吡喹酮化疗对日本血吸虫慢性感染鼠机体免疫抑制状态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血吸虫病(schistosomiasis)是一种世界分布的人兽共患寄生虫病,是所有寄生虫病中分布最广、危害最严重的疾病之一。人群流行病学和动物模型研究均提示,随着日本血吸虫感染的慢性化进程,宿主出现免疫下调现象。除了血吸虫病外,很多慢性感染性疾病,如利什曼病,结核病等,也存在免疫下调现象。近几年,一些研究者将这种持续慢性感染状态与CD4~+CD25~+T细胞诱导的免疫抑制作用联系起来。对曼氏血吸虫慢性感染的研究已经开始涉及CD4~+CD25~+T细胞的免疫调节作用,但迄今为止,在日本血吸虫感染的研究中却少有报道。基于日本血吸虫病慢性期的免疫下调现象,本课题组前期实验结果提示,CD4~+CD25~+T细胞与日本血吸虫病慢性期的免疫下调现象有关,结合其它慢性感染性疾病的研究资料,设计本研究,进一步探讨日本血吸虫慢性感染小鼠在解除抗原持续刺激后,体内CD4~+CD25~+调节性T细胞(CD4~+CD25~+Tregs)功能和数量的变化以及对机体免疫应答状态的影响,并初步探讨其变化机制,为进一步研究CD4~+CD25~+Tregs在日本血吸虫感染慢性化过程中的免疫下调作用提供实验资料。
     我们首先建立日本血吸虫慢性感染小鼠模型,在感染后13wk,给予吡喹酮化疗。在化疗后的不同时间点上,为了观察CD4~+CD25~+Tregs数量变化以及影响其变化因素,采用免疫组织化学方法检测肝脏肉芽肿内Foxp3~+细胞的分布;以三色流式细胞术检测小鼠脾脏组织中CD4~+CD25~+Foxp3~+T细胞相对比例的变化;运用实时荧光定量PCR方法检测Foxp3 mRNA在脾脏CD4~+T细胞中的表达水平。为进一步观察吡喹酮化疗后CD4~+CD25~+Tregs抑制功能变化以及机体对非相关抗原OVA的免疫应答反应,运用免疫磁珠分离纯化脾脏CD4~+CD25~+T细胞,在有丝分裂原ConA(刀豆蛋白A)刺激下,采用同位素~3H-TdR掺入细胞增殖实验分析CD4~+CD25~+T细胞对脾脏CD4~+CD25~-T细胞体外增殖的抑制作用;以OVA免疫吡喹酮化疗后14d的慢性感染期小鼠,用ELISA检测血清中抗OVA(卵清蛋白)抗体水平。
     本研究获得如下主要结果:
     1.吡喹酮化疗对日本血吸虫慢性感染小鼠肝脏虫卵肉芽肿内Foxp3~+细胞分布的影响免疫组织化学染色显示,正常小鼠肝脏中几乎没有Foxp3~+细胞分布,而日本血吸虫感染慢性期,肝脏虫卵肉芽肿内分布大量的Foxp3~+细胞。给予吡喹酮化疗后3d,虫卵肉芽肿内Foxp3~+细胞无明显变化,到化疗后7d时,Foxp3~+细胞明显变少,到14d时几乎见不到Foxp3~+细胞。Foxp3蛋白是CD4~+CD25~+Tregs的主要标志分子。本观察结果提示,日本血吸虫慢性感染鼠经吡喹酮有效治疗后,肝脏虫卵肉芽肿内CD4~+CD25~+Tregs数量减少到正常水平。
     2.吡喹酮化疗对日本血吸虫慢性感染小鼠脾脏CD4~+CD25~+Foxp3~+T细胞数量的影响流式细胞仪检测结果表明,脾脏CD4~+CD25~+Foxp3~+T细胞占CD4~+T细胞比例在慢性感染期鼠为(15.37±0.38)%,在正常小鼠脾脏中其比例为(11.37±0.51)%,二者之间差异有显著性意义(P<0.01)。给予吡喹酮化疗后,感染鼠脾脏CD4~+CD25~+Foxp3~+T细胞占CD4~+T细胞比例逐渐下降,其比例在化疗后3d为(14.37±0.64)%,7d时为(12.62±1.05)%,与慢性期比较差异有统计学意义(P<0.05);到化疗后14d时为(11.47±0.46)%,已下降到正常水平。结果提示,日本血吸虫慢性感染鼠在有效病原治疗后,脾脏CD4~+CD25~+Tregs数量也逐渐降至正常水平。
     3.吡喹酮化疗对小鼠脾脏CD4~+T细胞Foxp3 mRNA表达水平的影响实时荧光定量PCR结果显示,在慢性感染期小鼠脾脏CD4~+T细胞Foxp3 mRNA的相对表达水平为1.01±0.15,在正常小鼠中其相对表达水平为0.75±0.16,二者差异有统计学意义(P<0.05)。给予吡喹酮化疗后,小鼠脾脏CD4~+T细胞Foxp3 mRNA相对表达水平在第3d为0.70±0.18,与慢性期比较差异有统计学意义(P<0.05),到化疗后7d和14d时,Foxp3 mRNA相对表达水平仍然保持在化疗后3d的水平上。结果提示,日本血吸虫慢性感染鼠在给予吡喹酮化疗后,CD4~+CD25~+Tregs的标志分子Foxp3在基因转录水平上的变化与CD4~+CD25~+Tregs数量上的变化相一致,并且在时相上先于数量变化。
     4.影响脾脏CD4~+CD25~+Foxp3~+T细胞数量变化相关因素的研究上述实验结果显示,日本血吸虫慢性感染期小鼠给予吡喹酮化疗后,脾脏CD4~+CD25~+Foxp3~+T细胞数量及Foxp3基因表达下降。为排除吡喹酮对实验结果的影响,给予正常小鼠吡喹酮处理,分别在3d、7d和14d,流式细胞仪检测脾脏CD4~+CD25~+Foxp3~+T占CD4~+T的比例。结果显示,各组之间的比例变化差异无显著性意义(P>0.05)。为探讨CD4~+CD25~+Tregs的数量变化是否与病原治疗后血吸虫成虫被杀死并在短时间内释放大量抗原有关,将成虫可溶性抗原经腹腔注射到慢性感染小鼠体内,7d后流式细胞仪检测脾脏CD4~+CD25~+Foxp3~+T占CD4~+T的比例。结果显示,未处理和注射PBS的慢性感染小鼠脾脏CD4~+CD25~+Foxp3~+T占CD4~+T的比例分别为15.2%和15.1%,注射成虫可溶性抗原能使日本血吸虫慢性感染小鼠脾脏CD4~+CD25~+Foxp3~+T细胞占CD4~+T的比例(12.5%)明显降低。结果提示,成虫可溶性抗原刺激可能是导致日本血吸虫慢性感染鼠脾脏CD4~+CD25~+Tregs数量下降的因素。
     5.吡喹酮化疗对CD4~+CD25~+T细胞免疫抑制功能的影响~3H-TdR掺入法检测细胞增殖实验结果显示,与正常小鼠来源的CD4~+CD25~+T细胞比较(cpm值为4092.00±122.76),慢性期来源的CD4~+CD25~+T细胞对CD4~+CD25T细胞增殖(cpm值为2952.25±88.03)的抑制作用较强(P<0.01);给予吡喹酮化疗后,抑制作用逐渐减弱,化疗后3d时(cpm值为2954.00±295.57),抑制作用无明显变化,到化疗后7d时(cpm值为3620.20±237.87),抑制作用明显下降(P<0.05),而到化疗后14d时,其抑制作用已下降到正常水平(cpm值为4283.60±517.89)。结果提示,日本血吸虫慢性感染鼠给予吡喹酮化疗后,脾脏CD4~+CD25~+Tregs受感染因素诱导增强的抑制功能可在较短时间恢复到正常水平。
     6.吡喹酮化疗对日本血吸虫慢性感染小鼠接受其它抗原刺激免疫应答的影响吡喹酮化疗后14d,用日本血吸虫非相关抗原OVA免疫小鼠,4wk后ELISA法检测血清特异性抗体水平。结果显示,日本血吸虫慢性感染小鼠在给予吡喹酮化疗前后血清中抗OVA抗体IgG A_(450)值分别是0.68±0.14和1.04±0.22;IgG1抗体亚类A_(450)值分别是1.16±0.13和1.35±0.06;IgG2a抗体亚类A_(450)值分别是0.68±0.12和1.12±0.17;IgG2a与IgG1比值分别是0.59和0.86。结果表明,在解除抗原持续刺激后,宿主对非特异性抗原的免疫应答也恢复到正常水平,尤其是在感染慢性期被明显抑制的Th1应答上升明显。
     本试验采用日本血吸虫慢性感染鼠模型,研究吡喹酮化疗前后机体CD4~+CD25~+Tregs以及免疫应答状态的变化情况,发现慢性感染期鼠体内CD4~+CD25~+Foxp3~+T细胞的数量增加,抑制功能增强,而化疗后其数量下降,功能也恢复到正常水平,并且宿主对非相关抗原免疫应答由低应答状态恢复到正常水平。进一步研究发现,化疗后CD4~+CD25~+Foxp3~+T细胞的数量下降可能与成虫释放的抗原刺激有关。研究结果提示,CD4~+CD25~+Tregs可能是日本血吸虫慢性感染期维持免疫抑制状态的重要因素,并且,经吡喹酮有效病原治疗后,血吸虫感染机体的免疫抑制状态,能在较短时间内得到改善。
Schistosomiasis,a parasitic disease,is one of the most important challenges to the population living in the epidemic areas.At present,the main problem is the long-term persistence of pathogen in the host and no strong protective immunity available.Although adult worms of schistosome can be effectively killed by praziquantel,reinfection is difficult to be interrupted.Accordingly,vaccine strategies on control of this disease have been expected.For several decades of efforts,however, there are still few effective vaccines against schistosomiasis.Studies on human populations and experimental models showed that the specific host immunity to schistosome is gradually down-regulated along with the progress of schistosomiasis,which is similar to other chronic infections, including tuberculosis and leishmaniasis.Recently,growing evidence has been presented to support the association between the chronic infections and CD4~+CD25~+ regulatory T cells,but to date,most data focused on the role of CD4~+CD25~+ regulatory T cells in some diseases while the functions of these subset T cells in schistosomiasis japonica are unclear. Our previous study demonstrated that there were some relationships between the down-regulated immunity of the chronic infections and CD4~+CD25~+ regulatory T cells in murine schistosomiasis.This study focused on the changes of CD4~+CD25~+ regulatory T cells and immunosuppression of mice chronically infected with Schistosoma japonicum after treatment with praziquantel.
     In this study,murine models infected with Schistosoma japonicum were established.Thirteen weeks after the infection,the mice were treated with praziquantel.At different time points,foxp3~+ cells distribution in the hepatic granulomas were examined by immunohistochemistry method.Then the numbers of CD4~+CD25~+ regulatory T cells were detected by flow cytometry and foxp3 mRNA expression on CD4~+ T cells in splenocytes was analyzed by real-time PCR.The inhibitory function of CD4~+CD25~+ regulatory T cells was assessed by the[~3H]-thymidine incorporation method.Finally,the serous specific antibody responses after OVA inoculation were assessed by ELISA.
     The main results are as follows:
     1.Foxp3~+ cells in the hepatic egg granulomas decreased when mice chronically infected with Schistosoma japonicum were treated with praziquantel In the hepatic sections of mice with the chronic infection,foxp3~+ cells were aggregated in the egg granulomas.On the day 3 after treatment,there were few changes on the number of foxp3~+ cells.Howerer,on the day 7 after treatment,the foxp3~+ cells were significantly decreased.On day 14 after treatment,almost no foxp3~+ cells could be found in the granulomas.The results demonstrated that praziquantel chemotherapy played roles on reduction of local foxp3~+ cells in the egg granulomas of mice infected with Schistosoma japonicum.
     2.The relative ratio of CD4~+CD25~+Foxp3~+ T cells from splenocytes was significantly decreased in the chronically infected mice after treatment with praziquantel Flow cytometry analysis showed that the ratio of CD4~+CD25~+Foxp3~+T cells in CD4~+T cells was higher in the chronic infection group than that in normal control.After praziquantel treatment,the ratio was decreased slightly on day 3 and significantly on day 7.Till day 14,the ratio of CD4~+CD25~+ Foxp3~+T cells fell to the level of normal control.The results indicated that praziquantel intervention also caused markedly reduction of splenic CD4~+CD25~+ Foxp3~+T cells.
     3.The expressions of foxp3 mRAN in splenic CD4~+T cells were down-regulated after mice with chronic infection were treated with praziquantel Real-time PCR analysis showed that in the infection group,the expression of foxp3 mRNA was significantly down-regulated on day 3 after treatment,compared with that in the normal control and sustained the same levels on day 7 and day 14. This indicated that the changes of foxp3 mRNA expressions were prior to the reduction of the CD4~+CD25~+ Foxp3~+T cell numbers.
     4.SWAP injection may cause reduction of splenic CD4~+CD25~+ Foxp3~+T cell numbers Flow cytometry analysis showed that praziquantel per se didn't cause any significant changes of splenic CD4~+CD25~+Foxp3~+ T cell numbers.However,the splenic CD4~+ CD25~+Foxp3~+T cell numbers decreased obviously when mice were injected i.p with SWAP.We presumed that the antigen injection may mimic the circumstance which the adult worms were killed by praziquantel,and consequently released lots of antigens in a short period of time.The mechanism in detail of how SWAP causes decrease of CD4~+CD25~+Foxp3~+T cell remains unclear.
     5.Suppressive potential of CD4~+CD25~+ T cells on the proliferation of CD4~+CD25~- T cells was attenuated in the chronically infected mice after treatment with praziquantel ~3H-TdR incorporation method was used to evaluate the Suppressive ability of CD4~+CD25~+ T cells.The experiments showed that the CD4~+CD25~+ T cells isolated from mice with chronic infection presented higher suppressive potential on the proliferation of CD4~+CD25~- T cells from the same mice under ConA stimulation,compared with the CD4~+CD25~+T cells isolated from normal mice.However,these suppressive capabilities began to subside gradually after CD4~+CD25~+ T cell donated mice were treated with praziquantel.It became obvious on day 7 after the treatment.On the day 14,the suppressive capabilities of CD4~+CD25~+ T cells decreased to the level approximately resembling that from normal mice.The results suggests that praziquantel chemotherapy could not only reduce both the numbers and foxp3 mRNA expression of CD4~+CD25~+ T cells,but also degrade the suppressive functions of this cell subset.
     6.Specific anti-OVA antibody was increased in chronically infected mice after treatment with praziquantel ELISA detection showed that the level of specific anti-OVA antibody IgG and its isotype IgG1 as well as IgG2a were higher in treated group than those in chronic infection group.Meanwhile,the ratio of IgG2a to IgG1 was rose in treated group compared to that in chronic infection group.The results demonstrated that schistosome infection could induce immunosuppression of the hosts and the immune responses of the infected mice were rebounded and skewed to Th1 type shortly after praziquantel chemotherapy.
     In conclusion,our study demonstrated that the numbers and the inhibitory activities of CD4~+CD25~+ regulatory T cells of mice chronically infected with Schistosoma japonicum were down-regulated after praziquantel chemotherapy.The same changes in the numbers of CD4~+CD25~+ regulatory T cells could also be induced by SWAP injection.Furthermore,the immunosuppressive status of mice caused by the infection could be reversed by the chemotherapy.The results suggested that CD4~+CD25~+ regulatory T cells may play important roles in sustaining the immunosuppressive status of mice chronically infected with Schistosoma japonicum.This also revealed that praziquantel,as a drug of the first choice for anti-schistosomiasis,could terminate the persistent infection by effectively killing the adult worms and simultaneously restore the immunologic balance that once was broken by the infection.
引文
1.Murray,C.J.L.,and A.D.Lopez.Global health statistics:a compendium of incidence,prevalence and mortality estimates for over 200 conditions.1996,Harvard University Press,Boston,Mass.
    2.Stephenson,L.S.The impact of schistosomiasis on human nutrition.1993,Parasitology 107(Suppl.):S107-S123.
    3.Tropical Disease Research progress 1975-94 Highlights 1993-94,Twelfth Programme Report of the UNDP/World Bank/WHO Special Program for Research and Training in Tropical Diseases(TDR),P77.
    4.郭家钢,郑江.我国血吸虫病的流行与防治研究进展.中国寄生虫学与寄生虫病杂志,1999,17(5):260-263.
    5.郑江.中国血吸虫病防治现状及展望.中国血吸虫病防治杂志,2003,15(1):1-2.
    6.Butterworth AE.Vaccines against schistosomiasis:where do we stand?Trans R Soc Trop Med Hyg,1992,86(1):1-2.
    7.Hagan P,Sharaf O.Schistosomiasis vaccines.Expert Opin Biol Ther,2003,3(8):1271-1278.
    8.Mckerrow JH.Cytokine induction and expoitation in schistosome infection.Parasitology,1997,115:107-112.
    9.Shen L,Zhang ZS,Wu HW,et al.Down-regulation of specific antigen-driven cytokine production in a population with endemic Schistosoma japonicum infection.Clin Exp Immunol,2002,129(2):339-345.
    10.沈蕾,吴海玮,张兆松等.日本血吸虫病流行区人群吡喹酮治疗前后细胞因子水平的研究.中国寄生虫学与寄生虫病杂志,2000,18(1):14-17.
    11.Ji MJ,Su C,Wu HW,Cai XP,et al.Gene expression profile of CD4~+T cells reveals an interferon signaling suppression associated with progression of experimental Schistosoma japonicum infection.Cell Immunol. 2003, 224(1): 55-62.
    12. Haseeb MA, Craig JP. Suppression of the immune response to diphtheria toxoid in murine schistosomiasis. Vaccine, 1997, 15(1): 45-50.
    13. Elliott DE, Urban Jr JF, Argo CK, et al. Does the failure to acquire helminthic parasites predispose to Crohn's disease? The Federation of American Societies for Experimental Biology Journal. 2000, 14, 1848-1855.
    14. Elliott DE, Li J, Blum A, et al. Exposure to schistosome eggs protects mice from TNBS colitis. American Journal of Physiology Gastrointestinal and Liver Physiology. 2003, 284, 385-391.
    15. Tsai SL, Liaw YF, Chen MH, et al. Detection of type 2-like T-helper cells in hepatitis C virus infection: implications for hepatitis C virus chronicity. Hepatology, 1997, 25(2): 449-458.
    16. Koval'chuk LV, Pabliuk AS. Human immunoregulating (suppressing?) CD4~+CD25~+ T lymphocytes ex vivo and in vitro, in the normal state and in pathology. Zh Mikrobiol Epidemiol Immunobiol, 2002, 5: 40-45.
    17. Zhang ZX, Yang L, Young KJ, et al. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med, 2000, 6(7): 782-789.
    18. Jiang S, Lechler RI. Regulatory T cells in the control of transplantation tolerance and autoimmunity. Am J Transplant. 2003, 3(5): 516-524.
    19. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol, 2003, 3(3): 199-210.
    20. Cobbold SP, Graca L, Lin CY, et al. Regulatory T cells in the induction and maintenance of peripheral transplantation tolerance. Transpl Int, 2003,16(2): 66-75.
    21. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995, 155,1151-1164.
    22. Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4~+CD25~+T cells with regulatory properties from human blood. J. Exp. Med. 2001, 193, 1303-1310.
    23. Levings MK, Sangregorio R, and Roncarolo MG. Human CD4~+CD25~+ regulatory T cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 2001, 193, 1295-1302.
    24. Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4~+ CD25~+ regulatory T cells induced by an agonist self-peptide .Nat Immunol, 2001, 2(4) :301-306 .
    25. Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity:production of CD25~+CD4~+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance J Immunol, 1999,162 :5317-5326 .
    26. Ivan Roitt, Jonathan Brostoff, David Male. Immunology. 2001,201-203.
    27. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25~+CD4~+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med, 2000, 192(2): 303-310.
    28. Read S, Mal mstrom V, Powrie F, et al. Cytotoxic T lymphocyte associated antigen 4 plays an essential role in the function of CD4~+CD25~+ regulatory cells that control intestinal inflammation. J Exp Med, 2000, 192(2): 295-302.
    29. Yamagiwa S, Gray JD, Hashimoto S, et al. A role for TGF-beta in the generation and expansion of CD4~+CD25~+ regulatory T cells from human peripheral blood. J Immunol, 2001, 166:7282-7289.
    30. Damo X, Haiying L, Mousa KK, et al. CD4~+CD25~+ regulatory T cells suppress differentiation and function of Th1 and Th2 cells Leishmania major infection and colitis in mice. J Immunol, 2003, 170:349-399.
    31. Levings MK, Bacchettu R, Schulz U, et al. The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol, 2002, 129:263-276.
    32. Somasundaram R, Jacob L,Swoboda R, et al. Inhibition of cytolytic T lymphocyte proliferation by autologous CD4~+/CD25~+ regulatory T cells in a colorected carcinoma patient is mediated by transforming growth factor-beta. Cancer Res, 2002, 62:5267-5272.
    33. Nakamura K, Kitani A, Strober W. Cell contact-dependent immuno-suppression by CD4~+CD25~+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med, 2001, 194(5): 629-644.
    34. Hara M, Kingsley CI, Niimi M, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol, 2001, 166(6): 3789-3796.
    35. Fontenot JD, Gavin MA, Rudensky AY, et al. Foxp3 programs the development and function of CD4~+CD25~+ regulatory T cells. Nat Immunol, 2003, 4(4): 330-336.
    36. Belkaid Y, Piccirillo CA, Mendez S, et al. CD4~+CD25~+ regulatory T cells control Leishmania major persistence and immunity. Nature, 2002, 420(6915): 502-507.
    37. Hisaeda H, Maekawa Y, Iwakawa D, et al. Escape of malaria parasites from host immunity requires CD4~+ CD25~+ regulatory T cells. Nat Med, 2004, 10(1): 29-30.
    38. Singh KP, Gerard HC, Hudson AP, Reddy TR, Boros DL. Retroviral Foxp3 gene transfer ameliorates liver granuloma pathology in Schistosoma mansoni infected mice. Immunology. 2005 Mar; 114(3):410-7.
    39. Kanji Watanabe, Pauline N. M. Mwinzi, Carla L. Black, et al. T Regulatory Cell Levels Decrease in People Infected With Schistosoma mansoni on Effective Treatment. Am. J. Trop. Med. Hyg., 2007, 77(4), pp. 676-682
    40. Cai XP, Zhang H, Zhang YC, Wang Y, Su C, Ji MJ, Wu HW, Zhu X, Zhang ZS, Wu GL.Dynamics of CD4~+CD25~+ T Cells in Spleens and Mesenteric Lymph Nodes of Mice Infected with Schistosoma japonicum.Acta Biochim Biophys Sin (Shanghai). 2006 May; 38(5):299-304.
    41. Sacks D, Sher A: Evasion of innate immunity by parasitic protozoa. Nat Immunol 2002, 3:1041-1047.
    42. Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of thegonad after neonatal thymectomy in mice. Science, 1969, 166(906): 753-755.
    43. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3): 1151-1164.
    44. Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001, 27, 68-73.
    45. Schubert, L.A., Jeffery, E., Zhang, Y., et al. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 2001, 276, 37672-37679.
    46. Fontenot, J.D., Gavin, M.A., and Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003, 4,330-336.
    47. Hori, S., Nomura, T., and Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 2003, 1057-1061.
    48. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+CD25+ T cells inhibit both the induction and effector functionof autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol , 1998; 160:1212-8.
    49. Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol. 2002; 2:389-400.
    50. Powrie F, Maloy KJ. Immunology. Regulating the regulators.Science 2003; 299:1030-1.
    51. Kingsley CI, Karim M, Bushell AR, Wood KJ. CD25+ CD4+ regulatory T cells prevent graft rejection. CTLA-4 and IL-10-dependent immunoregulation of alloresponses. J Immunol 2002; 168:1080-6.
    52. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25(interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999; 59:3128-33.
    53. Hori S, Carvalho TL, Demengeot J. CD25+ CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice. Eur J Immunol 2002; 32:1282-91.
    54. Hisaeda H, Maekawa Y, Iwakawa D, et al. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med 2004; 10:29-30.
    55. Dittmer U, He H, Messer RJ, et al. Functional impairment of CD8 (+) T cells by regulatory T cells during persistent retroviral infection. Immunity 2004; 20:293-303.
    56. Thornton AM, Shevach EM. Suppressor effector function of CD4+ CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 2000; 164:183-90.
    57. Asseman C, Mauze S, Leach MW, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190:995-1004.
    58. Powrie F, Carlino J, Leach MW, et al. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type I-mediated colitis by CD45RB (low) CD4+ T cells. J Exp Med 1996; 183:2269-74.
    59. Angyalosi, G, V. Pancre, J. Herno, et al. Immunological response of major histocompatibility complex class II-deficient (Abeta(o)) mice infected by the parasite Schistosoma mansoni. Scand. J. Immunol. 1998.48:159-169.
    60. Iacomini, J., D. E. Ricklan, and M. J. Stadecker. T cells expressing the gamma delta T cell receptor are not required for egg granuloma formation in schistosomiasis. Eur. J. Immunol. 1995. 25:884-888.
    61. Mathew, R. C, and D. L. Boros. Anti-L3T4 antibody treatment suppresses hepatic granuloma formation and abrogates antigen-induced interleukin-2 production in Schistosoma mansoni infection. Infect. Immun. 1986. 54:820-826.
    62. Jacobs, W., J. Bogers, A. Deelder, M. Wery, et al. Adult Schistosoma mansoni worms positively modulate soluble egg antigen-induced inflammatory hepatic granuloma formation in vivo. Stereological analysis and immunophenotyping of extracellular matrix proteins, adhesion molecules, and chemokines. Am. J. Pathol. 1997. 150:2033-2045.
    63. Cook, G A., A. Metwali, A. Blum, R. Mathew, et al. Weinstock. Lymphokine expression in granulomas of Schistosoma mansoni-infected mice. Cell. Immunol. 1993.152:49-58.
    64. Grzych, J. M., E. Pearce, A. Cheever, et al. Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni. J. Immunol. 1991.146:1322-1327.
    65. Xu, Y. H., J. Macedonia, A. Sher, E. Pearce, et al. Dynamic analysis of splenic Th1 and Th2 lymphocyte functions in mice infected with Schistosoma japonicum. Infect. Immun. 1991. 59:2934-2940.
    66. Kameshwar P. Singh, Herve C. Gerard, Alan P. et al. Retroviral Foxp3 gene transfer ameliorates liver granuloma pathology in Schistosoma mansoni infected mice. Immunology. 2005 , 114, 410-417
    67. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4~+CD25~+ regulatory T cells. Nat Immunol, 2003, 4: 330-336.
    68. Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4~+CD25~+ T regulatory cells. Nat Immunol, 2003, 4: 337-342.
    69. Schubert LA, Jeffery E, Zhang Y, et al. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem, 2001,276:37672-37679.
    70. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299: 1057-1061.
    71. Simark-Mattsson C, Dahlgren U, Roos K. CD4~+CD25~+ T lymphocytes in human tonsils suppress the proliferation of CD4~+CD25~- tonsil cells. Scand J Immunol, 2002, 55(6): 606-611.
    72. Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of development abnormality of a T cells subpopulation. JExpMed, 1996,184:387-396.
    73. Ng WF, Duggan PJ, Ponchel F, et al Human CD4~+CD25~+ cells: a naturally occurring population of regulatory T cells. Blood, 2001, 98(9): 2736-2744.
    74. Suri-Payer E, Amar AZ, Thornton AM, et al. CD4~+CD25~+ immunoregulatory T cells inhibit both the induction and effector function of autoreactibe T cells and represent a unique lineage of immunoregulatory cells. J Immunol, 1998,160: 1212-1218.
    75. Shevach EM, McHungh PS, Piccirillo CA, et al.Control of T cell activation by CD4~+CD25~+ suppressor T cells. Immunol Rev, 2001, 182:58-67.
    76. Richards MW, Butcher AJ, Dolphin AC. Ca2~+ channel beta subunits: structural insights AID our understanding Trends Pharmacol, 2004, 25(12):6262632.
    77. McTigue MA, Williams DR, Tainer JA. Crystal structures of a schistosomal drug and vaccine target: Glutathione S-transferase from Schistosoma j aponica and it s complex with the leading an-tischistosomal drug praziquantel. Mol Biol, 1995, 246 (1):212-27.
    78. Mat sumoto Y, Perry G, Levine RJC, et al. Paramyosin and actin in schistosomal teguments. Nature, 1988, 333: 76278.
    79. Kresina TF, He Q, Degli Esposti S, et al Gene expression of transforming growth factor beta 1 and extracellular matrix proteins in murine Schistosoma mansoni infection. Gastroenterology. 1994 Sep; 107(3):773-80.
    80. Homeida MA, Tom I, Nash T, Bennett JL, et al. Association of the therapeutic activity of praziquantel with the reversal of Symmers' fibrosis induced by Schistosoma mansoni. Am J Trop Med Hyg, 1991 Sep; 45(3):360-5.
    81. Kameshwar P Singh, Herve C Gerard, Alan P Hudson, et al. Expression of matrix metalloproteinases and their inhibitors during the resorption of schistosome egg-induced fibrosis in praziquantel-treated mice. Immunology. 2004 Mar; 111(3):343-52.
    82. Simark-Mattsson C, Dahlgren U, Roos K. CD4~+CD25~+ T lymphocytes in human tonsils suppress the proliferation of CD4~+CD25~- tonsil cells. Scand J Immunol, 2002, 55(6): 606-611.
    83. Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of development abnormality of a T cells subpopulation. JExpMed, 1996,184:387-396.
    84. Ng WF, Duggan PJ, Ponchel F, et al. Human CD4~+CD25~+ cells: a naturally occurring population of regulatory T cells. Blood, 2001, 98(9): 2736-2744
    85. Walther M, Tongren JE, Andrews L, et al. Upregulation of TGF-beta, FOXP3, and CD4~+CD25~+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 2005, 23:287-296.
    86. Taylor MD, LeGoff L, Harris A, et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol 2005, 174:4924-4933.
    87. Mendez S, Reckling SK, Piccirillo CA, et al. Role for CD4~+CD25~+ regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 2004, 200:201-210.
    88. Tobias Boettler, Hans Christian Spangenberg, et al. T Cells with a CD4~+CD25~+ Regulatory Phenotype Suppress In Vitro Proliferation of Virus-Specific CD8~+ T Cells during Chronic Hepatitis C Virus Infection. JOURNAL OF VIROLOGY, June 2005, p. 7860-7867.
    89.秦靖,刘顺爱,张卫华等.用免疫磁珠检测T淋巴细胞亚群的方法评估.中国医刊,2001,36(11):59-60.
    90.Todt JC,Whitfield JK,Ivard SR,et al.Down-regulation of interleukin-12,interleukin 12R expression/activity mediates the switch from Th1 to Th2 granulama response during murine Schistosomiasis mansoni.Scan J immunol,2000,52:385-392.
    91.Montenegro SM,Miranda P,Mahanty S,et al.Cytokine production in acute versus chronic human Schistosomiasis mansoni.The cross-regulatory role of interferon-gamma and interleukin-10 in the responses of peripheral blood mononuclear cells and splenocytes to parasite antigens.J Infect Dis,1999,179:1502-1514.
    92.Amy S.McKee and Edward J.Pearce.CD4~+CD25~+ Cells Contribute to Th2 Polarization during Helminth Infection by Suppressing Th1Response Development.Immunology,2004,173:1224-1231.
    1. Sacks D, Sher A. Evasion of innate immunity by parasitic protozoa. Nat Immunol 2002,3:1041-1047.
    2. Coffman RL, Mocci S, O'Garra A. The stability and reversibility of Th1 and Th2 populations. Curr Top Microbiol Immunol 1999, 238:1-12.
    3. Villarino A, Hibbert L, Lieberman L, et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 2003, 19:645-655.
    4. Artis D, Villarino A, Silverman M, et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J Immunol 2004, 173:5626-5634.
    5. Mahanty S, Mollis SN, Ravichandran M, et al. High levels ofspontaneous and parasite antigen-driven interleukin-10 production are associated with antigen specific hyporesponsiveness in human lymphatic filariasis. J Infect Dis 1996, 173:769-773.
    6. Plebanski M, Flanagan KL, Lee EA, et al Interleukin 10-mediated immunosuppression by a variant CD4 T cell epitope of Plasmodium falciparum. Immunity 1999, 10:651-660.
    7. Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4+CD25+T cells with regulatory properties from human blood. J. Exp. Med. 2001, 193, 1303-1310.
    8. Levings MK, Sangregorio R, and Roncarolo MG. Human cd25+cd4+ t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 2001, 193, 1295-1302.
    9. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995; 155: 1151-1164.
    10. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4~+CD25~+ T cells with regulatory properties isolated from peripheral blood. J Exp Med. 2001, 193: 1285-1294.
    11. Ng WF, Duggan PJ, Ponchel F, et al. Human CD4~+CD25~+ cells: a naturally occurring population of regulatory T cells. Blood. 2001; 98: 2736-2744.
    12. Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med. 1996; 184: 1-8.
    13. Jiang S, Lechler RI. Regulatory T cells in the control of transplantation tolerance and autoimmunity. Am J Transplant. 2003, 3(5): 516-524.
    14. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol, 2003, 3(3): 199-210.
    15. Cobbold SP, Graca L, Lin CY, et al. Regulatory T cells in the induction and maintenance of peripheral transplantation tolerance. Transpl Int, 2003, 16(2): 66-75.
    16. Shevach EM, CD4~+CD25~+ suppressor T cells: more question than answers[J]. Nat Rev Immunol, 2002, 2(6): 389-400.
    17. Annacker o, Pimenta AR, Burlen DO, et al. CD4~+CD25~+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol, 2001, 166(5): 3008-3018.
    18. Li C, Corraliza I, Langhorne J. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect Immun 1999, 67:4435-4442.
    19. Mahanty S, Ravichandran M, Raman U, et al. Regulation of parasite antigen driven immune responses by interleukin-10 (IL-10) and IL-12 in lymphatic filariasis. Infect Immun 1997, 65:1742-1747.
    20. Carvalho EM, Bacellar O, Brownell C, et al. Restoration of IFN-gamma production and lymphocyte proliferation in visceral leishmaniasis. J Immunol 1994,152:5949-5956.
    21. King CL, Medhat A, Malhotra I, et al. Cytokine control of parasite-specific anergy in human urinary schistosomiasis, IL-10 modulates lymphocyte reactivity. J Immunol 1996, 156:4715-4721.
    22. Gazzinelli RT, Wysocka M, Hieny S, et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol 1996,157:798-805.
    23. McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002, 195:221-231.
    24. Van der Kleij D, Van Remoortere A, Schuitemaker JH, et al. Triggering of innate immune responses by schistosome egg glycolipids and their carbohydrate epitope GalNAc beta 1-4(Fuc alpha 1-2Fuc alpha 1-3) GlcNAc. J Infect Dis 2002, 185:531-539.
    25. Aebischer T, Moody SF, Handman E. Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: a possible hazard for the host. Infect Immun 1993, 61:220-226.
    26. Belkaid Y, Piccirilo AC,Mendez S,et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002, 420:502-507.
    27. Hisaeda H, Maekawa Y, Iwakawa D, et al. Escape of malaria parasites from host immunity requires CD4+CD25+ regulatory T cells. Nat Med 2004, 10:29-30.
    28. Gillan V, Devaney E. Regulatory T cells modulate Th2 responses induced by Brugia pahangi third-stage larvae. Infect Immun 2005, 73:4034-4042.
    29. Taylor MD, LeGoffL, Harris A, et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol 2005, 174:4924-4933.
    30. Walther M, Tongren JE, Andrews L, et al. Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 2005,23:287-296.
    31. Anderson CF, Mendez S, Sacks DL. Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J Immunol 2005, 174:2934-2941.
    32. Mendez S, Reckling SK, Piccirillo CA, et al. Role for CD4+CD25+ regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 2004, 200:201-210.
    33. Powrie F, Read S, Mottet C, et al. Control of immune pathology by regulatory T cells. Novartis Found Symp 2003, 252:98-105.
    34. Liu H, Hu B, Xu D, et al. CD4+CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and CTLA4. J Immunol 2003,171:5012-5017.
    35. Hoffmann KF, Cheever AW, Wynn TA. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J Immunol 2000,164:6406-6416.
    36. McKee AS, Pearce EJ. CD25+CD4+ cells contribute to Th2 polarization during helminth infection by suppressing Thl response development. J Immunol 2004, 173:1224-1231.
    37. esse M, Piccirillo CA, Belkaid Y, et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J Immunol 2004, 172:3157-3166.
    38. Ji J, Masterson J, Sun J, et al. CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection, J Immunol 2005,174:7147-7153.
    39. Gangappa S, Manickan E, Rouse BT. Control of herpetic stromal keratitis using CTLA4Ig fusion protein. Clin Immunol Immunopathol 1998, 86:88-94.
    40. Belkaid Y, Hoffmann KF, Mendez S, et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 2001,194:1497-1506.
    41. Murphy ML, Cotterell SE, Gorak PM, et al. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J Immunol 1998, 161:4153-4160.
    42. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003,299:1033-1036.
    43. Choi BK, Bae JS, Choi EM, et al. 4-1BB-dependent inhibition of immunosuppression by activated CD4+CD25+ T cells. J Leukoc Biol 2004, 75:785-791.
    44. Serra P, Amrani A, Yamanouchi J, et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 2003, 19:877-889.
    45. Suvas S, Kumaraguru U, Pack CD, et al. CD4+CD25+T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 2003, 198:889-901.
    46. Kinter AL, Hennessey M, Bell A, et al. CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 2004, 200:331-343.
    47. Cabrera R, Tu Z, Xu Y, et al. An immunomodulatory role for CD4+CD25+ regulatory T lymphocytes in hepatitis C virus infection. Hepatology 2004, 40:1062-1071.
    48. He H, Messer RJ, Sakaguchi S, et al . Reduction of retrovirus-induced immunosuppression by in vivo modulation of T cells during acute infection. J Virol 2004, 78:11641-11647.
    49. Moore AC, Gallimore A, Draper SJ, et al. Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: increased durable cellular immunity with reduced immunodominance. J Immunol 2005, 175:7264-7273.
    50. Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 2003,170:3939-3943.
    51. Singh KP, Gerard HC, Hudson AP, et al. Retroviral Foxp3 gene transfer ameliorates liver granuloma pathology in Schistosoma mansoni infected mice. Immunology2005, 114:410-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700