糖基转移酶pp-GalNac-T在白血病细胞诱导分化中生物学功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一、二部分pp-GalNAc- Ts在人恶性造血细胞株中mRNA的表达差异及与白血病细胞诱导分化的相关性研究
     目的:从mRNA水平检测K562细胞株、SHI-1细胞株中多肽:N乙酰氨基半乳糖转移酶家族(pp-GalNAc-Ts)的表达情况。选择其中高表达的pp-GalNAc-T亚型作为研究对象,RT-PCR测定它们在不同浓度的1,25(OH)_2 D3处理后K562和SHI-1细胞中的表达变化,同时进行细胞形态学观察以及细胞周期和凋亡的检测来证实1,25(OH)_2 D3诱导的K562和SHI-1的分化。
     方法:1.采用RT-PCR方法检测:(1)多肽:N乙酰氨基半乳糖转移酶家族在K562细胞株、SHI-1细胞株中的mRNA表达;(2)分化诱导剂处理后K562细胞株和SHI-1细胞ppGalNAcTs的mRNA表达差异。2.用瑞氏染色细胞后,光学显微镜下观察细胞形态变化。3.流式细胞仪检测加分化诱导剂处理后细胞周期和凋亡情况。
     结果:1.在K562细胞,只有pp-GalNAc-T2, -T4, -T5和-T7有明显表达,且表达量高低顺序为2> 4 > 7 > 5,而其他的pp-GalNAc-T表达很低或者几乎不表达。在SHI-1细胞,pp-GalNAcT-1, -T2, -T3和-T4表达明显,其中,pp-GalNAc-T4表达最高,其他三个表达几乎相等。
     2.1,25(OH)_2D3可诱导K562和SHI-1细胞向单核细胞系分化,表现为核染色质浓缩聚集和胞浆空泡增加。且具有剂量依赖性。并以SHI-1变化更为显著。
     3.在经过不同浓度的1,25(OH)_2D3处理之后,未出现细胞凋亡;也未出现亚G1期细胞,即凋亡峰。这些结果说明,即使在高浓度1,25(O)_2D3的水平(10~(-6) mol/L),也不影响K562和SHI-1细胞的凋亡。
     4.10~(-8), 10~(-7), 10~(-6) mol/L 1,25(OH)_2D3处理K562细胞72 h后,pp-GalNAc-T2, -T4, -T5, -T7表达量均增加,并表现出明显的剂量依赖性模式(pp-GalNAc-T2在低浓度10~(-8) mol/L 1,25(OH)_2D3诱导下没有明显增加)。其中,pp-GalNAc-T4的表达明显上调(所有浓度处理组与对照组相比,p<0.01)。pp-GalNAc-T5的表达上调也较明显(中、高浓度处理组与对照组相比,p<0.01)。
     5.在不同浓度1,25(OH)_2D3处理之后,SHI-1细胞中各型pp-GalNAc-Ts表达量的变化情况与K562细胞存在明显差异。pp-GalNAc-T1,在低浓度,10~(-8) mol/L 1,25(OH)_2D3诱导下没有表达变化;在中浓度,10~(-7) mol/L 1,25(OH)_2D3诱导下其表达量上调一倍(与低浓度处理组相比p<0.01);在高浓度,10~(-6) mol/L 1,25(OH)_2D3诱导下其表达量上调接近十倍(与中浓度处理组相比p<0.001)。pp-GalNAc-T2,在低浓度,10~(-8) mol/L 1,25(OH)_2D3诱导下其表达量上调至对照组表达量的178%(p<0.05);在中浓度,10~(-7) mol/L 1,25(OH)_2D3诱导下其表达量持续上调至对照组表达量的230%(p<0.05);但在高浓度,10~(-6) mol/L 1,25(OH)_2D3诱导下其表达量转而下降。而pp-GalNAc-T3的表达量在经不同浓度1,25(OH)_2D3处理后均无明显改变。pp-GalNAc-T4表达量变化刚好跟TI和T2的结果相反,以一种剂量依赖性方式下调(中、高浓度处理组与对照组相比p<0.01)。
     结论:本实验中ppGalNAc-Ts在不同白血病细胞株中表达情况不一致,推测不同的ppGalNAc-Ts其多肽底物特异性不同。pp-GalNAc-T2对白血病细胞的分化具有专一的正相关。这是O-糖链合成的起始酶影响白血病细胞株生长、分化的首次报道,以上这些结果都提示了,细胞中糖基转移酶和表面糖链结构的变化可以改变细胞的命运,同时也提出了糖链还具有以往所不知道的新功能。
     第三、四部分pp-GalNAc-T4正义表达载体的构建及上调pp-GalNAc-T4对白血病细胞分化的影响及机制探讨
     目的:研究pp-GalNAc-T4在全反式维甲酸诱导的白血病细胞分化中的作用,以及机制的探讨。
     方法:1,我们构建了pp-GalNAc-T4的正义表达载体,上调白血病细胞NB4中内源性pp-GalNAc-T4的表达.,2,用激光共聚焦显微镜观察细胞形态的变化,3,通过NBT还原实验观察白血病细胞是否向成熟方向分化。4,通过实时PCR,检测了用全反式维甲酸处理NB4-T4稳转细胞株后,其细胞内的癌蛋白PML-RARα基因表达情况。
     结果:1.首次构建了针对pp-GalNAc-T4的载体; 2.首次研究发现了在pp-GalNAc-T4cDNA转染NB4细胞株后,pp-GalNAc-T4基因的表达增加,观察白血病细胞的形态变化,发现上调pp-GalNAc-T4基因表达后,NB4 -T4细胞组加入ATRA后,细胞核和细胞质没有明显的变化,这说明上调表达pp-GalNAc-T4,并不能促进ATRA诱导NB4细胞的分化,反而抑制了ATRA诱导的NB4细胞分化;
     3.上调pp-GalNAc-T4基因表达后,用不同浓度的ATRA作用各细胞组72小时后,不能增加NB4-T4细胞的还原能力(P>0.05),但是可以增加NB4和NB4-0细胞的还原能力(P<0.01)。这说明上调表达pp-GalNAc-T4,抑制了ATRA诱导的NB4细胞的NBT还原能力。pp-GalNAc-T4抑制全反式维甲酸诱导的NB4细胞的分化,而这种作用可能和癌蛋白PML-RARα有关;
     4.我们对标准型CD44s和变异型v6的RT-PCR结果显示ppGalNAcT4的高表达并不影响CD44s和CD44v6mRNA水平的表达,但这并不能完全排除ppGalNAcT4的这种作用与CD44相关的可能性。可能的情况是:ppGalNAcT4直接修饰CD44,改变了其分子表面的糖链结构从而影响了CD44与透明质酸的结合;从而使得CD44不能与抗体结合,就不能降解PML-RARα蛋白(M3),从而抑制了NB4细胞的分化。
     结论:上调表达pp-GalNAc-T4,抑制全反式维甲酸诱导的NB4细胞的分化,而这种作用可能和癌蛋白PML-RARα有关。pp-GalNAc-T4抑制全反式维甲酸诱导的NB4细胞的分化,而这种作用可能和癌蛋白PML-RARα有关。可能的作用机制是:ppGalNAcT4直接修饰CD44,改变了其分子表面的糖链结构从而影响了CD44 ,使得CD44不能与抗体结合,就不能降解PML-RARα蛋白(M3),从而抑制了NB4细胞的分化。
Part1 and Part2 Study on Expressive Spectrum of ppGalNAcTs in Different Leukemia Cells and the Effects of differentiation
     Objective: To observe the expression of polypeptide : N-acetylgalactosaminyl transferase Ts(ppGalNAcTs) in different leukemia cells including K562 cell line and SHI-1 cell line and to study the variation of acetylglucosaminy transferase expression after 1,25(OH)2 D3 added to the culture medium, to find out the relative function of acetylglucosaminy transferase in the course of leukemias generating and developing, as well as to make out the influence of 1,25(OH)2 D3 on ppGalNAcTs.
     Methods: 1. Use RT-PCR to detect (1) the mRNA expression of ppGalNAcTs in K562 cell line and SHI-1 cell line;(2)the expression discrepancy of ppGalNAcTs in K562 cell line and SHI-1 cell line after 1,25(OH)2 D3 added to the culture medium. 3.To study the cell circle of leukemia cells induced by 1,25(OH)2 D3 with the flow cytometer. 4. To study the change of cell shape of leukemia cells induced by1,25(OH)2 D3 with the Laser Confocal Scanning Microscope(LCSM). Results:1. The expressions of glycosyltransferase were different in two leukemia cell lines.
     2. Afte 1,25(OH)2 D3 added to the culture medium, the mRNA expression of ppGalNAcT2、T5 in K562 cell line greatly increased. The cell cycle was arrested in G2/M phase ; No cell death was detected. The expression of glycosyltransferase in SHI-1 cell line has no obvious change than in K562 cell line.
     Conclusion: This study shows that the expression of glycosyltransferase in different leukemia cells is different. This result suggests that different glycosyltransferases have different particular substances. Leukemia cell differentiation probably has contact with pp-GalNAcT2. T5.
    
     Part3 and Part4 Construction of Plus Sense Expression plasmid of pp-GalNAc-T 4 gene and Primary Study on its Function
     Objective: This thesis aims to approach the function of pp-GalNAc-T 4 in the differentiation of leukemia induced by ATRA.
     Methods:1, Subclone pp-GalNAc-T4 fragment to eukaryotic plasmid and form plus sense plasmids. Transfect the recombinant plasmids separately to NB4. To study the change of cell shape of leukemia cells induced by ATRA with the Laser Confocal Scanning Microscope(LCSM)..Studied the variational characteristics of NBT and PML-RARαexpression on mRNA level with Real Time -PCR.
     Results:1. Subclone pp-GalNAc-T4 fragment to eukaryotic plasmid and form plus sense plasmids2.Up-regulated expressions of pp-GalNAc-T4,inhibited differentiation of leukemia NB4 induced by ATRA.
     2. Up-regulated expressions of pp-GalNAc-T4,inhibited differentiation of leukemia NB4 induced by ATRA .PML-RARαmay contribute to this functions. CD44 may contribute to this functions that cannot the degradation of PML-RARα
     Conclusion: Up-regulated expressions of pp-GalNAc-T4,inhibited differentiation of leukemia NB4 induced by ATRA .PML-RARαmay contribute to this functions. CD44 may contribute to this functions that cannot the degradation of PML-RARα.
引文
1. Hollingsworth M A, Swanson B J. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer, 2004, 4(1): 45~60
    2. Ju T, Brewer K, D’Souza A, et al. Cloning and expression of human core 1β1,3-galactosyltransferase. J Biol Chem, 2002, 277(1): 178~186
    3. Narimatsu Y, Ikehara Y, Iwasaki H, et al. Immunocytochemical analysis forintracellular dynamics of C1GalT associated with molecular chaperone, Cosmc. Biochem Biophys Res Commun, 2008, 366(1): 199~205
    4. Ju T, Cummings R D. Protein glycosylation: chaperone mutation in Tn syndrome. Nature, 2005, 437(7063): 1252
    5. Schietinger A, Philip M, Yoshida B A, et al. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science, 2006, 314(5797): 304~308
    6. Brockhausen I. , et al. Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta, 1999, 1473(1): 67~95
    7. Fukuda M. , et al. Roles of mucin-type O-glycans synthesized by core2beta1,6-N-acetylglucosaminyltransferase. Methods Enzymol, 2006, 416: 332~346
    8. Tsuiji H, Takasaki S, Sakamoto M,Irimura T and Hirohashi S. Aberrant O-glycosylation inhibits stable expression of dysadherin,a carcinoma-associated antigen, and facilitates cell±cell adhesion.Glycobiology,2003,13(7):521-527
    9. Schneider F, Kemmner W, Haensch W, Franke G, Gretschel S, Karsten U, and Schlag P.M. Overexpression of Sialyltransferase CMP-Sialic Acid:Galb1,
    3GalNAc-R a6-Sialyltransferase Is Related to Poor Patient Survival in Human Colorectal Carcinomas1Cancer Res,2001,61:4605-4611
    10. Meichenin M, Rocher J, Galanina O, Bovin N, Nifant’ev N, Sherman A, Cassagnau E, Heymann M F, Bara J, Robin H. F, and Jacques Le Pendu. Tk, a New Colon Tumor-associated Antigen Resulting from Altered O-Glycosylation1 Cancer Res,2000,60:5499-5507
    11. Machida E, Nakayama J,Amano J, and Fukuda M. Clinicopathological Significance of Core 2 b1,6-N-Acetylglucosaminyltransferase Messenger RNA Expressed in the Pulmonary Adenocarcinoma Determined by in Situ Hybridization1Cancer Res,2001,61:2226-2231
    12. Dalziel M, Whitehouse C, Farlane I, Brockhauseni I,Gschmeissner S, Schwientek T, Clausen H, Burchell J, and Taylor-Papa J. The Relative Activities of theC2GnT1 and ST3Gal-I Glycosyltransferases Determine O-Glycan Structure and Expression of a Tumor-associated Epitope on MUC1*J Biol Chem,2001, 276(14):11007-11015
    13. Lin S et al. Cell surfaceα2,6-sialylation affects adhesion of breast carcinoma cells. Exp Cell Res, 2002, 276: 101-110
    14. Julien S et al. Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration. Breast Cancer Res Tr, 2005, 90: 77-84
    15. Julien S et al. ST6GalNAcⅠexpression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumorigenecity. Glycobiology, 2006, 16: 54-64
    16. Hanisch FG et al. Immunology of O-glycosylated proteins: approaches to the design of a MUC1 glycopeptide-based tumor vaccine. Curr Protein Pept Sci 2006, 7: 307-315
    17. Sorensen AL et al. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology, 2006, 16: 96-107
    18. Miermont A et al. Cowpea Mosaic Virus Capsid: a promising carrier for the development of carbohydrate based antitumor vaccines. Chem Eur J, 2008, 14: 4939-4947
    19. Xia,L.,T.ju.A.Westmuckett,G.An,L.Ivanciu,J.M.McDaniel,F.Lupu,R.D.Cummings, and R.P.McEver, Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans.J Cell Biol . 2004.164:451-459.
    20. Fu,J.,H.Gerhardt,J.M.McDaniel,B.Xia,X.liu,Ivanciu,A.Ny,K.Hermans, R.Silasi-Mansa,S.McGee,E.Nye,T.ju,M.I.Ramirez.P.Carmeliet,R.D.Cummings,
    21. F.lupu,andL.Xia. Endothelial cell O-glycandeficiency causes blood/ lymphatic misconnections and consequent fatty liver disease in mice.J Clin Invest . 2008.118:3725-3737.
    22. An,G,B.Wei,B.Xia,J.M.McDaniel,T.Ju,R.D.Cummings,J.Braun,and L.Xia.Increasedsusceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans.J Exp Med . 2007.204:1417-1429.
    
    1. Brockhausen I . Pathway of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1473, 67-95 (1999).
    2. McGuire EJ, Roseman S. Enzymatic synthesis of the protein-hexamine linkage in sheep submaxillary mucin. J Biol Chem 242, 3745-3747 (1967).
    3. White T, Bennett EP, Takio K, Sorensen T, Bonding N, Clausen H. Purification and cDNA cloning of a human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalacto- saminyltransferase. J Biol Chem 270, 24156-24165 (1995).
    4. Bennett EP, Hassan H, Clausen H. CDNA cloning and expression of a novel human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 271: 17006-17012 (1996).
    5. Bennett PC, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell JM, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H. Cloning of a human UDP-N-acetyl-α- D-galactosamine : polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc transferees in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273, 30472-30481 (1998).
    6. Bennett EP, Hassan H, Mandel U, Hollingsworth MA, Akisawa N, Ikematsu Y, Merkx G, van Kessel AG, Olofsson S, Clausen H. Cloning and characterization of a close homologue of human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalacto- saminyltransferase-T3, designated GalNAc-T6, Evidence for genetic but not functional redundancy. J Biol Chem 271, 25362-25370 (1999).
    7. Bennett EP, Hassan H, Hollingworth MA, Clauson H. A novel human UDP-N-acetyl-D-galactosamine : polypeptide N-acetylgalactosaminyltransferase, GalNAc -T7, with specifically for partial GalNAc-glycosylated acceptor substrates.FEBS Lett 460, 226-230 (1999).
    8. White KE, Lorenz B, Evans WE, Meitinger T, Strom TM, Econs MJ. Molecular cloning of a novel UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase, GalNAc-T8 and analysis as a candidate autosomal dominant hypophosphatemic rickects (ADHR) gene. Gene 246, 347-356 (2000).
    9. Toba S, Tenno M, Konishi M, Mikami T, Itoch N, Kurosak A. Brain specific expression of a novel human UDP-GalNAc: polypeptide N- acetylgalactosaminy -ltransferase (GalNAc -T9). Biochim Biophys Acta 1493, 264-268 (2000).
    10. Cheng LM, Tachibana K, Zhang Y, Guo JM, Tachibana K, Kameyama A, Wang H, Hiruma T, Iwasaki H, Togayachi A, KudoT, Narimatsu H. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T10. FEBS Lett 531, 115-121 (2002).
    11. Schwientek T, Bennett EP, Flores C, Thacker J, Hollman M, Reis CA, Behrens J, Mendel U, Keck B, Schafer MA, Haselmann K, Zuarev R, Roepstorff P, Burchell JM, Taylor-Papadimitriou J, Hollingsworth MA, Clausen H. Functional conservation of subfamilies of putative UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase in Drosophila, Caenorhabditis elegans, and manmals. One subfamily composed of 1 (2) 35Aa is essential in Drosophila. J Biol Chem 277, 22623-22638 (2002).
    12. Guo JM, Zhang Y, Cheng LM, Iwasaki H, Wang H, Kubota T, Tachibana K, Narimatsu H. Molecular cloning and characterization of a novel member of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase family, ppGaNAcTase-T12. FEBS Lett 524, 211-218 (2002).
    13. Zhang Y, Iwasaki H, Wang H, Kudo T, Kalka TB, Hennet T, Kubota T, Cheng LM, Inaba N, Gotch M, Togatachi A, Guo JM, Hisatomi H, Nakajima K, Nishihara S, Nakamura M, Marth JD, Narimatsu H. Clonong and characterization of a new human UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminy - ltransferases, designated pp-GalNAc-T13, that is specially expressed in neuron and synthesized GalNAcα-serine/threonine antigen. J Biol Chem 278, 573-584(2003).
    14. Wang H, Tachibana K, Zhang Y, Iwasaki H, Kameyama A, Cheng LM, Guo JM, Hiruma T. Togayachi A, Kudo T, Kikuchi N, Narimatsu H. Cloning and characterization of a novel UDP-N-acetyl-α-D-galactosaminyltransferases. pp-GalNAc- T14. Biochem Biophys Res Commun 300, 738-744 (2003).
    15. Cheng L, Tachibana K, Iwasaki H, Kameyama A, Zhang Y, Kubota T, Hiruma T, Tachibana K, Kudo T, Guo JM, Narimatsu H. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T15. FEBS lett 566, 17-24 (2004).
    16. Wandalls HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. Substrate Specificities of three menbers of the human UDP-N-acetyl- (-D-galactosamine : polypeptide N-acetyl-galactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem, 1997, 272: 2350-23514.
    17. Koenderman AHL, Wijermans PW, van den Eijnden DH. Changes in the expression of N-acetylglucosaminyltransferase III, IV, V associated with the differentiation of HL-60 cells. FEBS Lett 222, 42-46 (1987).
    18. Nakao H, Nishikawa A, Karasuno T, Nishiura T, Iida M, Kanayama Y, Yonezawa T, Tarui S, Taniguchi T. Modulation of N-acetylglucosaminyltransferase III, IV and V activities and alteration of the surface oligosaccharide structure of a myeloma cell by interleukin 6. Biochem Biophys Res Commun 172, 1260-1266 (1990).
    19. Li Z, Liu AH, Liu F, Chen HL. Modification of pentasaccharide core of surface N-glycans during differentiation of HL-60 cells. Leukemia Res 22, 727-734 (1998).
    20. Zhao Jia-Hong, Zhang Ying, Zhang Xia-Ying, Chen Hui-Li. Alteration in the expression of early stage processing enzymes of N-glycan during myeloid and monocytoid differentiation of HL-60 cells. Leukemia Res 27, 599-605 (2003).
    21. Dressler KA, Kolesnick RN. Sphingolipids and monocyte/macrophage differentiation of HL-60 cells. Trends Glycosci Glycotech 12, 247-260 (1991).
    22. Kawase T, Oguro A. Granulocyte colony-stimulating factor synergisticallyaugments 1,25-dihydroxyvitamin D3-induced monocytic differentiation in murine bone marrow cell cultures. Horm Metab Res 36, 445-452 (2004).
    23. Nazarova N, Qiao S, Golovko O, Lou YR, Tuohimaa P. Calcitriol-induced prostate-derived factor: autocrine control of prostate cancer cell growth. Leuk Lymphoma 45, 2119-21126 (2004).
    24. Dackiw AP, Ezzat S, Huang P, Liu W, Asa SL. Vitamin D3 administration induces nuclear p27 accumulation, restores differentiation, and reduces tumor burden in a mouse model of metastatic follicular thyroid cancer. Horm Metab Res 36,445-452 (2004).
    25. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutri 80 (6 Supp1), 1689S-1696S (2004).
    26. Bettoun DJ, Lu J, Khalifa B, Yee Y, Chin WW, Nagpal S. Ligand modulates VDR-Ser/Thr protein phosphatase interaction and p70S6 kinase phosphorylation in a cell-context-dependent manner. J Steroid Biochem Mol Biol 89-90, 195-198 (2004).
    27. Lozzio BB, Lozzio CB. Properties of the K562 cell line derived from a patient with chronic myeloid leukemia. Intern J Cancer 19, 136-143 (1977)
    28. Moore DC, Carter DL, Bhandal AK, Studzinski GP. Inhibition by 1,25 dihydroxyvitamin D3 of chemically induced erythroid differentiation of K562 leukemia cells. Blood 77, 1452-1461 (1991).
    29. Chen S, Xue Y, Zhang X, Wu Y, Pan J, Wang Y, Ceng J. A new human acute monocytic leukemia cell line SHI-1 with t(6;11)(q27;q23) gene alteration and high tumorigenicity in nude mice. Hematologia 90, 766-75 (2005).
    30. Humeniuk-Polaczek R, Marcinkowska E. Impaired nuclear localization of vitamin D receptor in leukemia cells resistant to calcitriol-induced differentiation. J Steroid Biochem Mol Biol 88, 361-366 (2004).
    31. Hsieh JC, Sisk JM, Jurutka PW, Haussler CA, Slater SA, Haussler MR, Thompson CC. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J Biol Chem 278,38665-38674 (2003).
    32. Hagan FK, Ten Hagan KG, Tabak LA. Polypeptide N- acetylgalactosaminy - ltransferases. In: Taniguchi N, Honke K, Fukuda M editors. Handbook of glycosyltransferases and related genes. (Springer-Verlag Press, Tokyo, 2002) pp167-173.
    33. Ten Hagen KG, Hagen F K, Balys M M, Beres T M, Van Wuyckhuyse B, Tabak L A. Cloning and expression of a novel, tissue specifically expressed member of the UDP- GalNAc: polypeptide N-acetylgalactosaminyltransferase family. J Biol Chem; 273, 27749-27754 (1998).
    1. Brockhausen I . Pathway of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1473, 67-95 (1999).
    2. McGuire EJ, Roseman S. Enzymatic synthesis of the protein-hexamine linkage in sheep submaxillary mucin. J Biol Chem 242, 3745-3747 (1967).
    3. White T, Bennett EP, Takio K, Sorensen T, Bonding N, Clausen H. Purification and cDNA cloning of a human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalacto- saminyltransferase. J Biol Chem 270, 24156-24165 (1995).
    4. Bennett EP, Hassan H, Clausen H. CDNA cloning and expression of a novel human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 271: 17006-17012 (1996).
    5. Bennett PC, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell JM, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H. Cloning of a human UDP-N-acetyl-α- D-galactosamine : polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc transferees in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem273, 30472-30481 (1998).
    6. Bennett EP, Hassan H, Mandel U, Hollingsworth MA, Akisawa N, Ikematsu Y, Merkx G, van Kessel AG, Olofsson S, Clausen H. Cloning and characterization of a close homologue of human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalacto- saminyltransferase-T3, designated GalNAc-T6, Evidence for genetic but not functional redundancy. J Biol Chem 271, 25362-25370 (1999).
    7. Bennett EP, Hassan H, Hollingworth MA, Clauson H. A novel human UDP-N-acetyl-D-galactosamine : polypeptide N-acetylgalactosaminyltransferase, GalNAc -T7, with specifically for partial GalNAc-glycosylated acceptor substrates. FEBS Lett 460, 226-230 (1999).
    8. White KE, Lorenz B, Evans WE, Meitinger T, Strom TM, Econs MJ. Molecular cloning of a novel UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase, GalNAc-T8 and analysis as a candidate autosomal dominant hypophosphatemic rickects (ADHR) gene. Gene 246, 347-356 (2000).
    9. Toba S, Tenno M, Konishi M, Mikami T, Itoch N, Kurosak A. Brain specific expression of a novel human UDP-GalNAc: polypeptide N-acetylgalactosaminy -ltransferase (GalNAc -T9). Biochim Biophys Acta 1493, 264-268 (2000).
    10. Cheng LM, Tachibana K, Zhang Y, Guo JM, Tachibana K, Kameyama A, Wang H, Hiruma T, Iwasaki H, Togayachi A, KudoT, Narimatsu H. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T10. FEBS Lett 531, 115-121 (2002).
    11. Schwientek T, Bennett EP, Flores C, Thacker J, Hollman M, Reis CA, Behrens J, Mendel U, Keck B, Schafer MA, Haselmann K, Zuarev R, Roepstorff P, Burchell JM, Taylor-Papadimitriou J, Hollingsworth MA, Clausen H. Functional conservation of subfamilies of putative UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase in Drosophila, Caenorhabditis elegans, and manmals. One subfamily composed of 1 (2) 35Aa is essential in Drosophila. J Biol Chem 277, 22623-22638 (2002).
    12. Guo JM, Zhang Y, Cheng LM, Iwasaki H, Wang H, Kubota T, Tachibana K,Narimatsu H. Molecular cloning and characterization of a novel member of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase family, ppGaNAcTase-T12. FEBS Lett 524, 211-218 (2002).
    13. Zhang Y, Iwasaki H, Wang H, Kudo T, Kalka TB, Hennet T, Kubota T, Cheng LM, Inaba N, Gotch M, Togatachi A, Guo JM, Hisatomi H, Nakajima K, Nishihara S, Nakamura M, Marth JD, Narimatsu H. Clonong and characterization of a new human UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminy -ltransferases, designated pp-GalNAc-T13, that is specially expressed in neuron and synthesized GalNAcα-serine/threonine antigen. J Biol Chem 278, 573-584 (2003).
    14. Wang H, Tachibana K, Zhang Y, Iwasaki H, Kameyama A, Cheng LM, Guo JM, Hiruma T. Togayachi A, Kudo T, Kikuchi N, Narimatsu H. Cloning and characterization of a novel UDP-N-acetyl-α-D-galactosaminyltransferases. pp- GalNAc- T14. Biochem Biophys Res Commun 300, 738-744 (2003).
    15. Cheng L, Tachibana K, Iwasaki H, Kameyama A, Zhang Y, Kubota T, Hiruma T, Tachibana K, Kudo T, Guo JM, Narimatsu H. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T15. FEBS lett 566, 17-24 (2004).
    16. Wandalls HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. Substrate Specificities of three menbers of the human UDP-N-acetyl- (-D-galactosamine : polypeptide N-acetyl-galactosaminyltransferase family, GalNAc - T1, -T2, and -T3. J Biol Chem, 1997, 272: 2350-23514.
    17. Koenderman AHL, Wijermans PW, van den Eijnden DH. Changes in the expression of N-acetylglucosaminyltransferase III, IV, V associated with the differentiation of HL-60 cells. FEBS Lett 222, 42-46 (1987).
    18. Nakao H, Nishikawa A, Karasuno T, Nishiura T, Iida M, Kanayama Y, Yonezawa T, Tarui S, Taniguchi T. Modulation of N-acetylglucosaminyltransferase III, IV and V activities and alteration of the surface oligosaccharide structure of a myeloma cell by interleukin 6. Biochem Biophys Res Commun 172, 1260-1266 (1990).
    19. Li Z, Liu AH, Liu F, Chen HL. Modification of pentasaccharide core of surface N-glycans during differentiation of HL-60 cells. Leukemia Res 22, 727-734 (1998).
    20. Zhao Jia-Hong, Zhang Ying, Zhang Xia-Ying, Chen Hui-Li. Alteration in the expression of early stage processing enzymes of N-glycan during myeloid and monocytoid differentiation of HL-60 cells. Leukemia Res 27, 599-605 (2003).
    21. Dressler KA, Kolesnick RN. Sphingolipids and monocyte/macrophage differentiation of HL-60 cells. Trends Glycosci Glycotech 12, 247-260 (1991).
    22. Kawase T, Oguro A. Granulocyte colony-stimulating factor synergistically augments 1,25-dihydroxyvitamin D3-induced monocytic differentiation in murine bone marrow cell cultures. Horm Metab Res 36, 445-452 (2004).
    23. Nazarova N, Qiao S, Golovko O, Lou YR, Tuohimaa P. Calcitriol-induced prostate-derived factor: autocrine control of prostate cancer cell growth. Leuk Lymphoma 45, 2119-21126 (2004).
    24. Dackiw AP, Ezzat S, Huang P, Liu W, Asa SL. Vitamin D3 administration induces nuclear p27 accumulation, restores differentiation, and reduces tumor burden in a mouse model of metastatic follicular thyroid cancer. Horm Metab Res 36,445-452 (2004).
    25. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutri 80 (6 Supp1), 1689S-1696S (2004).
    26. Bettoun DJ, Lu J, Khalifa B, Yee Y, Chin WW, Nagpal S. Ligand modulates VDR-Ser/Thr protein phosphatase interaction and p70S6 kinase phosphorylation in a cell-context-dependent manner. J Steroid Biochem Mol Biol 89-90, 195-198 (2004).
    27. Lozzio BB, Lozzio CB. Properties of the K562 cell line derived from a patient with chronic myeloid leukemia. Intern J Cancer 19, 136-143 (1977)
    28. Moore DC, Carter DL, Bhandal AK, Studzinski GP. Inhibition by 1,25 dihydroxyvitamin D3 of chemically induced erythroid differentiation of K562 leukemia cells. Blood 77, 1452-1461 (1991).
    29. Chen S, Xue Y, Zhang X, Wu Y, Pan J, Wang Y, Ceng J. A new human acute monocytic leukemia cell line SHI-1 with t(6;11)(q27;q23) gene alteration and high tumorigenicity in nude mice. Hematologia 90, 766-75 (2005).
    30. Humeniuk-Polaczek R, Marcinkowska E. Impaired nuclear localization of vitamin D receptor in leukemia cells resistant to calcitriol-induced differentiation. J Steroid Biochem Mol Biol 88, 361-366 (2004).
    31. Hsieh JC, Sisk JM, Jurutka PW, Haussler CA, Slater SA, Haussler MR, Thompson CC. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J Biol Chem 278, 38665-38674 (2003).
    32. Hagan FK, Ten Hagan KG, Tabak LA. Polypeptide N-acetylgalactosaminy -ltransferases. In: Taniguchi N, Honke K, Fukuda M editors. Handbook of glycosyltransferases and related genes. (Springer-Verlag Press, Tokyo, 2002) pp167-173.
    33. Ten Hagen KG, Hagen F K, Balys M M, Beres T M, Van Wuyckhuyse B, Tabak L A. Cloning and expression of a novel, tissue specifically expressed member of the UDP- GalNAc: polypeptide N-acetylgalactosaminyltransferase family. J Biol Chem; 273, 27749-27754 (1998).
    1.熊树民.白血病MICM分型诊断.人民军医出版社,2002,146-147
    2. McGuire EJ, Roseman S. Enzymatic synthesis of the protein-hexamine linkage in sheep submaxillary mucin. J Biol Chem 242, 3745-3747 (1967).
    3. White T, Bennett EP, Takio K, Sorensen T, Bonding N, Clausen H. Purification and cDNA cloning of a human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalacto- saminyltransferase. J Biol Chem 270, 24156-24165 (1995).
    4. Bennett EP, Hassan H, Clausen H. CDNA cloning and expression of a novel human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 271: 17006-17012 (1996).
    5. Bennett PC, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell JM,Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H. Cloning of a human UDP-N-acetyl-α- D-galactosamine : polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc transferees in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273, 30472-30481 (1998).
    6. Bennett EP, Hassan H, Mandel U, Hollingsworth MA, Akisawa N, Ikematsu Y, Merkx G, van Kessel AG, Olofsson S, Clausen H. Cloning and characterization of a close homologue of human UDP-N-acetyl-α-D-galactosamine : polypeptide N-acetylgalacto- saminyltransferase-T3, designated GalNAc-T6, Evidence for genetic but not functional redundancy. J Biol Chem 271, 25362-25370 (1999).
    7. Bennett EP, Hassan H, Hollingworth MA, Clauson H. A novel human UDP-N-acetyl-D-galactosamine : polypeptide N-acetylgalactosaminyltransferase, GalNAc -T7, with specifically for partial GalNAc-glycosylated acceptor substrates. FEBS Lett 460, 226-230 (1999).
    8. White KE, Lorenz B, Evans WE, Meitinger T, Strom TM, Econs MJ. Molecular cloning of a novel UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase, GalNAc-T8 and analysis as a candidate autosomal dominant hypophosphatemic rickects (ADHR) gene. Gene 246, 347-356 (2000).
    9. Toba S, Tenno M, Konishi M, Mikami T, Itoch N, Kurosak A. Brain specific expression of a novel human UDP-GalNAc: polypeptide N-acetylgalactosaminy -ltransferase (GalNAc -T9). Biochim Biophys Acta 1493, 264-268 (2000).
    10. Cheng LM, Tachibana K, Zhang Y, Guo JM, Tachibana K, Kameyama A, Wang H, Hiruma T, Iwasaki H, Togayachi A, KudoT, Narimatsu H. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T10. FEBS Lett 531, 115-121 (2002).
    11. Schwientek T, Bennett EP, Flores C, Thacker J, Hollman M, Reis CA, Behrens J, Mendel U, Keck B, Schafer MA, Haselmann K, Zuarev R, Roepstorff P, Burchell JM, Taylor-Papadimitriou J, Hollingsworth MA, Clausen H. Functional conservation of subfamilies of putative UDP-GalNAc: polypeptide N-acetylgalactosaminy-ltransferase in Drosophila, Caenorhabditis elegans, and manmals. One subfamily composed of 1 (2) 35Aa is essential in Drosophila. J Biol Chem 277, 22623-22638 (2002).
    12. Guo JM, Zhang Y, Cheng LM, Iwasaki H, Wang H, Kubota T, Tachibana K, Narimatsu H. Molecular cloning and characterization of a novel member of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase family, ppGa - NAcTase- T12. FEBS Lett 524, 211-218 (2002).
    13. Zhang Y, Iwasaki H, Wang H, Kudo T, Kalka TB, Hennet T, Kubota T, Cheng LM, Inaba N, Gotch M, Togatachi A, Guo JM, Hisatomi H, Nakajima K, Nishihara S, Nakamura M, Marth JD, Narimatsu H. Clonong and characterization of a new human UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactosaminy -ltransferases, designated pp-GalNAc-T13, that is specially expressed in neuron and synthesized GalNAcα-serine/threonine antigen. J Biol Chem 278, 573-584 (2003).
    14. Wang H, Tachibana K, Zhang Y, Iwasaki H, Kameyama A, Cheng LM, Guo JM, Hiruma T. Togayachi A, Kudo T, Kikuchi N, Narimatsu H. Cloning and characterization of a novel UDP-N-acetyl-α-D-galactosaminyltransferases. pp- GalNAc- T14. Biochem Biophys Res Commun 300, 738-744 (2003).
    15. Cheng L, Tachibana K, Iwasaki H, Kameyama A, Zhang Y, Kubota T, Hiruma T, Tachibana K, Kudo T, Guo JM, Narimatsu H. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T15. FEBS lett 566, 17-24 (2004).
    16. Wandalls HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. Substrate Specificities of three menbers of the human UDP-N-acetyl-(-D-galactosamine : polypeptide N-acetyl-galactosaminyltransferase family, GalNAc-T1,-T2, and -T3. J Biol Chem, 1997, 272: 2350-23514.
    17. Koenderman AHL, Wijermans PW, van den Eijnden DH. Changes in the expression of N-acetylglucosaminyltransferase III, IV, V associated with the differentiation of HL-60 cells. FEBS Lett 222, 42-46 (1987).
    18. Nakao H, Nishikawa A, Karasuno T, Nishiura T, Iida M, Kanayama Y, Yonezawa T, Tarui S, Taniguchi T. Modulation of N-acetylglucosaminyltransferase III, IV and V activities and alteration of the surface oligosaccharide structure of a myeloma cell by interleukin 6. Biochem Biophys Res Commun 172, 1260-1266 (1990).
    19. Li Z, Liu AH, Liu F, Chen HL. Modification of pentasaccharide core of surface N-glycans during differentiation of HL-60 cells. Leukemia Res 22, 727-734 (1998).
    20. Zhao Jia-Hong, Zhang Ying, Zhang Xia-Ying, Chen Hui-Li. Alteration in the expression of early stage processing enzymes of N-glycan during myeloid and monocytoid differentiation of HL-60 cells. Leukemia Res 27, 599-605 (2003).
    21. Dressler KA, Kolesnick RN. Sphingolipids and monocyte/macrophage differentiation of HL-60 cells. Trends Glycosci Glycotech 12, 247-260 (1991).
    22. Kawase T, Oguro A. Granulocyte colony-stimulating factor synergistically augments 1,25-dihydroxyvitamin D3-induced monocytic differentiation in murine bone marrow cell cultures. Horm Metab Res 36, 445-452 (2004).
    23. Nazarova N, Qiao S, Golovko O, Lou YR, Tuohimaa P. Calcitriol-induced prostate-derived factor: autocrine control of prostate cancer cell growth. Leuk Lymphoma 45, 2119-21126 (2004).
    24. Dackiw AP, Ezzat S, Huang P, Liu W, Asa SL. Vitamin D3 administration induces nuclear p27 accumulation, restores differentiation, and reduces tumor burden in a mouse model of metastatic follicular thyroid cancer. Horm Metab Res 36,445-452 (2004).
    25. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutri 80 (6 Supp1), 1689S-1696S (2004).
    26. Bettoun DJ, Lu J, Khalifa B, Yee Y, Chin WW, Nagpal S. Ligand modulates VDR-Ser/Thr protein phosphatase interaction and p70S6 kinase phosphorylation in a cell-context-dependent manner. J Steroid Biochem Mol Biol 89-90, 195-198 (2004).
    27. Lozzio BB, Lozzio CB. Properties of the K562 cell line derived from a patient withchronic myeloid leukemia. Intern J Cancer 19, 136-143 (1977)
    28. Moore DC, Carter DL, Bhandal AK, Studzinski GP. Inhibition by 1,25 dihydroxyvitamin D3 of chemically induced erythroid differentiation of K562 leukemia cells. Blood 77, 1452-1461 (1991).
    29. Chen S, Xue Y, Zhang X, Wu Y, Pan J, Wang Y, Ceng J. A new human acute monocytic leukemia cell line SHI-1 with t(6;11)(q27;q23) gene alteration and high tumorigenicity in nude mice. Hematologia 90, 766-75 (2005).
    30. Humeniuk-Polaczek R, Marcinkowska E. Impaired nuclear localization of vitamin D receptor in leukemia cells resistant to calcitriol-induced differentiation. J Steroid Biochem Mol Biol 88, 361-366 (2004).
    31. Hsieh JC, Sisk JM, Jurutka PW, Haussler CA, Slater SA, Haussler MR, Thompson CC. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J Biol Chem 278, 38665-38674 (2003).
    32. Hagan FK, Ten Hagan KG, Tabak LA. Polypeptide N-acetylgalactosaminy -ltransferases. In: Taniguchi N, Honke K, Fukuda M editors. Handbook of glycosyltransferases and related genes. (Springer-Verlag Press, Tokyo, 2002) pp167-173.
    33. Ten Hagen KG, Hagen F K, Balys M M, Beres T M, Van Wuyckhuyse B, Tabak L A. Cloning and expression of a novel, tissue specifically expressed member of the UDP- GalNAc: polypeptide N-acetylgalactosaminyltransferase family. J Biol Chem; 273, 27749-27754 (1998).
    1. Pier Paolo Panclolfi. Oncogenes and tumor suppressions in the molecular Pathogenesis of acute Promyelocytic leukemia.Human Molecular Cenetica,2001;10(7):769
    2. Arsenic Trioxide Controls the Fate of the PML-RAR Oncoprotein by DirectlyBinding PML Xiao-Wei Zhang,1,* Xiao-Jing Yan,1,* Zi-Ren Zhou,2 Fei-Fei Yang,3 Zi-Yu Wu,3 Hong-Bin Sun,4 Wen-Xue Liang,1 Ai-Xin Song,2 Valérie Lallemand- Breitenbach, 5 Marion Jeanne,5 Qun-Ye Zhang,1 Huai-Yu Yang,6 Qiu-Hua Huang,1 Guang-Biao Zhou,7 Jian-Hua Tong,1 Yan Zhang,1 Ji-Hui Wu,4 Hong-Yu Hu,2 Hugues de Thé,5,8 Sai-Juan Chen,1,8, Zhu Chen1,8, (science2010)
    3. Charrad RS,Yue L,Delpech B,et al.Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia.Nat Med,1999,5:669-6764 Kincade
    4. W.Blasting away leukemia.Nat Med,1999,5:619-620
    5. Kenneth J.Livak and Thomas D.et al.Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△C T Method.[J] .METHODS,2001,25,402-408
    6. Huang ME,Ye Yc,Chen SR,et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic Leukemia [J].Blood,1988,72(2):267
    7. Gudas LJ,Retinoids,retinoic-responsive genes, cell differentiation and Cancer [J].Cell Growth Diff, 1992, 3(9):655
    8.李晟,陈子兴,王玮等.明胶酶A在急性白血病细胞中的表达及其临床意义[J].中华内科杂志,2003,42(10):84-687
    9.王志杰.维甲酸化学预防肺癌的研究进展[M].国外医学肿瘤学分册,1998,25(2):106
    10.司徒振强,吴军正.细胞培养.北京:世界图书出版公司,1996:193 194
    11. Dasgupta A, Takahashi K, Cutler M, Tanabe KK. O-linked Glycosylation Modifies CD44 Adhesion to Hyaluronate in Colon Carcinoma Cells. BBRC 1996, 227:110-117.
    1 Jensen O N. Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol, 2006, 7(6) : 391~ 403
    2 Comer F I, Hart G W. O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem, 2000, 275 (58): 29179~29182
    3 Hart G W, Housley M P, Slawson C. Cycling of O-linkedβ-N-acetylglucosamine on nucleocytoplasmic proteins. Nature, 2007, 446: 1017~1022
    4 Torres C R, Hart G W. Topography and polypeptide distribution of terminal Nacetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem, 1984, 259(5): 3308~3317
    5 Zachara N E, Hart G W. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta, 2006, 1761(5-6): 599~617
    6 Slawson C, Housley M P, Hart G W. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. J Cell Biochem, 2006, 97(1): 71~83
    7 Hart G W. Dynamic O-linked glycosylation of nuclear and cytoskeletal protein. Annu Rev Biochem, 1997, 66: 315~335
    8 Vosseller K, Wells L, Hart G W. Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics. Biochimie, 2001, 83(7): 575~581
    9 Arnold C S, Johnson G W, Cole R N, et al. The Microtubule-associated Protein Tau Is Extensively Modified with O-linked N-acetylglucosamine. J Biol Chem, 1996, 271(46) : 28741~28744
    10 Liu F, Iqbal K, Hart G W, et al. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA, 2004, 101(29): 10804~10809
    11 O’Donnell N, Zachara N E, Hart G W, et al. Ogt-dependent X-chromosomelinkedprotein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol, 2004, 24(4) : 1680~1690
    12 Haltiwanger R S, Philipsberg G A. Mitotic arrest with nocodazole induces selective changes in the level of O-linked N-acetylglucosamine and accumulation of incompletely processed N-glycans on proteins from HT29 cells. J Biol Chem, 1997, 272(13) : 8752~8758
    13 Start C M, Hanover J A. Glycosylation of nuclear pore protein p62.Reticulocytelysate catalyzes O-linked N-acetylglucosamine addition in vitro. J Biol Chem, 1990, 265(12):6868~6873
    14 Lubas W A, Smith M, Starr C M, et al. Analysis of nuclear pore protein p62 glycosylation. Biochem, 1995, 34(5):1686~1694
    15 Love D C., Hanover J A. The hexosamine signaling pathway: deciphering the‘O-GlcNAc code’. Sci STKE, 2005, Nov 29(312): re13
    16 Kelly W G, Dahmus M E, Hart G W. RNA polymerase II is a glycoprotein Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem, 1993, 268(14): 10416~10424
    17 Housley M P, Rodgers J T, et al. O-GlcNAc Regulates FoxO Activation in Response to Glucose. J Bio Chem, 2008, doi:10.1074/jbc.M802240200
    18 Vuillier F, Dumas G, Magnac C, et al. Lower levels of surface B-cell-receptor expression in chronic lymphocytic leukemia are associated with glycosylation and folding defects of theμand CD79a chains. Blood, 2005, 105: 2933~2940
    19 Cabrera P V, Amano M, Mitoma J, et al. Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood, 2006, 108: 2399~2406
    20 Galonic D P, Gin D Y. Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines. Nature, 2007, 446: 2000~2007
    21 Scanlan C N, Offer J, Zitzmann N, et al. Exploiting the defensive sugars of HIV-1 for drug and vaccine design. Nature, 2007, 446: 1038~1045
    22 Liu M, Haidan C, Fengling L, et al. Deletion of N-glycosylation sites of hepatitis Cvirus envelope protein E1 enhances specific cellular and humoral immune responses. Vaccine, 2007, 25: 6572~6580
    23 Ohtsubo K,, Takamatsu S,, Minowa M T, et al. Dietary and Genetic Control of Glucose Transporter 2 Glycosylation Promotes Insulin Secretion in Suppressing Diabetes[J]. Cell 2005, 123: 1307~1321
    24 van Schooten Carina J M, Denis Ce′cile V, Lisman Ton, et al. Variations in glycosylation of vonWillebrand factor with O-linked sialylated T-antigen are associated with its plasma levels. Blood, 2007, 109: 2430~2437
    25 Mohlke K L, Purkayastha A A, Westrick R J, et al. Mvwf, a Dominant Modifier of Murine von Willebrand Factor, Results from Altered Lineage-Specific Expression of a Glycosyltransferase[. Cell, 1999, 96: 111~120
    26 Iqba1 K, Alonso A C, Gong C X, et a1. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neura1 Transm, 1998, 53:169~180
    27 Tony L, Stephanie F, Dupont-W allois L, et a1. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of tau proteins—a role in nuclear localization. Biochim Biophys Acta, 2003, 1619 (2): 167~176
    28 Minoshima S, Frey K A, Koeppe R A, et al. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nuel Med, l995, 36(7): l238~l248
    29 Gong C X, Liu F, Grundke-Iqbal I, et al. Hypothesis: impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decreasein Tau O-GlcNAcylation. J Alzheimer's Dis, 2006, 9(1): 1~l2
    30 Chou T Y, Dang C V, Hart G W. Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci USA, 1995, 92(10) : 4417~4421
    31 Shaw P, Freeman J, Bovey R, et al. Regulation of specific DNA binding by p53:evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene, 1996, 12(4): 921~930
    32 Chou T Y, Hart G W. O-linked N-acetylglucosamine and cancer: messages fromthe glycosylation of c-Myc. Adv Exp Med Biol, 2001, 491: 413~418
    33 Chou T Y, Hart G W, Dang C V. c-Myc Is Glycosylated at Threonine 58, a Known Phosphorylation Site and a Mutational Hot Spot in Lymphomas. J Biol Chem, 1995, 270(32): 18961~18965
    34 Griffith L S, Schmitz B. O-linked N-acetylglucosamine levels in cerebellar neurons respond reciprocally to perturbations of phosphorylation. Eur J Biochem, 1999, 262 : 824~832
    35 Medina L, Grove K, Haltiwanger R S. SV40 large T antigen is modified with O-linked N-acetylglucosamine but not with other forms of glycosylation. Glycobiology, 1998, 8 : 383~391
    36 Yang W H, Kim J E, Nam H W, et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol, 2006, 8(10): 1074~1083
    37 Endo T, Toda T. Glycosylation in congenital muscular dystrophies. Biol Pharm Bull, 2003, 26(12):1641~164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700