同源无启动子DNA片段对人胰腺癌细胞外源性整合基因及内源性基因的序列特异性抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌由于其起病隐匿、易转移、解剖位置复杂、手术困难和对放化疗不敏感等原因,已经成为主要的致死性癌症之一。寻找有效的基因治疗方法是改善胰腺癌预后的重要措施之一。
     有研究发现在植物中局部转染外源无启动子DNA可以引起整个系统的序列特异性基因沉默。但至今无人将其应用于人的细胞,特别是人的癌细胞。本实验从两方面验证了运用克隆有目的基因cDNA全长片段的重组质粒载体能够特异地抑制人胰腺癌细胞基因的表达。(1):利用绿色荧光蛋白(Green FluorescentProtein,GFP)的可视性,观察到整合入胰腺癌细胞系Panc-1的外源基因GFP被抑制;(2)观察到胰腺癌最常见的内源性癌基因K-ras在三种胰腺癌细胞系(Panc-1、Miapaca-2、Aspc-1)中被特异性抑制。
     1.构建3种重组质粒:含有GFP基因cDNA全长片段、含有K-ras基因cDNA全长片段与含K-ras基因cDNA第一外显子的片段
     (1)获取GFP基因cDNA全长片段:由pEGFP-C1质粒图谱信息得到GFP全长cDNA序列。设计特异引物并在引物两端加入酶切位点,扩增出GFP基因的cDNA全长片段。
     (2)获取K-ras cDNA全长片段:质粒pOPRSVI/MCS含K-ras cDNA全长。在其多克隆位点两侧选取不同的酶切位点进行酶切。
     (3)获取K-ras第一外显子DNA片段:提取含野生型K-ras基因的胰腺癌细胞系Bxpc-3的基因组DNA,在K-ras第一外显子两侧的内含子里设计引物(两端加入酶切位点)扩增含第一外显子的基因片段。
     (4)构建3种重组质粒:将上述基因片段分别连接到复制型质粒puc19。重组质粒分别命名为puc-GFP、puc-K-ras、puc-exon。3种重组质粒分别在DH5a大肠杆菌中进行转化、扩增并且采用琼脂糖电泳及测序鉴定正确序列。
     2.将外源基因GFP整合入人胰腺癌细胞系Panc-1
     将表达GFP的质粒pEGFP-C1转染入Panc-1细胞,并进行G418筛选。挑取具有抗新霉素抗性的克隆进一步培养,得到基因组内整合有EGFP基因的克隆细胞。倒置显微镜及流式细胞仪检测细胞克隆纯度。
     3.验证puc-GFP对GFP蛋白表达的抑制效应
     (1)流式细胞术及蛋白印迹技术证实puc-GFP可抑制整合入人胰腺癌细胞系Panc-1中的外源基因GFP的表达。抑制效应和转染的puc-GFP呈剂量、时间依赖性效应关系。
     (2)流式细胞术及倒置显微镜观察证实,puc-GFP可抑制GFP表达质粒pEGFP-C1在Panc-1细胞中的瞬时转染效率。抑制效应与puc-GFP与pEGFP-C1共转染细胞时的比值呈正相关。
     4.验证puc-K-ras及puc-exon对细胞内同源癌基因表达的抑制效果
     (1)实时定量RT-PCR检测mRNA的表达:puc-K-ras转染细胞系Panc-1后,分别在下面三种情况下收获细胞并提取其细胞的总RNA:a.不同剂量、同一时间;b.同一剂量,不同时间;c.挑取puc-K-ras稳定转染细胞系。将上述总RNA,经逆转录酶合成cDNA,最后在实时定量PCR扩增仪上进行扩增并分析结果。实验a、c设有未处理组、空质粒puc19组作为对照,实验b除设有上述两种对照组外还有K-ras siRNA组作为阳性对照;结果表明:a.puc-K-ras可抑制Panc-1细胞内源性癌基因K-ras的表达,并且抑制强度与转染质粒剂量呈正比;b.puc-K-ras瞬时转染Panc-1细胞后前两天其K-ras mRNA明显上升,第三天开始下降,直到转染后第十天K-ras mRNA水平仍明显低于正常对照组及空质粒组;c.puc-K-ras稳定转染细胞系的K-ras mRNA远远低于正常对照组和puc19稳定转染细胞系。
     (2)蛋白印迹检测蛋白表达:提取转染细胞及其各对照组细胞的总蛋白,经SDS-PAGE电泳及免疫杂交,结果表明:a.转染puc-K-ras的细胞K-ras蛋白明显下降。抑制效果与转染质粒呈剂量依赖关系;b.转染后第四天,K-ras蛋白开始下降,直到转染后第十天仍明显低于正常对照组和空质粒组;c.puc-K-ras稳定转染细胞系的K-ras蛋白远远低于正常对照组和puc19稳定转染细胞系。
     (3) puc-K-ras引起的基因抑制具有序列特异性:第一,在GFP表达已经被puc-GFP抑制的细胞中添加GFP表达质粒可使减弱的绿色荧光部分恢复;第二,puc-GFP可抑制整合入Panc-1细胞内的GFP基因表达,但不影响K-ras基因的表达;同样,puc-K-ras转染整合有GFP基因的Panc-1细胞,K-ras蛋白下降的同时不影响GFP的蛋白表达。
     (4)无启动子DNA片段引起的K-ras基因表达抑制与第一外显子的关系:为验证最常发生点突变的第一外显子是否是导致基因抑制的效应区,我们构建了含K-ras cDNA第一外显子DNA序列的质粒,并将其转染Panc-1细胞。蛋白印迹发现,只含第一外显子序列的DNA片段并不能引发序列特异性基因抑制。
     (5)无启动子DNA片段引起的K-ras基因抑制与点突变的关系:为观察此基因抑制与点突变的关系。Puc-K-ras分别转染另两种胰腺癌细胞系Miapaca-2和Aspc-1,它们含有与Panc-1相同或不同的K-ras点突变。蛋白印迹及实时定量RT-PCR(reverse transcriptive polymerase chain reaction)结果表明,在这两种细胞系中puc-K-ras具有与在Pane-1细胞内类似的抑制K-ras基因表达的效果。这说明无启动子DNA片段引起的特异性基因抑制与点突变无明显相关性。
     我们的研究表明无启动子的基因cDNA全长片段可在人胰腺癌细胞内引发序列特异的基因表达抑制,可能成为一种新的有效的基因治疗方法,但导致这种基因抑制的具体机制有待于进一步研究。另外,本实验结果提示无启动子DNA片段引起的序列特异性基因抑制可能与外源DNA片段中所含基因的cDNA片段长度相关,但与细胞内同源基因是否有点突变没有关系。本研究的创新点是首次证实了在植物中有效的同源无启动子DNA片段能使特异性基因沉默的方法,同样亦可用于抑制人类癌细胞特异性癌基因的表达。
Pancreatic cancer is exceptionally aggressive with high mortality,and up to now no effective therapeutic approaches has been found.So it is urgent to find more powerful method to diagnose the disease earlier and treat it more effectively.But even the new powerful research tool siRNAs has its own problem,i.e.the efficiency.In recent years,several researchers reported that delivery of promoterless double-strand DNA molecules into cells could induce sequence-specific gene silencing in plants.The plasmid having the target gene's cDNA inserted alone was sufficient to induce silencing.This simple and efficient method of gene target silencing has not been used in human cells yet,especially in human cancer cells.
     On one hand,genetically encoded fluorescent proteins have become widely used as markers in living cells.The application of these fluorescent proteins as noninvasive tags revealed new aspects of protein dynamics and the biological processes they regulated.The modification of naturally occurring fluorescent proteins as well as the identification of new fluorescent proteins now provide researchers with a variety of useful fluorescent markers suitable for all kind of investigations in live-cell imaging studies.Enhanced jellyfish green fluorescent protein(EGFP) a mutant of green fluorescent protein(GFP) with reinforced green fluorescent was selected as a visible index.A plasmid containing GFP full-length cDNA was constructed.The silencing efficiency was observed through detecting the GFP expression by transfecting the plasmid into the steady-expressing GFP clone cell or by contransfecting it with GFP expressing plasmid pEGFP-C1.K-RAS is a member of the RAS family of GTP-binding proteins that mediate a wide variety of cellular functions including proliferation,differentiation,and survival.The activation of K-ras oncogene is the most important initial step in the genesis of human pancreatic cancer and most of human pancreatic cancers have high frequency of K-ras point mutation.All these together with the importance of ras in cell function and survival,highlight K-ras being an attractive target for the treatment of pancreatic cancer.K-ras was thus chosen as the target gene in the present study.
     Aim:The present study aimed to test the efficiency of the gene silencing effect by introducing promoterless double-strand DNA containing coding region of a gene in human pancreatic cancer cells.
     Material and method:First of all,several plasmids were constructed. Considering the low transfect efficiency of naked DNA,promoterless plasmid puc-19 was used as a vector of target gene's full-length cDNA fragment.To construct plasmids containing promoterless DNA of the target gene,GFP and K-ras full length cDNA were obtained and ligated into puc-19.The constructs were named as puc-GFP and puc-K-ras respectively.Puc-exon,with DNA sequence of K-ras first exon integrated in puc-19,was also constructed to testify if the silencing efficiency had relationship with specific sequence in cDNA.Next,puc-GFP was transfected to GFP transformed human pancreatic cancer cell line Pane-1 cells to visualize the silencing efficiency.Flow cytometry,phase contrast fluorescence microscopy and Western blot were used to detect expression of GFP.Finaly,puc-K-ras and puc-exon were transfected to Panc-1 to observe whether K-ras gene expression could be inhibited.Puc-K-ras was also transfected to two other human pancreatic cancer cell lines Miapaca-2 and Aspc-1 to detect the K-ras gene expression.As compared with Panc-1,the two cell lines have similar or different point mutation of K-ras.Real-time transcriptive PCR and Western blot were used to detect the K-ras gene expression.
     Results:(1) Panc-1 exogenous integrated gene GFP could be silenced by plasmid puc-GFP,which containing promoterless DNA fragment of GFP full-length cDNA.Puc-GFP also inhibited the transient transfecting efficiency of GFP expressing plasmid.(2) Endogenous gene K-ras of Panc-1,Miapaca-2,Aspc-1 cells also could be silenced by promoterless plasmid having its full-length cDNA integrated.The silencing efficiency was correlated to the length of cDNA fragment.Different K-ras point mutant did not affect the silencing efficiency.
     Conclusion:The results of the present study indicate that the transfection of human pancreatic cancer cells with plasmids carrying a full length cDNA sequence of the target gene is sufficient to decrease the expression of the genes.It may take effect through reduction of the endogenous transcripts.The effective region of the promoterless DNA fragment is not clear yet and need to study further.The result of present study indicats that the whole length of cDNA fragment rather than the consensus sequences may account for the silencing effects.This study is for the first time to prove the sequence-specific gene silencing method used in plant, also is effective in silencing the target gene in human pancreatic cancer cells.
引文
1.McKenna S and Eatock M.The medical management of pancreatic cancer:A review.Oncologist,2003,8(2):149-160.
    2.Bardeesy N and DePinho RA.Pancreatic cancer biology and genetics.Nat.Rev.Cancer,2002,2:897-909.
    3.Jaffee EM,Hruban RH,Canto M and Kern SE.Focus on pancreas cancer.Cancer Cell,2002,2(1),25-28.
    4.Kern SE,Hruban RH,Hidalgo M and Yeo CJ.An introduction to pancreatic adenocarcinoma genetics,pathology and therapy.Cancer Biol.Ther.2002,1(6):607-613.
    5.Leung RKM,Whittaker PA.RNA interference:from gene silencingto gene-specific therapeutics.Pharmacol Ther.2005;107(2):222-239.
    6.Sioud M,Iversen PO.Ribozymes,DNAzymes and small interferingRNAs as therapeutics.Current Drug Targets.2005;6(6):647-653.
    7.Shankar P,Manjunath N,Lieberman J.The prospect of silencing disease using RNA interference.Journal of the American Medical Association.2005;293(11):1367-1373.
    8.Uprichard SL.The therapeutic potential of RNA interference.FEBS Letters.2005;579(26):5996-6007.
    9.Jens Kurreck.siRNA Efficiency:Structure or Sequence—That Is the Question.J Biomed and Biotechnol.2006;2006(4):83757-83764.
    10.Oliver Voinnet,Philippe Vain,et al.Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA.Cell.1998;95:177-187.
    11.Palauqui JC,Balzergue S.Activation of systemic silencing by localised introduction of DNA.Curr Biol,1999,9:59-66.
    12.Rutherford G,Tanurdzic M,Hasebe M,Banks JA.A systemic gene silencing method suitable for high throughput,reverse genetic analyses of gene function in fern gametophytes.BMC Plant Biol.2004,4:6.
    13.Kawai-Toyooka et al.DNA Interference:a Simple and Efficient Gene-Silencing System for High-Throughput functional analysis in the fern adiantum.Plant Cell Physiol.2004;45:1648-1657.
    14.Mohammad B.Bahramian and Helmut Zarbl.Transcriptional and Posttranscriptional Silencing of Rodent a 1(1)Collagen by a Homologous Transcriptionally Self-Silenced Transgene.Mol Cell Biol.1999;19(1):274-83.
    15.M.Bahman Bahramian,Helmut Zarbl.GENE impedance:a natural process for control of gene expression and the origin of RNA interference.J.Theor.Biol,2005,233:301-314.
    16.Thummel R,Burket CT,Hyde DR.Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration.Scientific World Journal,2006,15:65-81.
    17.Chudakov DM,Lukyanov S,Lukyanov KA.Fluorescent proteins as a toolkit for in vivo imaging.Trends Biothechnol,2005,23:605-13.
    18.Voss TC,Demarco IA,Day RN.Quantitative imaging of protein interactions in the cell nucleus.Biotechniques,2005,38:413-24.
    19.Jan Klysik,Jeffrey D Singer.Mice with the Enhanced Green Fluorescent Protein Gene Knocked in to Chromosome 11 Exhibit Normal Transmission Ratios.Biochem Genetics,2005,43(5-6):321-333.
    20.Campbell,S.L.,Khosravi-Far,R.,Rossman,K.L.,Clark,G.J.,and Der,C.J.Increasing complexity of Ras signaling.Oncogene.1998,17:1395-1413.
    21.Malumbres,M.and Barbacid,M.RAS oncogenes:The first 30 years.Nat.Rev.Cancer.2003;3:459-465.
    22.Bos,J.L.ras oncogenes in human cancer:a review.Cancer Res.1989,49:4682-4689.
    23.Almoguera,C,Shibata,D.,Forrester,K.,Martin,J.,Arnheim,N.,and Perucho,M.1988.Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell 53:549-554.
    24.Muller-Taubenberger A.Application of fluorescent protein tags as reporters in live-cell imaging studies.Methods Mol Biol.2006;3,46:229-46.
    25.Aoki K,Yoshida T,Sugimura T,Terada M.Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity.Cancer Res;1995 Sep 1;55 (17):3810-6.
    26.Patkar A,Vijayasankaran N,Urry D W,et al.Flow cytometry as a useful tool for process development:rapid evaluation of expression systems.J Biotechnol,2002,93(3):217-229.
    27.Anne-Lyse Ducrest,Mario Amacker,Joachim Lingner and Markus Nabholz.Detection of promoter activity by flow cytometric analysis of GFP reporter expression.Nucleic Acids Research,2002,30(14):e65.
    28.Lebedeva IV,Su ZZ,Chang Y,Kitada S,Reed JC and Fisher PB.The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells.Oncogene.2002;21,708-718.
    29.Su Z,Lebedeva IV,Gopalkrishnan RV,Goldstein NI,Stein CA,Reed JC,Dent P and Fisher PB.A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells.Proc.Natl.Acad.Sci.USA,2001;98,10332-10337.
    30.Chomc2ynski P,Sacchi N.1987.Signal-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction.Analytical Biochemistry,162:156-159
    31.Jemal A,Murray T,Ward E,et al.Cancer statistics,2005.CA Cancer J Clin 2005;55:10-30.
    32.Li D,Xie K,Wolff R,Abbruzzese JL.Pancreatic cancer.Lancet 2004;363:1049-57.
    33.Sakorafas GH,Tsiotou AG,Tsiotos GG.Molecular biology of pancreatic cancer;oncogenes,tumour suppressor genes,growth factors,and their receptors from a clinical perspective.Cancer Treat Rev 2000;26:29-52.
    34.Ryan DP,Willett CG.Management of locally advanced adenocarcinoma of tha pancrease.Hematol Oncol Clin North Am 2002;16:95-103.
    35.Kaufman HL,DiVito J,Horig H.Immunotherapy for pancreatic cancer:current concept.Hematol Oncol Clin North Am 2002;16:159-197.
    36.Ghadirian HL,Lynch HT,Krewski D.Epidemolog of pancreatic cancer:an overview.Cancer Detect Prev,2003;27:87-93.
    37.Ronald Steriti,Pancreatic Cancer.Review.http://www.narurdoctor.com/Chapters/Research/PancreaticCancer.html.
    38.Garabrant,D.H.,J.Held,et al.(1992).DDT and related compounds and risk of pancreatic cancer.J Natl Cancer Inst 84(10):764-71.
    39.Phil Santangelo,Lily Yang,Gang Bao.Early detection of pancreatic cancer using molecular beacons.2003,Summer Bioengineering Conference,June 25-29,Sonesta Beach Resort in Key Biscayne,Florida
    40.Elisa Giovannetti,Valentina Mey,Sara Nannizzi.Pharmacogenetics of anticancer drug sensitivity in pancreatic cancer.Mol Cancer Ther 2006;5(6):1387-1395.
    41.P.Meyer,Annual,Homology-dependent gene silencing in plants.Review of Plant Physiology and Plant Molecular Biology.1996,47:23-48.
    42.Vayssie L,Vargas M,Weber C,Guillen N.Double-stranded RNA mediates homology-dependent gene silencing of gamma-tubulin in the human parasite Entamoeba histolytica.Mol Biochem Parasitol.2004 Nov;138(1):21-8.
    43.Elbashir SM,Harborth J,Lendeckel W,Yalcin A,Weber K,Tuschl T.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature,2001,411:494-498.
    44.Holen T,Amarzguioui M,Wiiger MT,Babaie E,Prydz H.Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor.Nucleic Acids Research,2002,30:1757-1766.
    45.Bardeesy N and DePinho RA.Pancreatic Cancer Biology and Genetics.Nat.Rev.Cancer,2002,2:897-909.
    46.Wang S,Shi Z,Liu W,Jules J,Feng X.Development and validation of vectors containing multiple siRNA expression cassettes for maximizing the efficiency of gene silencing.BMC Biotechnol,2006,22:50.
    47.Hatem Zayed,R.Scottmcivor.In Vitro Functional Correction of the Mutation Responsible for Murine Severe Combined Immune Deficiency by Small Fragment Homologous Replacement.Human Gene Ther,2006,17:158-166.
    48.Cogoni C.Homology-dependent gene silencing mechanisms in fungi.Annu Rev Microbiol,2001,55:381-406.
    49.Tsien RY.The green fluorescent protein.Annu Rev Biochem.1998,67:509-544.
    50.Li X et al.Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence.J Biol Chem.(1997)J Biol Chem.272 (45):28545-28549.
    51.Heim R,Prasher DC,Tsien RY.Wavelength mutations and posttranslational autoxidation of green fluorescent protein.Proc Natl Acad Sci U S A,1994;91(26):12501-4.
    52.Fisher G H,Wellen S L,Klimstra D,Lenczowski J M,Tichilaar J,W.Lizak M J,Whitsett J A,Koretsky A,Varmus H E.Induction and apoptopic regression of lung adenocarcinomas by regulation of a K-RAS transgene in the presence and absence of tumor suppressor genes.Genes Dev 2001;15:3249-3262.
    53.Jackson E L,Willis N,Merk K,Broson R T,Crowley D,Montoya R,Jacks T,Tuveson D A.Analysis of lung tumor intiation and progression using conditional expression of oncogenic K-ras.Genes Dev 2001;15:3243-3248.
    54.Agami R,Bernards R.Distinct inhibition and maintenance mechanisms cooperate to induce Gl cell cycle arrest in response to DNA damage.Cell 2000;102:55-66.
    55.Zamore P D,Tuschl T,Sharp P A,Bartel D P.RNAi:Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell 2000;102:25-33.
    56.McCormick F.Ras GTPase activating protein:signal transmitter and signal terminater.Cell 1989;56:5-8.
    57.McCormick F.GTP binding and growth control.Curr Opin Cell Biol 1990;2:181-184.
    58.Chin L,Tarn A,Pomerantz J,Wong M,Holash J,Bardeesy N,Shen Q,O Hagan R,Pantginis J,Zhou H.Essential role for oncogenic Ras in tumor maintenance.Nature 1999;400:468-472.
    59.Cullen BR.Enhancing and confirming the specificity of RNAi experiments.Nat Method.2006 Sep;3(9):677-81.
    60.Martinez LA,Nagibneva I,Lehrmann H,et al.Synthetic small inhibiting RNAs:efficient tools to inactivate oncogenic mutations and restore p53 pathways.Proc Natl Acad Sci U S A 2002;99:14849-14854.
    61.Several factors that affect transfective experiment.http://www.genetrans.com/showNote.php?id=183.
    62.Grimm1,Konrad L,Streetz.Fatality in mice due to oversaturation of Cellular microRNA/short hairpin RNA pathways.Nature,2006,441:537-541.
    63.Ladunga I.More complete gene silencing by fewer siRNAs:transparent optimized design and biophysical signature.Nucleic Acids Res.2007;35(2):433-40.Epub 2006 Dec 14.
    64.P.Meyer,Annual,Homology-dependent gene silencing in plants.Review of Plant Physiology and Plant Molecular Biology.1996,47:23-48
    65.高博,李宝宗.HBV X基因的表达及在真核细胞中对内质网压力的作用。中国病毒学.2006,21(6):536-540.
    66.Bahramian M.B.,Zarbl,H.Direct gene quantitation by PCR reveals differential accumulation of ectopic enzyme in Rat-1 cells,v-fos transformants,and revertants.PCR Methods Appl.1994,4:145-153
    67.Baulcombe DC.Ectopic pairing of homologous DNA and pist-transcriptional gene silencing in transgenic plants.Curr Opin Biotech.1996,7:173-180
    68.Chen Z,Zhang H,Jablonowski D,Zhou X,et al.Mutations in ABO1/ELO2,a subunit of holo-Elongator,increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana.Mol Cell Biol.2006 Sep;26(18):6902-12.
    69.Fire A,Xu S,Montgomery MK,Kostas SA,Driver SE,Mello CC.Potent and specific genetic interference by double-strand RNA in caenorhabditis elegans.Nature.1998,391:806-811.
    70.Ashe,HL.,Monks,J.,et al.Intergenic transcription and transinduction of the human β-globin locus.Genes Dev.1997,11:2494-2509.
    71.Leirdal M,Sioud M.Gene silencing in mammalian cells by preformed small RNA duplexes.Bbiochem BiophysResCommun2002;295:744-748.
    72.Brummelkamp T R,Bernards R,Agami R.Stable suppression of tumorigenicity by virus-mediated RNA interference.Cancer Cell 2002;2:243-247.
    73.Bleys A,Vermeersch L,Van Houdt H,Depicker A.The frequency and efficiency of endogene suppression by transitive silencing signals is influenced by the length of sequence homology.Plant Physiol.2006 Oct;142(2):788-96.
    74.Vaucheret H,Beclin C,Elmayan T,Feuerbach F,Godon C,Morel JB,Mourrain P,Palauqui JC,Vernhettes S.Transgene-induced gene silencing in plants.Plant J.1998 Dec;16(6):651-9.Review.
    1.Sommer SS.Does cancer kill the individual and save the species? Hum Mutat,1994,3:166-9.
    2.Hanahan D,Weinberg RA.The hallmarks of cancer.Cell,2000,100:57-70.
    3.Novell PC.The clonal evolution of tumor cell populations.Science,1976,194:23-28.
    4.Loeb LA.Mutator phenotype may be required for multistage carcinogenesis.Cancer Res,1991,51:3075-3079.
    5.Lengauer C,Kinzler KW,Vogelstein B.Genetic instabilities in human cancers.Nature,1998,396:643-649.
    6.Macaluso M,Montanari M,Cinti C,et al.Modulation of cell cycle components by epigenetic and genetic events.Semin Oncol,2005,32:452-457.
    7.Bartkova J,Horejsi Z,Koed K,et al.DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis.Nature,2005,434:864-870.
    8.Richard D,Kennedy,Alan D,D' Andrea.DNA repair pathways in clinical practice:lessons from pediatric cancer susceptibility syndromes.2006,24(23):3799-3808.
    9.Tomlinson IP,Novelli MR,Bodmer WF.The mutation rate and cancer.Proc Natl Acad Sci USA,1996,93:14800-14803.
    10.Bocker T,Ruschoff J,Fishel R.Molecular diagnostics of cancer predisposition:hereditary non-polyposis colorectal and repair defects.Biochim Biophys Acta,1999,31:1-10.
    11.Wilson AS,Power BE,Molloy PL.DNA hypomethylation and human diseases.Biochim Biophys Acta.2007,1775(1):138-62.Review.
    12.Raptis S,Bapat B.Genetic instability in human tumors.EXS,2006;(96):303-20.
    13.Azhikina TL,Sverdlov ED.Study of tissue-specific CpG methylation of DNA in extended genomic loci.Biochemistry (Mosc).2005 May;70(5):596-603.Review
    14.Bheemanaik S,Reddy YV,Rao DN.Structure,function and mechanism of exocyclic DNA methyltransferases.Biochem J.2006 Oct 15;399(2):177-90.Review.
    15.Luczak MW,Jagodzinski PP.The role of DNA mefhylation in cancer development.Folia Histochem Cytobiol.2006;44(3):143-54.Review.
    16.Vaniushin BF.DNA methylation and epigenetics.Genetika.2006,Sep;42(9):1186-99.Review.
    17.Chang HC,Cho CY,Hung WC.Silencing of the Metastasis Suppressor RECK by RAS Oncogene Is Mediated by DNA Methyltransferase 3b-Induced Promoter Methylation.Cancer Res.2006 Sep l;66(17):8413-20.
    18.Ordway JM,Williams K,Curran T.Transcription repression in oncogenic transformation:common targets of epigenetic repression in cells transformed by Fos,Ras or Dnmtl.Oncogene.2004 May 6;23(21):3737-48.
    19.O'Driscoll L.The emerging world of microRNAs.Anticancer Res.2006 Nov-Dec;26(6B):4271-8.Review.
    20.Wijnhoven BP,Michael MZ,Watson DI.MicroRNAs and cancer.Br J Surg.2007 Jan;94(1):23-30.Review.
    21.Chen K,Rajewsky N.The evolution of gene regulation by transcription factors and microRNAs.Nat Rev Genet.2007 Feb;8(2):93-103.Review.
    22.A.S.Pickford,C.Cogoni.RNA-mediated gene silencing.Cellular and Molecular Life Sciences (CMLS),2003,60(5):871-882.
    23.Nishikura K.Editor meets silencer:crosstalk between RNA editing and RNA interference.Nat Rev Mol Cell Biol.2006 Dec;7(12):919-31.Review.
    24.Vaucheret H,Beclin C,Fagard M.Post-transcriptional gene silencing in plants.J Cell Sci.2001 Sep;114(Pt 17):3083-91.Review.
    25.Vaucheret H,Fagard M.Transcriptional gene silencing in plants:targets,inducers and regulators.Trends Genet.2001 Jan;17(1):29-35.Review.
    26.Dalmay,T,Hamilton,A.,et al.An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus.Cell,2000,101:543-553.
    27.Mourrain,P.,Beclin,C,et al.Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance.Cell,2000,101:533-542.
    28.Cogoni,C,Macino,G Postrranscriptional gene silencing in Neurospora by a RecQ DNAhelicase.Science,1999,286:2342-2344.
    29.Catalanotto,C,Azzalin,G,et al.Gene silencing in worms and fungi.Nature,2000,404:245.
    30.Tahara,H.,Sarkissian,M.,et al.The rde-1 gene,RNA interference and transposon silencing in C elegans.Cell,1999,99:123-132.
    31.M.Bahman Bahramian,Helmut Zarbl.GENE impedance:a natural process for control of gene expression and the origin of RNA interference.J Theo Biol,2005,233:301-314.
    32.Angelique Galvani,Linda Sperling.Transgene-mediated post-transcriptional gene silencing is inhibited by 3' non-coding sequence in Paramecium.Nucleic Acids Research,2001,29(21):4387-4394.
    33.Zamore PD.Plant RNAi:How a viral silencing suppressor inactivates siRNA.Curr Biol 2004;14:R198-200.
    34.Elbashir SM,Harborth J,Lendeckel W,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature 2001,411:494-498.
    35.Chendrimada TP,Gregory RI,Kumaraswamy E,et al.TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.Nature 2005;436:740-744.
    36.Haase AD,Jaskiewicz L,Zhang H,et al.TRBP,a regulator of cellular PKR and HIV-1 virus expression,interacts with Dicer and functions in RNA silencing.EMBO Rep,2005,6:961-967.
    37.Martinez J,Patkaniowska A,Urlaub H,Luhrmann R,Tuschl T.Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.Cell,2002,110:563-574.
    38.Liu J,Carmell MA,Rivas FV,et al.Argonaute2 is the catalytic engine of mammalian RNAi.Science,2004,305:1437-1441.
    39.Martinez J,Tuschl T.RISC is a 5' phosphomonoester-producing RNA endonuclease.Genes Dev,2004,18:975-980.
    40.Meister G,Landthaler M,Patkaniowska A,et al.Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs.Mol Cell,2004,15:185-197.
    41.Rivas FV,Tolia NH,Song JJ,et al.Purified Argonaute2 and an siRNA form recombinant human RISC.Nat Struct Mol Biol,2005,12:340-349.
    42.Carmell MA,Zhang L,Conklin DS,Hannon GJ,Rosenquist TA.Germline transmission of RNAi in mice.Nat Struct Biol,2003,10:91-92.
    43.Wassenegger M.The role of the RNAi machinery in heterochromatin formation.Cell,2005,122:13-16.
    44.Verdel A,Jia S,Gerber S,et al.RNAi-mediated targeting of heterochromatin by the RITS complex.Science,2004,303:672-676.
    45.Kawasaki,H.,Taira,K.& Morris,K.V.Cell Cycle,2005,4,e22-e28.
    46.Kawasaki,H.& Taira,K.Nature,2004,431,211-217.
    47.Morris,K.V.,Chan,S.W.L.,Jacobsen,S.E.& Looney,D.J.Science,2004,305,1289-1292.
    48.He L,Hannon GJ.MicroRNAs:small RNAs with a big role in gene regulation.Nat Rev Genet,2004,5:522-31.
    49.Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell,2004,116:281-97.
    50.Zamore PD,Haley B.Ribo-gnome:the big world of small RNAs.Science,2005,309:1519-24.
    51.Pasquinelli AE,Ruvkun G:Control of developmental timing by micrornas and their targets.Annu Rev Cell Dev Biol,2002,18:495-513.
    52.Griffiths-Jones S.The microRNA Registry.Nucleic Acids Res,2004,32:D109-11.
    53.Han J,Lee Y,Yeom KH,et al.The Drosha-DGCR8 complex in primary microRNA processing.Genes Dev,2004,18:3016-27.
    54.Tang G:siRNA and miRNA:an insight into RISCs.Trends Biochem Sci,2005,30:106-14.
    55.Lim LP,Lau NC,Garrett-Engele P,et al.Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.Nature,2005,433:769-73.
    56.Liu J,Valencia-Sanchez MA,Harmon GJ,Parker R.MicroRNAdependent localization of targeted mRNAs to mammalian Pbodies.Nat Cell Biol,2005,7:719-23.
    57.Sen GL,Blau HM.Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies.Nat Cell Biol,2005,7:633-636.
    58.Eulalio A,Behm-Ansmant I,Izaurralde E.P bodies:at the crossroads of post-transcriptional pathways.Nat Rev Mol Cell Biol.2007 Jan;8(1):9-22.
    59.Croce CM,Calin GA.miRNAs,cancer,and stem cell division.Cell,2005;122:6-7.
    60.Kim VN.Small RNAs:classification,biogenesis,and function.Mol Cells,2005;19:1-15.
    61.Pfeffer S,Zavolan M,Grasser FA,et al.Identification of virusencoded microRNAs.Science,2004,304:734-6.
    62.Sullivan CS,Grundhoff AT,Tevethia S,Pipas JM,Ganem D.SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells.Nature 2005;435:682-6.
    63.Grimm D,Streetz KL,Jopling CL,Storm TA,et al.Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways.Nature,2006,441(7092):537-41
    64.Osada H,Takahashi T.MicroRNAs in biological processes and carcinogenesis.Carcinogenesis,2007,28(1):2-12.
    65.Olivier Voinnet,Philippe Vain,et al.Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA.Cell,1998,95:177-187.
    66.George Rutherford,Milos Tanurdzic,et al.A systemic gene silencing method suitable for high throughput reverse genetic analyses of gne function in fern gametophytes.BMC Plant Biol,2004,4:6.
    67.Jean-Christophe Palauqui,Sandrine Balzergue.Activation of systemic acquired silencing by localized introduction of DNA.Curr Biol,1999,9:59-66.
    68.Hiroko Kawai-Toyooka,Chihiro Kuramoto,et al.DNA interference:a simple and efficient gene-silencing system for high throughput functional analysis in the Fern Adiantum.Plant Cell Physiol,2004,45(11):1648-1657.
    69.Crete P,Leuenberger S,Iglesias VA,et al.Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes.Plant J,2001 Dec;28(5):493-501.
    70.Mohammad B.Bahramian and Helmut Zarbl.Transcriptional and posttranscriptional silencing of rodent al(Ⅰ)collagen by a homologous transcriptionally self-silenced transgene.Mol and Cel Bio,1999,19:274-283.
    71.Ashe,HL.,Monks,J.,et al.Intergenic transcription and transinduction of the human p-globin locus.Genes Dev.1997,11:2494-2509.
    72.T.Helleday,C.Amaudeau,D.Jenssen,Effects of carcinogenic agents upon different mechanisms for intragenic recombination in mammalian cells.Carcinogenesis,1998,19:973-978.
    73.T.Helleday,K.L.Tuominen,A.Bergman,D.Jenssen,Brominated flame retardants induce intragenic recombination in mammalian cells.Mutat Res,1999,439:137-147.
    74.T.Helleday,R.Nilsson,D.Jenssen,Arsenic[Ⅲ]and heavy metal ions induce intrachromosomal homologous recombination in the hprt gene of V79 Chinese hamster cells.Environ Mol Mutagen,2000,35:114-122.
    75.A.J.Bishop,B.Kosaras,N.Carls,R.L.Sidman,R.H.Schiestl,Susceptibility of proliferating cells to benzo[a]pyrene-induced homologous recombination in mice.Carcinogenesis,2001,22:641-649.
    76.J.Aubrecht,R.Rugo,R.H.Schiestl,Carcinogens induce intrachromosomal recombination in human cells.Carcinogenesis,1995,16:2841-2846.
    77.C Arnaudeau,E.Tenorio Miranda,D.Jenssen,T.Helleday,Inhibition of DNA synthesis is a potent mechanism by which cytostatic drugs induce homologous recombination in mammalian cells.Mutat Res,2000,461:221-228.
    78.Thomas Helleday.Pathways for mitotic homologous recombination in mammalian cells.Mutation Research,2003:532 103-115.
    79.J.Thacker,M.Z.Zdzienicka,The mammalian XRCC genes:their roles in DNA repair and genetic stability.DNA Repair,2003,2:655-672.
    80.Richard D,Kennedy D,et al.DNA repair pathways in clinical practice:lessons from pediatric cancer susceptibility syndrome.J Clin Oncol,2006,24(23):3799-3808.
    81.Hatem Zayed,R Scott Mcivor,et al.In vitro functional correction of the mutation responsible for murine severe combined immune deficiency by small fragment homologous replacement.Hum gene ther,2006,17:158-166.
    82.Xue-Song Wu,Li Xin,Wen-Xuan Yin,et al.Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression.PNAS,2005,102(7):2508-2513.
    83.Hiroyuki Tsuchiya,Hideyoshi Harashima,Hiroyuki Kamiya.Factors affecting SFHR gene correction efficiency with single-stranded DNA fragment.Bioch Biophy Res Comm,2005,336:1194-1200.
    1.Fleming J B,Shen G L,Holloway SE,et al.Molecular consequences of silencing mutant K-ras in pancreatic cancer cells:justification for K-ras-directed therapy [J].Mol Cancer Res,2005,3:413-423.
    2.Xiong HQ.Molecular targeting therapy for pancreatic cancer[J].Cancer Chemother Pharmacol,2004,54:S69-S77.
    3.Gysin S,Lee SH,Dean NM,et al.Pharmacologic inhibition of RAF→MEK→ ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kipl [J].Cancer Res,2005,65:4870-4880.
    4.Cantley LC.The phosphoinositide 3-kinase pathway[J].Science,2002,296:1655-1657.
    5.Lim KH,Baines AT,Fiordalisi JJ,et al.Activation of ralA is critical for ras-induced tumorigenesis of human cells[J].Cancer Cell,2005,7:533-545.
    6.Asano T,Yao Y,Zhu J,et al.The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kB and c-Myc in pancreatic cancer cells[J].Oncogene,2005,24(26):4320.
    7.Abbruzzese J,Reddy SA.The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation[J].Biochem Biophys Res Commun,2005,331:295-302.
    8.Altomare DA,Tanno S,De Rienzo A,et al.Frequent activation of AKT2 kinase in human pancreatic carcinomas[J].J Cell Biochem,2003,88:470.
    9.Niu J,Chang Z,Peng B,et al.Keratinocyte growth factor/fibroblast growth factor-7-regulated cell migration and invasion through activation of NF-kappa b transcription factors.J Biol Chem[J].2007,282(9):6001-11.
    10.Khanbolooki S,Nawrocki ST,Arumugam T,et al.Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells[J].Mol Cancer Ther,2006,5(9):2251-2260.
    11.Arlt A,Gehrz A,Muerkoster S,Vorndamm J,et al.Role of NF-kB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death[J].Oncogene,2003,22:3243-3251.
    12.Ougolkov AV,Fernandez-Zapico ME,Savoy DN,et al.Glycogen synthase kinase-3b participates in nuclear factor kB-mediated gene transcription and cell survival in pancreatic cancer cells[J].Cancer Res,2005,65:2076-2081.
    13.MiierkOster S,Arlt A,Sipos B,et al:Increased expression of the E3-ubiquitin ligase receptor subunit bTRCP1 relates to constitutive nuclear factor-kB activation and chemoresistance in pancreatic carcinoma cells[J].Cancer Res,2005,65:1316-1324.
    14.Murphy LO,Cluck MW,Lovas S,et al.Pancreatic cancer cells require an EGF receptor-mediated autocrine pathway for proliferation in serum-free conditions [J].Br J Cancer,2001,84:926-935.
    15.Fujioka S,Sclabas GM,Schmidt C,et al.Fuction of nuclear factor kappaB in pancreatic cancer metastasis[J].Clin Cancer Res,2003,9:346-354.
    16.Lin M,DiVito MM,Merajver SD,et al.Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-l[J].Mol Cancer,2005,4(1):21.
    17.Wang Z,Sengupta R,Banerjee S,et al.Epidermal growth factor receptor-related protein inhibits cell growth and invasion in pancreatic cancer[J].Cancer Res,2006,66 (15):7653-7660.
    18.Sarkar FH,Banerjee S,Li Y.Pancreatic cancer:pathogenesis,prevention and treatment[J].Toxico1 App1 Pharmacol,2006 Nov 11;pittp://www.sciencedirect.com or http://lib.bioinfo.pl/auth:Sarkar,FH]
    19.Matsuda K,Idezawa T,You XJ,et al.Multiple mitogenic pathways in pancreatic cancer cells are bloched by a truncated epidermal growth factor receptor[J].Cancer Res,2002,62:5611-5617
    20.Tan X,Egami H,Ishikawa S,et al.Relationship between activation of epidermal growth factor receptor and cell dissociation in pancreatic cancer [J].Int J Oncol,2004,25:1303-1309
    21.Marshall J.Clinical implications of the mechanism of epidermal growth factor receptor inhibitors [J].Cancer,2006,107 (6):1207-1218.
    22.Elliott RL,Blobe GC.Role of transforming growth factor p in human cancer[J].J Clin Oncol,2005,23:2078-2093.
    23.Zavadil,J.and Bottinger,E.R TGF-p and epithelial-tomesenchymal transitions.Oncogene,2005,24:5764-5774.
    24.Uchima Y,Sawada T,Nishihara T,et al.Inhibition and mechanism of action of a protease inhibitor in human pancreatic cancer cells[J].Pancreas,2004,29:123-131.
    25.Levy L,Hill CS.Smad4 dependency defines two classes of transforming growth factorβ (TGF-β)target genes and distinguishes TGF-p-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses[J].Mol Cell Biol,2005,25:8108-8125.
    26.Jonchheere N,Perrais M,Mariette C,et al.A role for human MUC4 mucin gene,the ErbB2 ligand,as a target of TGF-beta in pancreatic carcinogenesis[J].Oncogene,2004,23:5729-5738.
    27.Baranowska-Kortylewicz J,Abe M,Nearman J,et al.Emerging role of platelet-derived growth factor receptor-{beta} inhibition in radioimmunotherapy of experimental pancreatic cancer[J].Clin Cancer Res,2007,13(1):299-306.
    28.Xu X,Rao G,Quiros RM,et al.In vivo and in vitro degradation of heparin sulfate (HS)proteoglycans by heparanase-1 (HPR1)in pancreatic adenocarcinomas:loss of cell surface HS suppresses FGF2-mediated cell signaling and proliferation[J].J Biol Chem,2007,282(4):2363-73.
    29.Kayed H,Kleeff J,Kayed H,et al.Indian hedgehog signaling pathway:expression and regulation in pancreatic cancer [J].Int J Cancer,2004,110:668-676.
    30.Sundaram MV.The love-hate relationship between ras and notch[J].Genes & Dev,2005,19:1825-1839.
    31.Pasca di Magliano M,Sekine S,Ermilov A,et al.Hedgehog/Ras interactions regulate early stages of pancreatic cancer[J].Genes Dev,2006,20(22):3161-3173.
    32.Al-Aynati MM,Radulovich N,Riddell RH,et al.Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia[J].Clin Cancer Res,2004,10:1235-1240.
    33.Adsay NV.Role of MUC genes and mucins in pancreatic neoplasia[J].Am J Gastroenterol,2006,101(10):2319-2329.
    34.Kigure S.Immunohistochemical study of the association between the progression of pancreatic ductal lesions and the expression of MUC1,MUC2,MUC5AC,and E-cadherin.Rinsho Byori,2006,54 (5):447-452.
    35.Levi E,Klimstra DS,Andea A,et al.MUC1 and MUC2 in pancreatic neoplasia[J].J Clin Pathol,2004,57(7):784-790.
    36.Yin L,Huang L,Kufe D.MUC1 oncoprotein activates the FOXO3a transcription factor in a survival reponse to oxidative stress[J].J Biol Chem,2004,279:45721-45727.
    37.Ito H,Endo T,Oka T,et al.Mucin expression profile is related to biological and clinical characteristics of intraductal papillary-mucinous tumors of the pancreas.Pancreas,2005,30 (4):e96-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700