L, et al. Ninth Int Conf Fracture, Sydney, Australia, Vol. 5, 1997, 5: 2275-2286.
    10 Cosserat E, Cosserat F. Theories des Corps Deformables [M]. Paris: Herman et fils, 1909.
    11 Toupin R. Elastic materials with couple-stresses [J]. Arch Rational Mech Anal, 1962, 11:385— 414.
    12 Green A E, Mcinnis B C, Naghdi P M. Elastic-plastic continua with simple force dipole [J]. Int J Engng Sci, 1968, 6:373-394.
    13 Fleck N A, Huchinson J W. A phenomenological theory for strain gradient effects in plasticity [J]. J Mech Phys Solids, 1993, 41: 1825-1857.
    14 Fleck N A, Huchinson J W. Strain gradient plasticity. In: Hutchinson W, Wu T Y, eds. Apllied Mechanics [J]. New York: Academic Press, 1997,33: 295—361.
    15 Shu J Y, Fleck N A. Strain gradient crystal plasticity: size-dependent deformation of bicrystals [J]. J Mech Phys Solids, 1999, 7: 297-324.
    16 Nix W D, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity [J]. J Mech Phys Solids,1998, 46: 411-425.
    17 Gao H, Huang Y, Nix W D,Hutchinson J W. Mechanism-based strain gradient plasticity-1 theory [J]. J Mech Phys Solids, 1999,47,: 1239-1263.
    18 Huang Y, Gao H, Nix W D, Hutchinson J W. Mechanism-based strain gradient plasticity- II Analysis [J]. J Mech Phys Solids, 2000,48: 99—128.
    19 Acharya A B, Bassani J L. On non-local flow theories that preaerve the classical structure of incremental boundary value problem [A]. In: Micromechanics of Plasticity and Damage of Multiphase Materials [C], IUTAM Symposium, Paris, 1995-08-29—09—01.
    20 Chen S H, Wang T C. A new hardening law for strain gradient plasticity [J]. Acta Materialia, 2000, 48: 3997-4005.
    21 Chen S H, Wang T C. A new deformation theory with strain gradient effects [J]. Int J Plasticity, 2002, 18(8): 971-995.
    22 Chen S H, Wang T C. Strain gradient theory with couple stress for crystalline solids [J], European Journal of Mechanics-A/Solids, 2001, 20: 739—756.
    23 Gao H, Huang Y.Taylor-Based nonlocal theory of plasticity [J]. Int J Solids Struct, 2001,38: 2615-2637.
    24 Elssner G, Korn D, Ruehle M. The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals [J]. Scripta Mater Reviews. 1994,39:1 —23.
    25 Hutchinson J W. Advances in Fracture Research [A]. In: Karihaloo B L. et al. Ed. Ninth Int Conf on Fracture, Sydney, Australia, 1997, 1.
    26 Huang Y, Zhang L, Guo T F, Hwang K C. Near-tip fields for cracks in materials with strain-gradient effects [J]. In: Willis J R, ed. Proceeding of IUTAM Symposium on Nonlinear analysis of fracture. Cambridge, England: Kluwer Academic Publishers, 1995: 231—242.
    27 Huang Y,Zhang L,Guo T F,Hwang K C.Mixed mode near-tip fields for cracks in materials with strain-gradient effects[J].J Mech Phys Solids,1997,45:439-465.
    28 Huang Y,Chen J Y,Guo T F,Zhang L,Hwang K C.Analysis and numerical studies on mode Ⅰ and mode Ⅱ fracture in elastic-plastic materials with strain gradient effects[J].Int J Fract,1999,100:1-27.
    29 Xia Z C,Hutchinson J W.Crack tip fields in strain gradient plasticity[J].J Mech Phys Solids,1996,44:1621-1648.
    30 Begley M R,Hutchinson J W.The mechanics of size-dependent indentation[J].J Mech Phys Solids,1998,46(10):2049-2068.
    31 Christman T,Needleman A,Suresh S.An experimental and numerical study of deformation in metal ceramic composites[J].Acta Metall Mater,1989,37:3029-3050.
    32 Bao G,Hutchinson J W,McMeeking R M.Particle reinforcement of ductile matrices against plastic flow and creep[J].Acta Metall Mater,1991,39:1871-1882.
    33 Wei Y.Particulate size effects in the partcle-reinforced metal-matrix composites[J].Acta Mechanica Sinica,2001,17(1):45-58.
    34 Liszka T,Orkisz J.Finite Difference Method for Arbitrary Irregular Meshes in Nonlinear Problems of Applied Mechanics[M].Ⅳ SmiRt,San Francisco,1977.
    35 Perrone N,Kao R.A general finite difference method for arbitrary meshes[J].Comput Struct,1975,5:45-58.
    36 Johnson G R,Beissel S R.Normalized smoothing functions for SPH impact computations[J].Int J Num Meth Eng,1996,39:2725-2741.
    37 张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397.
    38 贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166.
    39 Belytschko T,Lu Y Y,Gu L.Element free Galerkin methods[J].Int J Numer Methods Engrg,1994,37:229-256.
    40 Liu G R,Gu Y T.Coupling of element-free Galerkin and hybrid boundary element methods using modified variational formulation[J].Comput Mech,2000,26:166-173.
    41 庞作会,葛修润,等.一种新的数值方法--无网格伽辽金法(EFGM)[J].计算力学学报.1999,16(13):320-329.
    42 庞作会,葛修润,等,无网格伽辽金法(EFGM)在边坡开挖问题中的应用[J].岩土力学,1999,20(1):61-64.
    43 陈建,吴林志,杜善义.采用无单元法计算含边沿裂纹功能梯度材料板的应力强度因子[J].工程力学,2000,17(5):139-144.
    44 Zhang X,Liu X H,Song K Z,et al.Least-square collocation meshless method[J].Int J Numer Methods Engrg,2001,51(9):1089-1100.
    45 张雄,胡炜,潘小飞,等.加权最小二乘无网格法[A].广州:中国计算力学大会,2001论文集[C].2001:333-338.
    46 Zhang X,Lu M W,Wegner J L.A 2-D meshless model for jointed rock structures[J].Int J Numer Methods Engrg,2000,47(10):1649-1661.
    47 S.N.Atluri,T.Zhu.A new Meshless Local Petrov-Galerkin(MLPG)approach in computational mechanics[J].Computational Mechanics,1998,22:117-127.
    48 S.N.Atluri,T.L.Zhu.The meshless local Petrov-Galerkin(MLPG)approach for solving problems in elasto-statics[J].Computational Mechanics,2000,25:169-179.
    49 Zhu T,Atluri S N.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method[J].Comput Mech,1998,21:211-222.
    50 张雄,宋康祖,陆明万.无网格研究进展及应用[J].计算力学学报,2003,20(6):730-742.
    51 Herrmarm L R.Mixed finite elements for couple-stress analysis[A].Atluri S N,et al.eds.Hybrid and Mixed Finite Element Methods[M].New York:Wiley,1983:1-17.
    52 Wood R D.Finite element analysis of plane couple-stress problems using first order stress functions[J].Int J Num Meth Engng,1988,26:489-509.
    53 Ashby M F.The Deformation of Plastically Non-Homgeneous Materials[J].Phil Mag,1970,21:399-424.
    54 Koiter W T.Couple stresses in the theory of elasticity,Ⅰ and Ⅱ[J].Proc Ned Akad Wet(B), 1964,67:17-44.
    55 Mindlin R D.Micro-structure in linear elasticity.Archive Rational Mechanics Analysis[J],1964,16:51-78.
    56 Mindlin R D.Second gradient of strain and surface tension in linear elasticity[J].Int J Solids Struct,1965,1:417-438.
    57 Acharya A,Bassani J L.Incompatible lattice deformations and crystal plasticity[A].In fracture and plastic instabilities-proceedings of an AMD symposium at the ASME Summer Meeting at UCAL,1995.
    58 Acharya A,Shawki T G.Thermodynamic restrictions on constitutive equations for second-deformation-gradient inelastic behavior[J].J Mech Phys Solids,1995,43:1751-1772.
    59 Stolken J S,Evans A G.A microbend test method for measuring the plasticity length scale[J].Acta Metall Mater,1998,46(14):5109-5115.
    60 Huang Y,Gao H,Hwang K C.Strain gradient plasticity at the micron scale[J].In:Ellyin F,Provan J W,eds.Progress in Mechanical Behavior of Materials,Vol 3.British Columbia:Fleming Printing Ltd,1999:1051-1056.
    61 黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)--偶应力理论和SG理论[J].机械强度,1999,21,2(6):81-87.
    62 Eringen A C.Theory of Micropolar Elasticity[A].Liebowitz H,et.Fracture[M].New York:Academic Press,1968.
    63 Stolken J S,Evans A G.A microbend test for measuring the plasticity length scale[J].Acta Metall Mater,1998,46(14):5109-5115.
    64 Huang Y,Gao H,Hwang K C.Strain-gradient plasticity at the micron scale[J].In:Ellyin F,Provan J W,eds.Progress in Mechanical Behavior of Materials,Vol 3,British Columbia:Fleming Printing Ltd,1999:1051-1056.
    65 Taylor G I.Plastic strain in metals[J].J Inst Metals,1938,62:307-324.
    66 Kocks U F.The relation between polycrystal deformation and single crystal deformation[J].Metal Trans,1970,1:1121-1144.
    67 邱信明,郭田福,黄克智.应变梯度塑性Ⅰ,Ⅱ型平面应变裂纹的有限元解[J].中国科学(A辑),2000,30,8:760-768.
    68 王凯.自然邻近无网格法的理论与应用研究[D].济南:山东大学,2005.
    69 王凯,周慎杰,单国骏.基于局部Petrov-Galerkin离散方案的无网格法[J].计算力学学报,2006,23,5(10):518-523.
    70 熊渊博,龙述尧,李光耀.层合板分析的无网格局部Petrov-Galerkin方法[J].复合材料学报,2005,22,6(12):165-171.
    71 张雄,刘岩.无网格法[M].北京,清华大学出版社,2004.
    72 Nayroles B,Touzot G,Villon P.Generalizing the finite element method:diffuse approximation and diffuse elements[J].Comput Mech,1992,10:307-318.
    73 Lancaster P,Salkauskas K.Surfaces generated by moving least-squares methods[J].Math Comput,1981,37:141-158.
    74 Belytschko T et al.Elentment-Free Galerkin methods[J].Int J Numer Methods Engrg,1994,37:229-256.
    75 Lu Y Y et al.A new implementation of the element free Galerkin method[J].Comput Methods Appl Mech Engrg,1994,113:397-414.
    76 刘素贞,商植桐,陈海燕,杨庆新.无单元法中处理强加边界条件的方法研究[J].河北工业大学学报,2002,32(1):18-21.
    77 余成学,陈胜宏,张玉珍.偶应力理论的工程适用性分析[J].武汉水利电力大学学报,1996,29,4(8):60-64.
    78 Timoshenko S,Goodier J N.Theory of elasticity.[M].3rd ed.New York:McGraw-Hill Book Co,1970.
    79 R D Mindlin.Influence of couple-stresses on stress concentrations[J].Exp.Mech.,1962,3:1-7.
    80 肖其林,凌中,吴永礼.偶应力问题的杂交/混合元分析[J].计算力学学报,2003,20(4):427-433.
    81 张波.基于偶应力理论的有限单元法[D].济南:山东大学,2006.
    82 张波,王敏,王锡平.考虑偶应力问题的一种有限元算法[A].力学与工程应用(第11卷), 2006,6:175-178.
    83 张瑞霞.基于偶应力理论的无网格法[D].济南:山东大学,2005.
    84 王敏,王锡平,周慎杰.偶应力理论的无网格法[J].计算力学学报(已录用待刊).
    85 Min Wang,Jiangzhou Pan,Xiping Wang.The Meshless Local Petrov-Galerkin(MLPG)Approach with Couple-Stress[A].Computational Mechanics,Proceedings of "International Symposium on Computational Mechanics" 2007,July 30-August 1,2007,Beijing,China.849-853.
    86 郝明辉,王锡平,王敏,周慎杰.考虑偶应力影响的有限大板单边裂纹计算[J].山东大学学报(工学版),2008,38(2):92-95.
    87 陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,1990.
    88 邹振祝,陈建.无单元法在孔洞应力集中问题中的应用[J].石家庄铁道学院学报,2000,13,2:1-5.
    89 肖其林,凌中,吴永礼,姚文慧.偶应力问题的非协调元分析[J].中国科学院研究生院学报,2003,20,2:223-231.
    90 Nagtegaal J C,Parks,D M,Rice J R.On numerically accurate element solutions in the fully plastic range[J].Computational Methods in Applied and Engineering,1974,4:153-177.
    91 张根侠.双相复合材料中颗粒尺寸效应数值分析[D].济南:山东大学,2002.
    92 Z.Tang,S.Shen,S.N.Atluri.Analysis of Materials with Strain-Gradient Effects:A Meshless Local Petrov-Galerkin(MLPG)Approach,with Nodal Displacement only[J].computer modelling in engineering and science,2003,4(1):177-196.
    93 John Y.Shu,Wayne E.King,Norman A.Fleck.Finite Elements for Materials with Strain Gradient Effects[J].International Journal for Numerical Methods in Engineering,1999,44:373-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700