预处理与离子注入GaN外延材料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaN基体系材料具有禁带宽度宽、热稳定和化学稳定性好,波长范围大的特点,在光电子和微电子领域有着极其广泛的应用前景。本文利用MOCVD生长技术,在经过预处理的衬底上外延生长出高质量的GaN薄膜,并对GaN的特性进行了系统研究。另外,利用离子注入技术制备出过渡族金属掺杂的GaN基稀磁半导体,从注入引起的结构变化研究铁磁性的起源问题。结果如下:
     1.研究了蓝宝石衬底预处理的腐蚀工艺,结果表明:采用浓磷酸溶液,在265℃下,腐蚀45~50分钟,得到了具有较理想图形的蓝宝石衬底。
     2.利用XRD分析了衬底预处理对GaN薄膜晶体质量的影响。结果表明:在经过预处理的蓝宝石衬底上外延生长的GaN薄膜显出更好的结晶质量。其XRD(0002)面上的半峰宽为293arcsec,(10 2)面半峰宽为560arcsec;位错密度降低到9.6×10~6cm~(-2);在15μm×15μm尺寸内,其均方根粗糙度(RMS)为1.898nm;其压应力也降低到0.071GPa。
     3.研究了快速热处理对GaN薄膜性能的影响。随着退火温度的升高,GaN薄膜晶体质量逐渐提高。对GaN薄膜进行950℃快速热处理后,其(0002)面半峰宽为301arcsec;其载流子浓度则高达1×10~(18)cm~(-3)。
     4.利用离子注入技术制备出过渡族金属(Fe、Ni)掺杂的GaN基稀磁半导体材料,观察到部分样品具有明显的室温铁磁性。注入热处理后GaN的晶体质量是由注入剂量和退火温度共同决定的。能量为150KeV,剂量为1×10~(16)cm~(-2)的Fe离子注入,在800℃热退火处理后,GaN外延层的晶格质量较好且铁磁性最强。并在研究注入对微结构的影响的过程中,对铁磁性的起源进行了探讨。
Gallium nitride materials have become one of the forefront research topics in semiconductor materials due to their excellent properties. In this paper, GaN films were grown on sapphire substrate by Metal Organic Chemical Vapor Deposition (MOCVD). The properties of GaN were studied. In addition, Fe-, Ni-doped GaN thin films have been made by ion implantation technology and the origin of ferromagnetism was discussed. The main results are as followings:
     1. The etching technology of the sapphire substrate has been studied. The results showed that the sapphire substrates with ideal graphic were obtained in the H3PO4 etch solution at 265?C for 45~50min.
     2. The properties of the GaN epilayer were analyzed by X-ray diffraction (XRD), Atomic force microscope (AFM) and Raman spectra in order to study the influence of the spphire substrate pretreated on the crystal quality of GaN film. These results showed that the GaN epilayer grown on the pretreated sapphire substrate exhibited excellent crystal quality, the XRD FWHMs of the GaN epilayer in (0002) plane and (10 2) plane were 293arcsec and 560arcsec, respectively; the dislocation density was reduced to 9.6×10~6cm~(-2); the residual stress was reduced to 0.071GPa.
     3. The effect of heat treatment on GaN epilayer was studied. The results showed that the quality of the GaN epilayer was improved by rapid thermal processor. The XRD FWHMs becomes narrow and the carrier concentration becomes larger. When the GaN epilayers were annealed at 950?C, the XRD FWHM of GaN (0002) plane is 301arcsec and the carrier concentration is up to 1×10~(18)cm~(-3).
     4. Fe~-, Ni-doped GaN films have been prepared by ion implantation and obviously room-temperature ferromagnetic behavior were obtained. The magnetic property of GaN samples was determined by the kind of ion, dose and annealing temperature. GaN epilayers with better lattice quality and ferromagnetic properties were obtained after being annealed at 800?C, when the dose of Fe ion with energy of 150keV was 1×10~(16)cm~(-2). In addition, the origin of ferromagnetism was discussed.
引文
[1] Pearton S J, Zopler J C, Shurl R J, et al. Processing, Defects, and Devices. Journal of applied physics, 1999, 86(1):1-78
    [2] Youn C J, Jeong T S, Han M S, et al. Influence of various activation temperatures on optical degradation of Mg doped InGaN/GaN MQW blue LEDs. Journal of crystal growth, 2003, 250: 331-333
    [3] Nakamura S, Sench M, Iwasa N, et al. High-brightness in InGaN blue, green and yellow light-emitting diodes with quantum well structures. Applied physics letters, 1995, 67: 1868-1869
    [4] Johnson W C, Parsonsand J B, Crew M C. Nitrogen Compounds of Gallium III. Gallic Nitride. Journal of physics & chemistry. 1932, 36: 2561-2563
    [5] KarPinski J, Jun J, Porowski S. Equilibrium Pressure of N2 over GaN and high Pressure solution growth of GaN. Joumal of crystal growth, 1984(66):l-10
    [6] Maruska H P, Tietjen J J. The Preparation and Properties of Vapor-deposited Single-crystal-line GaN, Applied physics letters, 1969, 15(10): 327-328
    [7] Paszkiewicz R, Korbutowicz R, Radziewicz D, et al. Growth and characterisation of GaN epitaxial layers.Electronic Properties of Metal/Non-Metal Microsystems, 1998, 50(1-2): 211-214
    [8] Nakamura S, Isawa N, Seno M, et al. Hole compensatrion mechanism of p-type GaN films. Japanese journal of applied physics, 1992, 31:1258-1261
    [9] Dietl T, Ohno H, Matsukura F, et al. Zener Model Descriptionof Ferromagnetism in Zinc-Blende Magnetic Semiconductors.Science.2000,287: 1019-1022
    [10] Redwing J M, Tischler M A, Flynn J S. Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H-SiC and sapphire substrates. Applied physics letters, 1996, 69(7):963-965
    [11] Wen Shangsheng. Study and development of high brightness blue GaN-based LED. Chinese journal of quantum electronics. 2003, 20(10) 35-38
    [12] Hock M N, Wolfgang P, Weimann N G, et al. Patterning GaN Micro- structures by Polarity-Selective Chemical Etching. Japanese journal of applied physics,2003,42: L1405-L1407
    [13] Karpinski J, Porowski S. High pressure thermodynamics of GaN. Journal of crystal growth, 1984, 66(1): 11-20
    [14] Vennégès P, Leroux M, Dalmasso S, et al. Atomic structure of pyramidal defects in Mg-doped GaN. Physical review B,2003,68(235214): 1-8
    [15] Amano H,Kito M,Hiramatsu K,et al. P–type conduction in Mg–doped GaN treated with low-energy electron beam irradiation. Japanese journal of applied physics, 1989, 28:L2112-2114
    [16] Nakamura S, Senoh M, Nagahama S, et al. Characteristics of InGaN multi- quantum–well–structure laser diodes. Applied physics letters, 1996, 68(23):3269-3271
    [17] Gelmont B, Kim K, Shur M, et al. Monte-carlo simulation of electron-transport in gallium nitride. Journal of applied physics, 1993, 74(3): 1818-1821
    [18] Maruska H P, Tietjen J J. The Preparation and Properties of Vapor-deposited Single-crystal-line GaN, Applied physics letters, 1969, 15(10): 327-328
    [19] Lagerstedt O, Monemar B. Luminescence in epitaxial GaN. Journal of applied physics, 1974, 45(5): 2266-2272
    [20] Pankove J I, Berkeyheiser J E, Maruska H P, et al. Luminescent properties of GaN. Solid State Commum, 1971, 8(13): 1051-1053
    [21] Itoh K, Amano H, Hiramatsu K, et al. Cathodoluminescence Properties of Undoped and Zn-doped AlxGal-xN Grown by Metal-organic Vapor Phase Epitaxy. Japanese journal of applied physics, 1991(30):1604-1608
    [22] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied physics letters, 1986(48):353-355
    [23] Nakamura S. Crystal growth method for gallium nitride-based compound semieonductor. USPatent, Patentnumber:5290393, 1994
    [24] Akasaki I. Renaissanee and Progress in crystal growth of nitride semieonduetors. Journal of crystal growth, 1999(199):885-893
    [25] Akasaki I. Progress in crystal growth and future prospecets of group III nitrides by metalorganic vapor-phase epitaxy.Journal of crystal growth,1998(195):248-251
    [26] Benamara M, Weber Z L, Mazur J H, et al. The role of the multi buffer layertechnique on the structural quality of GaN. MRs internet journal of nitride semiconductor researeh. 2000(5):2428-2430
    [27] Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with Low-energy electron beam irradiation (LEEBI). Japanese journal of applied physics, 1989(28):L2112-L2114
    [28] Kozodoy P, Hansen M, DenBaars S P, et al. Enhanced Mg doping efficiency in Al0.2Ga0. 8N/GaN superlattices. Applied physics letters, 1999(74):3681-3683
    [29] Waldron E L, Graff J W, Sehubert E F. Improved mobilities and resistivities in modulation-doped p-type AIGaN/GaN superlattices. Applied physics letters,2001(79):2737-2739
    [30] Kumakura K, Makimoto T, Kobayashi N. Enhanced hole generation in Mg-doped AIGaN/GaN superlattices due to piezoeleetric field. Japanese journal of applied physics,2000(39):2428-2430
    [31] Li Y Q, Fang W Q, Fang W H, et al. Study of Polarization field in GaN-based blue LEDs on Siand sapphire substrate by electroluminescence. Journal of luminescence, 2007(122):567-570
    [32] Hwang J D, Yang G H. Activation of Mg-doped p-GaN by using two-step annealing. Applied surface science, 2007(253):4694-4697
    [33]杨利,魏芹芹,孙振翠等.氮化镓薄膜研究进展.山东师范大学学报(自然科学版),2003,18(4):27-29
    [34]赵谢群.氮化镓薄膜生长工艺研究的最新进展.稀有金属,1998,22(2):138-142
    [35] Harle V, Hahn B, Lugauer H J, et al. GaN-based LEDs and lasers on SIC. Physica status solidi A-applied research, 2000(180):5-13
    [36] Edmond J A, Kong K S, Leonard M T, et al. Nitride-based emitters on SIC substrates. SPIE, 1997(3002):2-10
    [37] Bremser M D, Perry W G, Zheleva T, et al. Growth, doping and characterization of AlxGal-xN thin film alloys on 6H-SiC (0001) substrates. MRs Internet journal nitride semiconductor research, 1996(l):11-16
    [38] Taniyasu Y, Suzuki K, Lim D H, et al. Cubic InGaN/GaN double heterostructure light emitting diodes grown on GaAs (001) substrates by MOVPE. Physica status solidi A-applied research, 2000(180):241-246
    [39] Tran C A, Osinski A, Karlieek R F, et al. Growth of InGaN/GaN multiple- quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Applied physics letters, 1999(75):1494-1496
    [40] Kipshidze G, Kuryatkov V, Borisov B, et al. Deep ultraviolet AIGalnN-Based light-emitting diodes on Si(111) and sapphire. Physica status solidi A-applied research, 2002(192):286-291
    [41] Guha S, Bojarezuk N A. Multicolored lighte mitters on silicon substrates. Applied physics letters, 1998(73):1487-1489
    [42] Feltin E, Dalmasso S, Mierry P D, et al. Green InGaN light-emitting diodes grown on silicon(111) by metalorganic vapor Phase epitaxy. Japanese journal of applied physics, 2001(40):L738-L740
    [43] Iwaya M, Terao S, Sano T, et al. High-Efficiency GaN/AlxGa1-xN Multi- Quantum-Well Light Emitter Grown on Low-Dislocation Density AlxGa1-xN. Phsica status solidi(a),2001,188(1): 117-120
    [44] Maruska H P, Rhines W C, Stevenson D A. Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence.Materials Research Bulletin,1972, 7(8): 777-781
    [45] Shuji Nakamura. GaN Growth Using GaN Buffer Layer.Japanese journal of applied physics.1991, 30(10A): L1705-L1707
    [46] Pawlowski R P, Theodoropoulos C, Salinger A G, et al. Fundanmental models of the metalorganic vapor-phase epitaxy of gallium nitride and their use in reactor design. Journal of crystal growth, 2000,221: 622~828
    [47] Nakamura. Candela-class high-brightness InGaN/AlGaN double heterostructure blue–light–emitting diodes.Applied physics letters,1994,64(13): 1687-1689
    [48] Degave F, Ruterana P, Nouet G, et al. Initial stages of GaN buffer layer growth on (0001) sapphire by metalorganic chemical vapour deposition. Diamond and Related Materials, 2002,11(3-6): 901-904
    [49] Kim H J, Paek H S, Yoo J B. Pre-treatment of low temperature GaN buffer layer deposited on AlN/Si substrate by hydride vapor phase epitaxy. Journal of crystal growth, 2000,131 (1-3): 465-469
    [50] Zheleva T, Smith S, Thomson D, et al. Pendeo-epitaxy:A new approach for lateral growth of gallium nitride films.J.Electron.Matls,1999,28(4): L5-L8
    [51] Tsvetanka S Z, Smith S A, Darren B, et al. Pendeo-Epitaxy:A New Approach forLateral Growth of gallium nitride films.Journal of Electronic Materials,1999,28: L5-L8
    [52] Nakamura S, Mukai T, Senoh M. High power GaN p-n junction blue LED. Journal of applied physics, 1991, 69 (30):1705-1706
    [53] Diel T, Ohno H, Matsukura F, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Maganetic Semiconductors.Science, 2002, 287(5455):1019-1022
    [54] Ando K, Saito H, Jin Z, et al. Magneto-optical properties of ZnO-based diluted magnetic semiconductors. Journal of applied physics, 89(11): 7284-7286
    [55] Dwilin R, Doradzin R, Garczyn J, et al. Diamond and Related Materials, 1998, 7(9):1348-1350
    [56]林玲,石瑛,蒋昌忠.GaN基稀磁半导体的离子注入研究动态.材料导报,2004,18(9):68-69
    [57] Xu Daqing, Zhang Yimen, Zhang Yuming, et al. Possible origin of room-temperature ferromagnetism in undoped GaN epilayers implanted with Mn ions. Journal of Magnetism and Magnetic Materials, 2009, 321:2443-2445
    [58] Shinji K, Yoshikazu T, K?ki T. Self-organized quantum dots of diluted magnetic Semiconductors Cd1-xMnxTe. Journal of crystal growth.2000, 214/215:140-149
    [59] Munekata H, Ohno H, Molnar S, et al. Diluted magnetic III-V semiconductors. Physics review letters, 1989, 63:1849-1852
    [60] Chang Kai, Xia J B, Peeters F M. Magnetic field tuning of the effective gfactor in a Diluted magnetic semiconductor quantum dot. Applied physics letters, 2003, 82 (16):2661-2663
    [61] Lee J S, Lim J D, Khim Z G, et al. Magnetic and structural properties of Co,Cr,V ion-implanted GaN. Journal of applied physics, 2003, 93(8):4512-4516
    [62]刘志凯,宋书竹,陈诺夫等.室温铁磁性GaN:Cr薄膜的性质研究.功能材料.2004,(35):1212-1214
    [63] Huang R T, Hsu C F, Kai J J, et al. Room-temperature diluted magnetic semiconductors p-(Ga,Ni)N. Applied physics letters,2005, 87(20):202507-202510
    [64] Wu R Q, Peng G W, Liu L, etal. Cu-doped GaN: A dilute magnetic semiconductor from first-principles study. Applied physics letters, 2006, 89(6):062505-062507
    [65] Lee J H, Choi I H, Shin Sangwon, et al. Room-temperature ferromagnetic ofCu-implanted GaN. Applied physics letters, 2007, 90(3):032504-03506
    [66] Woochul K, Hee J K, Sam K N, et al. Magnetic and structural properties of Fe ion-implanted GaN. Journal of Magnetism and Magnetic Materials 2007, 316: e199-e202
    [67]姚连增.晶体生长基础.合肥:中国科学技术大学出版社,1995. 303
    [68] Leszczynski M, Teisseyre H, Suski T, et al. Lattice parameters of gallium nitride. Applied physics letters, 1996, 69 (1): 73 -75
    [69]徐波,余庆选,吴气虹,等.应力和掺杂对Mg:GaN薄膜光致发光光谱影响的研究.物理学报,2004, 53(1):205-209
    [70] Edwatds N V, Bremser M D, Davis R F, et al. Trends in residual stress for GaN/AlN/6H-SiC heterpstrictires. Applied physics letters, 1998, 73(9):2808-2810
    [71] Sinha K, Mascarenhas A, Kurtz S R, et al.Determination of free carrier concen- tration in n-GaInP alloy by Raman scattering. Journal of applied physics, 1995,78:2515-2519
    [72] Arguello C A, Rousseau D L, Porto S P S. First Order Raman Effect in Wurtzite-Type Crystals. Physics review, 1968, 181: 1351
    [73]叶建东,顾书林,王立宗,等.掺碳氮化镓的光学性质,半导体学报,2002,23:717-721
    [74] Vajpeyi A P, Tripathy S, Chua S J, et al. Investigation of optical properties of nanoporous GaN films. Physica E, 2005, 28:141-149
    [75]王瑞敏,陈光德, Lin J Y,等. MOCVD生长的GaN和GaN:Mg薄膜的拉曼散射.发光学报, 2005, 26: 229 -232
    [76] Kisielowski C, Kruger J, Ruvimov S, et al. Strain-related phenomena in GaN thin films. Physics review B, 1996, 54: 17745-17753
    [77] Duan C H, Qiu K, Li X H, et al. Effects of in situ Annealing on Optical and Structural Properties of GaN Epilayers Grown by HVPE. Journal of Semiconductors, 2008, 29(3):410-413
    [78] Huang H Y. Photoluminescence and photoluminescence excitation studies of as-grown and P-implanted GaN:On the nature of yellow luminescence. Applied physics letters, 2002, 80:3349-3351
    [79] Li G, Bohn P W, Coleman J J. Impurity states are the origin of yellow-bandemission in GaN structuresproduced by epitaxial lateral overgrowth. Applied physics letters, 1999, 75 (26):4049-4051
    [80] Ponce F A, Bour D P, Gotz W, et al. Spatial distribution of the luminescence in GaN thin films. Applied physics letters, 1996, 68(1):57-59
    [81] Qiu X G, Segawa. Influence of threading dislocations on the near-bandedge photoluminescence ofwurtzite GaN thin films on SiC substrates. Applied physics letters, 2000, 77(9): 1316-1318
    [82] Kerller S, Keller B P, Wu Y F, et al. Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition. Applied physics letters, 1996, 68(11):1525-1527
    [83] Kishino K, Kikuchi A. Polarity control and threading dislocation reduction in RF-MBE grown GaN on sapphire substrates. Chinese of journal of lumi, 2001,22:319-323
    [84] Heying B, Wu X H, Keller S, et al. Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films. Applied physics letters., 1996, 68(5):643-645
    [85] Pearton S J, Theodoropoulou N, Overberg M E, et al. Characterization of Ni-implanted GaN and SiC. Materials Science and Engineering, 2002, 94:159-163
    [86] Huang R T, Hsu C F, Kai J J, et al. Room-temperature diluted magnetic semiconductors p-(Ga,Ni)N. Applied physics letters, 2005, 87(20):202507-202510
    [87] Akinaga H,Nemeth S,Boeck J De,et al. Growth and characterization of low-temperature grown GaN with high Fe doping. Applied physics letters,2000, 77(26) :4377-4379
    [88] Kuwabara S, Konda T, Chikyow T, et al. Molecular beam epitaxy of wurtzite GaN-based magnetic alloy semiconductors. Japanese journal of applied physics , 2001, 40:L724-L720
    [89] Dhar S, Brandt O, Trampert A, et al. Observation of spin glass behavior in homogeneous (Ga,Mn)N layers grown by reaetive moleeular-beam epitaxy. Physics review B, 2003, 67:165205
    [90] Dhar S., Brandt O, Trampert A, et al. Origin of high-temperature ferromagnetismin (Ga,Mn)N layers grown on 4H-SiC(0001) by reactive molecular-beam epitaxy. Applied physics letterst, 2003, 82:2077-2079
    [91] Ohmo H. Making Nonmagnetic Semiconductor Ferromagnetic. Science, 1998, 281:951.
    [92] Acbas G, Kim M H, Cukr M, et al. Electronic Structure of Ferromagnetic Semiconductor Ga1-xMnxAs Probed by Subgap Magneto-optical Spectroscopy. Physics review letters, 2009,137021:1-4
    [93] Kim K H, Lee K J, Kim D J, et al. Magnetotransport of p-type GaMnN assisted by highly conductive precipitates. Applied physics letters, 2003, 82: 1775-1777

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700