3d过渡金属掺杂一维ZnO 纳米材料磁、光机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)作为一种具有优良压电、光电特性的Ⅱ-Ⅵ族宽禁带半导体材料,在电学、光学和磁学等方面具有广阔的应用前景。特别是ZnO基稀磁性半导体材料,由于可能具有超过室温的居里温度Tc、大的磁性离子溶解度、在可见光范围内透明等特点,有希望成为新一代信息处理和储存、量子计算和量子通讯等领域的重要材料。本文应用基于密度泛函理论框架下的第一性原理计算方法,系统研究了ZnO纳米材料及其3d过渡金属掺杂的一维ZnO纳米材料的几何结构、电子结构以及磁、光、电属性,分析了一维ZnO基稀磁半导体材料的磁性来源和磁性耦合机理,以及过渡金属掺杂对一维ZnO纳米材料磁学、电学和光学性能的影响,为实验制备高质量、高居里温度的一维ZnO纳米磁性材料提供了理论依据。论文的主要内容和结果如下:
     1. ZnO体材料电子结构的理论研究。采用基于密度泛函理论的第一性原理计算方法,对比研究了ZnO体材料采用不同的交换关联函数时的基本结构和性质。计算结果显示,采用LDA+U和B3LYP交换关联泛函方法明显优于单独采用GGA和LDA的计算结果,LDA+U和B3LYP密度泛函计算得到的带隙值更接近于实验值,但LDA+U和B3LYP耗时将成倍增加,而GGA所用时间最短。
     2. ZnO纳米线和纳米管电子结构与属性的理论研究。采用密度泛函理论研究了ZnO纳米线和纳米管的几何结构、电子结构和光学性质。研究发现,随着ZnO纳米线尺寸的增加,结合能逐渐降低,体系逐渐趋于更加稳定的结构。电荷密度计算结果显示整个ZnO纳米线中Zn-O之间主要以共价键为主,同时兼有离子键成分,p-d轨道具有强烈的交叠杂化效应,整个纳米线表面电荷都向外偏聚,电子的离域性增大,Zn-O间共价性减弱,离子性增强。ZnO纳米管理论计算结果显示,所有构型的纳米管都由原来的皱褶型转变成圆柱形管状结构,结合能都为负值,表明单壁ZnO纳米管是可以稳定存在的。电子结构计算显示ZnO纳米管是一直接带隙的宽禁带半导体材料,带隙值都明显大于体材料;随着纳米管管径的增加,整个价带与体材料相比明显展宽,且向低能方向漂移,在价带顶出现了表面效应引起的缺陷态能级;ZnO纳米线和纳米管光学性质计算结果显示,随着ZnO纳米线尺寸和纳米管管径的减小,吸收光谱发生了蓝移现象,且对应于紫外波段。
     3.3d过渡金属掺杂ZnO纳米线磁学、光学和电学性能的研究。采用基于自旋极化的密度泛函理论计算方法,系统研究了3d过渡金属掺杂ZnO纳米线的几何结构、电子结构以及磁学、电学和光学属性。研究发现,V掺杂体系只具有铁磁性耦合特征,Mn掺杂只具有反铁磁特征,而Cr、Fe、Co和Ni掺杂体系不同的取代位置则对应于不同的磁性耦合特征,因此,3d过渡金属掺杂ZnO纳米线具有丰富的磁学现象,特别是对于Co掺杂,铁磁性耦合形成了半导体磁性材料,理论预测具有优异的磁光性能,而反铁磁性掺杂却形成了半金属磁性材料。光学性能计算结果显示,3d过渡金属掺杂对ZnO纳米线的整体光学性质影响并不大,Mn、Fe、Co、Ni掺杂都发生了蓝移现象,Cr掺杂发生了红移现象。
     4.3d过渡金属掺杂ZnO纳米管磁学、光学和电学性能的研究。采用基于自旋极化的密度泛函理论框架下的第一性原理计算方法,研究了3d过渡金属掺杂ZnO纳米管的几何结构、电子结构以及磁学、电学和光学属性。研究结果表明,V、Cr和Mn掺杂ZnO纳米管更容易形成铁磁性材料,具有很强的磁性;Fe和Co掺杂ZnO纳米管更容易形成反铁磁材料;而Ni掺杂ZnO纳米管反铁磁性能较铁磁性能稍稳定。电子结构计算结果显示,在费米能级附近3d态分裂为离域的三重态t2g和局域的二重态eg,出现了强烈的杂化耦合特征;光学性质计算结果显示,3d过渡金属掺杂ZnO纳米管在紫外区出现了3个明显的吸收峰,近紫外吸收带边发生了红移,400nm处的吸收峰发生了一定的蓝移,且Mn、Fe、Co、Ni吸收峰强度明显增强,而Cr的吸收峰强度减弱。理论计算结果表明3d过渡金属掺杂ZnO纳米管是一种优异的紫外光电子材料。
Zinc Oxide (ZnO), a typical wide band gap (Eg=3.37eV) II-VI semiconductormaterial with a good piezoelectric and photoelectric properties, is a promisingapplication in the fields of electrics, optics and magnetics. For ZnO-based dilutemagnetic semiconductor material, its Curie temperature (Tc) is higher than the roomtemperature. In particular, it shows a large solubility of magnetic ions and transparentin the visible light region. These fantastic features make ZnO-based dilute magneticsemiconductor promising in information processing and storage, quantum computingand quantum communication. In this thesis, the first-principles based upon thedensity-functional theory (DFT) are systematically performed to study the geometricand electronic structures, magnetic, optical and electrical properties of3d transitionmetal doped one-dimensional ZnO nanomaterials, and these results may analyse theorigin of ferromagnetism and the mechanism of ferromagnetic coupling of one-dimensional ZnO diluted magnetic semiconductor materials. The effects of transitionmetal doping on the magnetic, optical and electrical properties are investigate, andsome helpful instruction can be provided for the preparation of high-qualityone-dimensional ZnO magnetic nanomaterials with high Curie temperature.
     The main contents and results are listed below:
     1. Theoretical study on electronic structure of bulk ZnO materials. With theadoption of different exchange-correlation potential, the basic structure and propertiesof bulk ZnO are studied using the first-principles calculation based on the densityfunctional theory. The calculated results by using the methods of LDA+U andB3LYP are better than those calculated by using the individual method of GGA and LDA. Although the calculated band gap by using the LDA+U and B3LYP methods ismuch closer to the experimental data, the above two methods are multiplied in thetime-consuming with respect to the shortest time consuming by the GGA method.
     2. Study on the structures and properties of ZnO nanowires. The geometricstructures, electronic structures and optical properties are studied by using the densityfunctional theory with respect to one-dimensional ZnO nanowires and nanotubes. It isfound that the band gap and the binding energy are gradually reduced, and the systemis becoming more stable with the increase in ZnO nanowires size. Meanwhile, obvioussize effects and surface effects are observed in the ZnO nanowires. The calculatedcharge density results show that ZnO nanowires look like strong covalent bondscharacter rather than ionic bonds. The strong p-d orbital hybridization appears in ZnONWs and surface charges on the whole of nanowires move outward. The electronicdelocalization is increased, So ionic bonds in ZnO are stronger than covalent bond.For the ZnO nanotubes, the initial polygon structure transforms into a perfectcylindrical tube and the binding energy of different ZnO nanotubes is negative, whichimplies that those ZnO nanotubes can exist in principle. Moreover, the calculatedelectronic structure results show that one-dimensional ZnO nanowires and nanotubesare direct wide gap semiconductor materials, and their band gap values aresignificantly larger than that of bulk ZnO. With the increase of nanotube diameter, thewhole valence band is significantly broadened and moves towards low energy, thedefect levels appear in the valence band top due to surface effects. At the same time,the calculated optical results for ZnO nanowires and nanotubes show that there is asignificant blue shift in the absorption spectrums with the decrease of NWs size, andthe absorption spectrum locate in UV region. This implies that one-dimensional ZnOnanomaterials can be used for the development of UV-electronic devices.
     3. Study on magnetic, optical and electrical properties of3d transition metaldoped ZnO nanowires. The geometric and electronic structures, together withmagnetic, optical and electrical properties are studied by using the spin-polarized density functional theory with regard to3d transition metal doped ZnO nanowires.The calculated results indicate that V-doped system is only ferromagnetic coupling,and the Mn-doped system is only antiferromagnetic coupling. However, it isinteresting that Cr, Fe, Co and Ni-doped systems have different magnetic couplingwhen the doped atoms replace the different location, which indicates that Cr, Fe, Coand Ni-doped ZnO nanowires possess more rich magnetism phenomenon. Especially,the ferromagnetic coupling forms magnetite semiconductor materials for Co-doped,which exhibits excellent magneto-optical properties from theoretical prediction, butthe antiferromagnetic coupling forms half-metal magnetite materials. Meanwhile, thecalculate results of optical properties indicate that there is little change in the opticalproperties, and significant blue shift and red shift are respectively observed in the Mn,Fe, Co, Ni-doped systems and Cr-doped system.
     4. Study on magnetic, optical and electrical properties of3d transition metaldoped ZnO nanotubes. The geometric and electronic structures, together withmagnetic, optical and electrical properties of3d transition metals doped ZnOnanotubes are investigated by using the first-principles based on spin-polarizeddensity functional theory. It is found that the V, Cr and Mn-doped systems are moreeasier to form the ferromagnetic coupling and possess a strong magnetic properties,while the Fe and Co-doped system are more easier to form antiferromagnetic coupling.but the Ni-doped system is instable for the magnetic properties. Furthermore,overlook from the electronic structure calculation, it is clear that the3d states oftransition metals split into one triply degeneratet2gand one doubly degenerate egnearthe fermi level, which shows a strong hybridization between TMs-3d and O-2p states.The calculated optical properties show that three obvious absorption peaks areobserved in the UV region, and there is a red shift in the near UV region, meanwhile,the absorption peaks at400nm is a blue shift and the intensity of absorption peaks inMn-, Fe-, Co-, Ni-doped system increase obviously,but the intensity of absorptionpeaks in Cr-doped system decrease. In one word, we can come to a conclusion that3d transition-metal-doped ZnO nanotubes is a good UV magneto-optical electronicmaterials.
引文
[1] http://www.zyvex.com/nanotech/feynman.html
    [2] G A Prinz. Magnetelectronies. Science,1998,282:1660-1663
    [3] P Ball. Meet the spin doctors. Nature,2000,404:918-920
    [4] S Wolf, D D Awshalom, R A Buhiman, et a., A spin-based electronics vision forthe future, Seience,2001,294:1488-1495
    [5]焦正宽,曹光旱,磁电子学[M],浙江:浙江大学出版社,2005年
    [6] X F Wang, J B Xu, X J Yu, et al., Structural evidence of secondary phasesegregation from the Raman vibrational modes in Zn1xCoxO (0    [7]常凯,夏建白,半导体自旋电子学[M],北京:科学出版社,2008
    [8] J K Furdyna. Diluted magnetic semiconductors.J.Appl.Phys.,1988,64(4):R29-R64
    [9] H Ohno, T Dietl, A Shen, F Matsukura, A Oiwa, A Endo, S Katsumoto and Y Iye.(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs.Appl.Phys.Lett.,1996,69(3):363-365
    [10] M E Overberg, C R Abernathy, S J Peartonet al., Indication of ferromagnetism inmolecular beam epitaxy derived N-type GaMnN. Appl.Phys.Lett.,2001,79(9):1312-1314
    [11] M L Reed, NA El-Masry, H H Stadelmaier, et al., Room temperatureferromagnetic properties of (Ga, Mn)N. Appl.Phys. Lett.,2001,79(21):3473-3475
    [12] K Ando. Magneto-optical studies of s, p–d exchange interactions in GaN:Mnwith room-temperature ferromagnetism. Appl. Phys. Lett.,2003,82(1):100-102
    [13] H Saito, V Zayets and S Yamagata. Room-temperature ferromagnetism in a ii-vidiluted magnetic semiconductor Zn1-xCrxTe.Phys.Rev.Lett.,2003,90(20):207202
    [14]姜寿亭,李卫.凝聚态磁性物理,北京:科学出版社,2003
    [15] T Story, R R Galazka, R B Frankel and P A Wolff. Carrier-concentration–induced ferromagnetism in PbSnMnTe. Phys. Rev. Lett.,1986,56:777-780
    [16] T Dietl, H Ohno, F Matsukura, et al., Zener Model Description ofFerromagnetism in Zinc-Blende Magnetic Semiconductors. Science,2000,287(11):1019-1022
    [17] K Sato, H Katayams. Material design for transparent ferromagnets withZnO-Based Magnetic Semiconductors. Jpn.J.Appl.Phys.,2000,39(6): L555-L558
    [18] K A Griffin, A B Pakhomov, C M Wang. Intrinsic ferromagnetism in insulatingcobalt doped anatase TiO2. Phys.Rev.Lett.,2006,94(15):157204
    [19]纪红芬.溶胶-凝胶法制备Co掺杂ZnO纳米粉体的实验研究[D],陕西:西北大学,2008
    [20]宛德福.磁性理论及其应用[M],广州:华中理工大学出版社,1996
    [21]张富春. ZnO电子结构与属性的第一性原理计算[D],陕西:西北大学,2006
    [22] E S P Leong, S F Yu, and S P Lau. Directional edge-emitting UV random laserdiodes. Appl.Phys.Lett.,2006,89(22):221109
    [23] J Zhou, P Fei, Y D Gu, et al., Piezoelectric-potential-controlled polarityreversible schottky diodes and switches of ZnO wires. Nano. Lett.,2008,8(11):3973-3977
    [24] L Chernyak, C Schwarz, E S Flitsiyan, et al., Electron beam induced currentprofiling of ZnO p-n homojunctions. Appl.Phys.Lett.,2008,92(10):102106
    [25] T Minami, Y Ohtani, T Miyata and T Kuboi. Transparent conducting Al-dopedZnO thin films prepared by magnetron sputtering with dc and rf powers appliedin combination. J.Vac.Sci. Technol.,2007,25(4):1172-1177
    [26] Y Ishida, J I Hwang, M Kobayashi, et al., Soft x-ray magnetic circular dichroismstudy of weakly ferromagnetic Zn1xVxO thin film. Appl. Phys. Lett.,2007,90:022510
    [27] M W Ahn, K S Park, J H Heo, et al., Gas sensing properties of defect-controlledZnO-nanowire gas sensor. Appl.Phys.Lett.,2008,93(26):263103
    [28] Rio De Janiero, Brasil. Zinc-oxide surface acoustic wave device fabrication.ECS.Trans.,2007,9(1-3):112-124
    [29] R T Zaera, J Elias and C L Clément. ZnO nanowire arrays: Optical scatteringand sensitization to solar light. Appl. Phys. Lett.,2008,93:233119
    [30] C Li, W Lei, X B Zhang, et al., Fabrication and field emission properties ofregular hexagonal flowerlike ZnO nanowhiskers. J. Vac. Sci. Technol. B,2007,25,(2):590-593
    [31] Z L Wang. Towards self-powered nanosystems: from nanogenerators to nano-piezotronics. Adv. Funct. Mater.,2008,18:1–15
    [32] F Robert. Will UV lasers beat the blues? Service. Science,1997,276:895-897
    [33] S Desgreniers. High-density phases of ZnO:Structural and compressiveparameters. Phys. Rev.B.,1998,58:14102
    [34] S J Pearton, D P Norton, K Ip, Y W Heo and T Steiner. Recent advances inprocessing of ZnO, J. Vac. Sci. Technol. B,2004,22(3):932-948
    [35] H Karzel, W Potzel, M K fferlein, et al., Lattice dynamics and hyperfineinteractions in ZnO and ZnSe at high external pressures. Phys.Rev.B.,1996,53:11425
    [36] H F S Marcel, Y Kawazoe, P Sharma, et al., First principles based design andexperimental evidence for a ZnO-based ferromagnet at room temperature.Phys.Rev. Lett.,2005,94(18):187204
    [37] Q Wang, Q Sun, P Jena. Magnetic coupling between Cr atoms doped at bulk andsurface sites of ZnO. Appl. Phys. Lett.,2006,87(16):162509
    [38] S J Hu, S S Yan, M W Zhao. Phys.Rev.B, First-principles LDA+U calculationsof the Co-doped ZnO magnetic semiconductor.2006,73(24):245205
    [39] Q Wang, Q Sun, G Chen. Vacancy-induced magnetism in ZnO thin films andnanowires. Phys.Rev.B,2008,77(20):205411
    [40] W J Zheng, T Fukumura, M Kawasaki, et al., High throughput fabrication oftransition-metal-doped epitaxial ZnO thin films: A series of oxide-dilutedmagnetic semiconductors and their properties. Appl. Phys. Lett.,2001,78:3824
    [41] T Fukumura, J Z wu, A Ohtomoet al., An oxide-diluted magnetic semiconductor:Mn-doped ZnO. Appl.Phys.Lett.,1999,75:3366
    [42] K Ueda, H Tabata and T Kawai. Magnetic and electric properties oftransition-metal-doped ZnO films. Appl. Phys. Lett.,2001,79(7):988
    [43] S W Jung, S Jan, G C Yi, et al., Ferromagnetic properties of Zn1–xMnxOepitaxial thin films. Appl.phys.Lett.,2002,80(24):4561
    [44] D C Look, C Cokunc, B Claflina and G C Farlow. Electrical and opticalproperties of defects and impurities in ZnO, Physica B,2001,308-310:993-998
    [45] N S Norberg, K R Kittilstved, J E Amonette. Synthesis of colloidal Mn2+:ZnOquantum dots and high-Tcferromagnetic nanocrystalline thin films. J. Am. Chem.Soc.,2004,126:9387-9398
    [46] Y Q Chang, D B Wang, X H Luo, et al., Synthesis, optical, and magneticproperties of diluted magnetic semiconductor Zn1–xMnxO nanowires via vaporphase growth. Appl. Phys. Lett.,2003,83(19):4020
    [47] U Philipose, V Nair, S Trudel. High-temperature ferromagnetism in Mn-dopedZnO nanowires. Appl. Phys. Lett.,2006,88:263101
    [48] J J Liu, M H Yu, W L Zhou. Well-aligned Mn-doped ZnO nanowires synthesizedby a chemical vapor deposition method. Appl. Phys. Lett.,2005,87:172505
    [49] X M Zhang, Y Zhang, Z L Wang. Synthesis and characterization of Zn1xMnxOnanowires. Appl. Phys. Lett.,2008,92(16):162102
    [50] K Ueda, H Tabata, T Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Appl.Phys.Lett.,2001,79(7):988-901
    [51] A S Risbud, N A Spaldin, Z Q Chen. Magnetism in polycrystalline cobaltsubstituted zinc oxide. Phys. Rev. B.,2003,68(20):205202
    [52] M Bouloudenine, N Viart, S Colis, et al., Antiferromagnetism in bulk Zn1–xCoxOmagnetic semiconductors prepared by the coprecipitation technique. Appl. Phys.Lett.,2005,87(5):052501
    [53] M Bouloudenine, N Viart, S Colis and A Dinia. Zn1-xCoxO diluted magneticsemiconductors synthesized under hydrothermal conditions. Catalysis Today,2006,113(3-4):240-244
    [54] S Deka, R Pasricha, P A Joy. Synthesis and Ferromagnetic Properties of LightlyDoped Nanocrystalline Zn1-xCoxO. Chem.Mater.,2004,16:1168-1169
    [55] Y M Cho, W K Choo, H Kim. Effects of rapid themal annealing on theferromagnetic properties of sputtered Zn1-x(Co0.5Fe0.5)xO thin films.Appl.Phys.Lett.,2002,80(18):3358-3360
    [56] J J Wu, S C Liu, M H Yang. Room-temperature ferromagnetism in well-alignedZn1–xCoxO nanorods. Appl.Phys.Lett.,2004,85:1027
    [57] J J Chen, M H Yu, W L Zhou, et al., Room-temperature ferromagnetic Co-dopedZnO nanoneedle array prepared by pulsed laser deposition. Appl.Phys.Lett.,2007,87:173119
    [58] C Cheng, G Y Xu, H Q Zhang and Y Li. Solution synthesis, optical and magneticproperties of ZnCoO nanowires. Materials Letters,2008,62:3733-3737
    [59] Y C Yang, C Song, F Zeng, F Pan, Y N Xie and T Liu. V5+ionic displacementinduced ferroelectric behavior in V-doped ZnO films. Appl.Phys. Lett.,2007,90:242903
    [60] J R Neal, A J Behan, R M Ibrahim,et al., Room temperature magneto-optics offerromagnetic transition–metal-doped ZnO thin films. Phys. Rev. Lett.,2006,96:197208
    [61] S Ramachandran, A Tiwari, J Narayan and J T Prater. Epitaxial growth andproperties of Zn1–xVxO diluted magnetic semiconductor thin films. Appl. Phys.Lett.,2005,87:172502
    [62] C K Xu, K K Yang, L Whang, et al., Ferromagnetism of aligned Zn1xVxOnanorods grown by a vapour transport route. J.Phys. D:Appl.Phys.,2008,41:195005
    [63] D W Chu, Y P Zeng and D L Jiang. Synthesis and growth mechanism ofCr-doped ZnO single-crystalline nanowires. Solid State Communications,2007,143(6-7):308-312
    [64] W Jin, In-Kyum Lee, A Kompch, et al., Journal of the European CeramicSociety,2007,27:4333
    [65] B K Roberts, A B Pakhomov, P Voll and K M Krishnan. Surface scaling ofmagnetism in Cr: ZnO dilute magnetic dielectric thin films. Appl. Phys. Lett.,2008,92:162511
    [66] K Ueda, H Tabata and T Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett.,2001,79:988
    [67] Z Jin, T Fukumura, M Kawasaki, K Ando, et al., High throughput fabrication oftransition-metal-doped epitaxial ZnO thin films: A series of oxide-dilutedmagnetic semiconductors and their properties. Appl.Phys. Lett.,2001,78:3824
    [68] H J Lee, S Y Jeong, J Y Hwang and C R Cho. Ferromagnetism in Li andco-doped ZnO:Cr. Europhys.Lett.,2003,64:797-802
    [69] Y Lin, D M Jiang, W Z Shi. Fe-doped ZnO magnetic semiconductor bymechanical alloying. Journal of A lloys and Conpounds,2007,436:30233
    [70] A Y Polyakov, A V Govorkov, N B Smirnov, et al., Optical and magneticproperties of ZnO bulk crystals implanted with Cr and Fe. Mater. Sci.Semicond.Process,2004, V7:77
    [71] S K Mandal, T K Nath, A Das. Magnetic glassy phase in Zn0.85Fe0.15O dilutedmagnetic semiconducting nanoparticles. Appl. Phys.Lett.,2006,89:162502
    [72] H W Zhang, Z R Wei, Z Q Lic and G Y Dong. Room-temperatureferromagnetism in Fe-doped and Cu-codoped ZnO diluted magneticsemiconductor. Materials Letters,2007,61(17):3605-3607
    [73] J B Cui and U J Gibson. Electrodeposition and room temperature ferromagneticanisotropy of Co and Ni-doped ZnO nanowire arrays. Appl.Phys. Lett.,2005,87:133108
    [74] X X Liu, F T Lin, L L Sun, et al., Doping concentration dependence ofroom-temperature ferromagnetism for Ni-doped ZnO thin films prepared bypulsed-laser deposition. Appl.Phys. Lett.,2006,88:062508
    [75] S Singh, N Rama, K Sethupathi and M S R Rao. Correlation between elctricaltransport optical and magnetic properties of transition metal ion doped ZnO. J.Appl. Phys.,2008,103:07D108
    [76]纪红芬,张志勇,种兰祥,翟春雪,赵丽丽.溶胶-凝胶法制备Co掺杂ZnO纳米粉体的实验研究.功能材料,2007,8(A03):1018
    [77]邵思飞,张富春,张威虎,张志勇. Zn1-xFexO精细结构的第一性原理研究.功能材料,2007,38(11):1802-1805
    [1]熊家炯,材料设计[M],天津:天津大学出版社,2000
    [2] P C Hohenberg, W Kohn, Inhomogneneous electron gas. Phys. Rev. B,1964,136:864
    [3] Kohn W, Sham L. Quantum density oscillations in an inhomogneneous electrongas. J., Phys. Rev,1965, A137:1697
    [4] W Kohn. Density function theory: fundamentals and applications[M], In:Bassani,1975
    [5] F Fumi, M P Tosi,et al., Highlights of condensed matter theory[M], NorthHolland,1985
    [6] L Sham. Density function theory and computational materials physics[M],Kluwer Academic Publishers,1996
    [7] W Yang. Direct calculation of electron density in density-functional theory.Phys. Rev. Lett,1991,66:1438
    [8] A D Beck. Density functional exchange-energy approximation with correctasymptotic behaviour. Phys. Rev.A.,1988,38:3098
    [9]张富春. ZnO电子结构与属性的第一性原理计算[D],陕西:西北大学,2006
    [10]冯端,金国均,凝聚态物理[M],北京:高等教育出版社,2002
    [11]吴兴惠,项金钟,现代材料计算与设计教程[M],北京:电子工业出版社2002
    [12]谢希德,陆栋,固体能带理论[M],上海:复旦大学出版社,1998
    [13] D R Hartree. The wave mechanics of an atom with a non-coulomb central field.Part I. theory and methods. Proc.Cam.Phil.Soc.1928,24:89-110
    [14] V Fock. N herungsmethode zur L sung des quanten-mechanischen Mehrk r–perproblems. Z.Phys.,1930,61:126-148
    [15] H Thomas. The calculation of atomic fields. Proc.Camb.Phil. Soc.,1927,23:542-548
    [16] E Fermi. Un metodo statistico per la determinazione di alcune priorieta dellatoms Rend, Accad.Naz.Lincei.1927,6:602-607
    [17] D E Ellis, G A Benesh and E Byrom. Self-consistent embedded-cluster modelfor magnetic impurities: Fe, Co, and Ni in β′--NiAl. Phys. Rev. B.,1979,20:1198-1207
    [18] W Yang. Direct calculation of electron density in density-functional theory.Phys. Rev. Lett.,1991,66:1438-1441
    [19] W A Heer. The physics of simple metal clusters: experimental aspects andsimple models. Rev. Mod. Phys.,1993,65:611-676
    [20] S H Vosko, L Wilk and M Nusair. Accurate spin-dependent electron liquidcorrelation energies for local spin density calculations: a critical analysis.Canadian Journal of Physics,1980,58(8):1200-1211
    [21] http://www.accelrys.com
    [22] Materials Studio使用手册
    [23] M D Segall, P J D Lindan, M J Probert, et al., First-principles simulation:ideasillustrations and the CASTEP code. J.Phys.Cond:Matt.,2002,14(11):717-721
    [24] S J Clark, M D Segall, C J Pickard, et al., First principles methods usingCASTEP. Zeitschrift fuer Kristallographie.2005,220(5-6):567-570
    [25] B J Delley. From molecules to solids with the DMol3approach. J. Chem. Phys.,2000,113(18):7756–7764
    [1] J Lee, A J Easteal, U Pal, et al., Evolution of ZnO nanostructures in sol–gelsynthesis. Current Applied Physics,2009,9(4):792-796
    [2] N J Kim, S L Choi, H J Lee, et al., Nanostructures and luminescence propertiesof porous ZnO thin films prepared by sol–gel process. Current Applied Physics,2009,9(3):643-646
    [3] R F Service. Materials Science: will UV lasers beat the blues?. Science,1997,276:895-897
    [4] Y P Hsieh, H Y Chen, M Zhang, et al., Electroluminescence from ZnO/Si-nanotips light-emitting diodes. Nano.Lett.,2009,9(5):1839–1843
    [5] S Chu, M Olmedo, Z Yang, et al., Electrically pumped ultraviolet ZnO diodelasers on Si, Appl.Phys.Lett.,2008,93:181106
    [6] A Tsukazaki, A Ohtomo, et al., Repeated temperature modulation epitaxy forp-type doping and light-emitting diode based on ZnO. Nature Materials,2005,4:42-46
    [7] S Chu, J H Lim, L J Mandalapu, et al., Sb-doped p-ZnO/Ga-doped n-ZnOhomojunction ultraviolet light emitting diodes. Appl.Phys.Lett.,2008,92:152103
    [8] Y R Ryu, J A Lubguban, T S Lee,et al., Excitonic ultraviolet lasing inZnO-based light emitting devices. Appl. Phys. Lett.,2007,90:131115
    [9] Yu Ryu, T S Lee, J A Lubguban. Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett.,2006,88:241108
    [10] H J Kim, H N Lee, J C Park, et al., The mechanism of improvement of contactresistivity in TFT-LCDs between IZO layers and Al-based metal lines bydiffusion of Mo atoms. Curr.Appl.Phys,2002,2(6):451
    [11] B Wacogne, M P Roe, T J Pattinson, et al., Effective piezoelectric activity ofzinc oxide films grown by radio-frequency planar magnetron sputtering.Appl.Phys.Lett,1995,67(12):1674-1679
    [12] K Nomura, H Ohta, K Ueda, et al., Thin-Film transistor fabricated in singlecrystalline transparent oxide semiconductor. Science,2003,300:12691272
    [13] M B r, J R A Grimm, I K tschau, et al., Zn(O,OH) layers in chalcopyritethin-film solar cells: Valence-band maximum versus composition. J.Appl. Phys.,2005,98:053702
    [14] H J Kim, H N Lee and J C Park. ZnO thin films transmission NOxgas sensing.Curr. Appl. Phys.,2002,6:451
    [15] K S Ahn, Y F Yan, S Shet, ET AL., Enhanced photoelectrochemical responses ofZnO films through Ga and N codoping. Appl. Phys. Lett.,2007,91:231909
    [16] S H Huang, H K Shang, X Y Teng, et al., Lasing action of high quality ZnO thinfilm deposited by radio-frequency magnetron sputtering. Chin. Phys.,2005,14:1205
    [17] S Y Lee, E S Shim, H S Kang, et al., Fabrication of ZnO thin film diode usinglaser annealing. Thin Solid Films,2005,437:31
    [18] H E Unalan, Y Zhang, P Hiralal, et al., Zinc oxide nanowire networks formacroelectronic devices. Appl. Phys. Lett.,2009,94:163501
    [19] Z L Wang and J H Song. Piezoelectric nanogenerators based on zinc oxidenanowire arrays. Science,2006,312:242
    [20] M H Huang, S Mao, H Feick, et al., Room-temperature ultraviolet nanowirenanolasers. Science,2001,292:1897-1899
    [21] C Q Chen, Y Shi, Y S Zhang, et al., Size Dependence of Young's Modulus inZnO Nanowires. Phys. Rev. Lett.,2006,96:075505
    [22] Z L Wang. Towards self-powered nanosystems: from nanogenerators to nano-piezotronics. Adv.Funct.Mater.,2008,18:3553–3567
    [23] G W She, X H Zhang, W Sheng. Controlled synthesis of oriented single-crystalZnO nanotube arrays on transparent conductive substrates. Appl.Phys.Lett.,2008,92:053111
    [24] H Karzel, W Potzel, M K Oerlein, et al., Lattice dynamics and hyperfineinteractions in ZnO and ZnSe at high external pressures. Phys. Rev. B,1996,53:11425
    [25]李春.氧化锌及其纳米结构:基于第一性原理的力学研究[D],南京:南京大学,2007
    [26] R R Reeber. Lattice parameters of ZnO from4.2°to296°K, J.Appl.Phys.,1970,41:5063
    [27] J E affe and A C Hess. Hartree-Fock study of phase changes in ZnO at highpressure. Phys.Rev.B.,1993,48:7903
    [28] H Karzel, W Potzel, M Kfferlein, et al., Lattice dynamics and hyperfine inter-actions in ZnO and ZnSe at high external pressures. Phys.Rev.B.,1996,53,11425
    [29] S Desgreniers. High-density phases of ZnO: Structural and compressiveparameters. Phys.Rev.B.,1998,58:14102
    [30] R Ahuja, L Fast, O Eriksson, J M Wills et al., Elastic and high pressureproperties of ZnO. J.Appl.Phys.,1998,83:8065
    [31] J E Jaffe, J A Snyder, Z Lin and A C Hess. LDA and GGA calculations forhigh-pressure phase transitions in ZnO and MgO. Phys.Rev.B.,2000,62:1660-1665
    [32] Y Noel, C M Zicovich-Wilson, B Civalleri, et al., An ab initio study through theBerry phase and Wannier functions approaches. Phys.Rev.B.,2001,65:014111
    [33] M Catti,Y Noel and R Dovesi. Full piezoelectric tensors of wurtzite and zincblende ZnO and ZnS by first-principles calculations. J.Phys.Chem.Solids,2003,64:2183-2189
    [34] A Zaoui and W Sekkal. LDA and GGA calculations for high-pressure phasetransitions in ZnO and MgO. Phys.Rev.B.,2002,66:174106
    [35] G Carlotti, D Fioretto,G Socino and E Verona. Brillouin scattering deter-mination of the whole set of elastic constants of a single transparent film ofhexagonal symmetry. J.Phys.:Condens.Matter,1995,7:9147
    [36] J R Chelikowsky. An oxygen pseudopotential:Application to the electronicstructure of ZnO. Solid.State.Comm.,1977,22:351-354
    [37] I Ivanov, Pollmann. Electronic structure of ideal and relaxed surfaces of ZnO:Aprototype ionic wurtzite semiconductor and its surface properties, Phys. Rev. B.,1981,24:7275-7296
    [38] P Schroer, Kruger P, Pollmann. First-principles calculation of the electronicstructure of the wurtzite semiconductors ZnO and ZnS. Phys. Rev. B.,1993,47:6971
    [39] A Schleife, F Fuchs, J Furthmüller, et al., First-principles study of ground andexcited state properties of MgO, ZnO and CdO polymorphs. Phys. Rev. B.,2006,73:245212
    [40] V A Ermoshin, V A Veryazov. Electronic structure investigation of bulk ZnOand Its (100) surface. Phys. Stat. Sol.,1995, B189: K49
    [41] S Massidda, R Resta, Posternak M et al., Polarization and dynamical charge ofZnO within different one-particle schemes. Phys. Rev. B.,1995,52: R16977
    [42] M Oshikiri, F Aryasetiawan. Band gaps and quasiparticle energy calculations onZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation.Phys. Rev. B.,1999,60:10754
    [43]张富春. ZnO电子结构与属性的第一性原理计算[D],陕西,西北大学,2006
    [44] Z L Wang. Nanostructures of zinc oxide. Materials Today,2004,7:26-33
    [45] M Kirkham, Z L Wang and R L Snyder. In situ growth kinetics of ZnO nanobelts.Nanotechnology,2008,19:445708
    [46] J F Yan, L L Zao, Z Y Zhang. Optimization of (002)-oriented ZnO film synthesisin sol-gel process and film. Chin.Phys.Lett.,2008,25(6):2253
    [47] Yan J F, Zhang Z Y, et al., Chin.Phys.B.,2009
    [48] Z L Wang and J Song. Piezoelectric nanogenerators based on zinc oxidenanowire arrays. Science,2006,312:242
    [49] X Wang, J Song, J Liu and Z L Wang. Direct-current nanogenerator driven byultrasonic waves. Science,2007,316:102
    [1] P Schroer, P Kruger and J Pollmann. Self consistent electronic structure calcula-tions of the [1010]surfaces of the wurtzite compounds ZnO and CdS. Phys. Rev.B.,1994,49:17092
    [2] Manabu Usuda and Noriaki Hamada. All-electron GW calculation based onApplication to wurtzite ZnO the LAPW method. Phys. Rev. B.,2002,66:125101
    [3] R Rurali, N Lorente. Metallic and Semimetallic Silicon (100) Nanowires. Phys.Rev. Lett.,2005,94:026805
    [4]张富春. ZnO电子结构与属性的第一性原理研究[D],陕西:西北大学,2006
    [5]谢希德,陆栋.固体能带理论[M],上海:复旦大学出版社,1998
    [6]沈学础.半导体光谱和光学性质(第二版)[M];北京:科学出版社,1992
    [7] N H Hong, J Sakai and V brize. Room-temperature ferromagnetism observed inundoped semiconducting and insulating oxide thin films. Phys. Rev. B.,2006,73:132404
    [8] D A Schwartz and D R Gamelin. Reversible300K ferromagnetic ordering in adiluted magnetic semiconductor. Adv. Mater.,2007,16:2115
    [9] P V Radovanovic and D R Gamelin. High-temperature ferromagnetism inNi2+-doped ZnO aggregates prepared from colloidal diluted magnetic semi-conductor quantum dots. Phys. Rev. Lett.,2003,91:157202
    [10] N H Hong, J Sakai, N T Huong, N Poirot and A Ruyter. Role of defects in tuningferromagnetism in diluted magnetic oxide thin films. Phys. Rev. B.,2005,72:45336
    [11] Yan J F, Zhang Z Y, et al., Chin.Phys.B.,2009
    [12] W Z Xu, Z Z Ye, D W Ma, et al., Quasi-aligned ZnO nanotubes grown on Sisubstrates. Appl. Phys. Lett.,2005,87:093110
    [13] Y J Xing, Z H Xi, X D Zhang,et al., Nanotubular structures of zinc oxide. SolidState Communications,2004,129:671
    [14] Y J Xing, Z H Xi, Z Q Xue, et al., Optical properties of the ZnO nanotubessynthesized via vapor phase growth. Appl. Phys. Lett.,2003,83:1689
    [15] A Wei, X W Sun, C X Xu. Stable field emission from hydrothermally grownZnO nanotubes. Appl. Phys. Lett.,2006,88:213102
    [16] Tu Z C and X Hu. Elasticity and piezoelectricity of zinc oxide crystals, singlelayers, and possible single-walled nanotubes. Phys. Rev. B,2006,74:035434
    [17] C X Xu, G P Zhu, X Li, et al., Growth and spectral analysis of ZnO nanotubes. J.Appl. Phys.,2008,103:094303
    [18] A Wei, X W Sun, C X Xu, et al., Stable field emission from hydrothermallygrown ZnO nanotubes. Appl. Phys. Lett.,2006,88:213102
    [19] H J Xiang, J L Yang, JG Hou, Q S Zhu. Fabrication of nanoscale gaps using acombination of self-assembled molecular and electron beam lithographictechniques. Appl. Phys. Lett.,2006,88:223111
    [20] M Usuda, N Hamada, T Kotani, M Schilfgaarde. All-electron GW calculationbased on the Application to wurtzite ZnO LAPW method. Phys. Rev. B.,2002,66:125101
    [21] R Q Zhang, C S Lee, S T Lee, et al., Role of structural saturation and geometryin the luminescence of silicon-based nanostructured materials. Phys. Rev. B.,1996,53:7847
    [22] A Rubio, J L Corkill, M L Cohen, E L Shirley. Phys. Rev. B.,1993,48:11810
    [23] J E Northrup, R D Felice, J Neugebauer. Quasiparticle band structure of AlN andGaN. Phys. Rev. B.,1997,55:13878
    [24] X Kong, X Sun, X Li and Y Li. Catalytic growth of ZnO nanotubes. Mater.Chem. Phys.,2003,82:997
    [25] S Erkoc, H Kokten. First principles study of the band structure and dielectricfunction of (6,6) single-walled zinc oxide nanotube. Physica E,2005,28:162
    [26] A Wei, X W Sun, C X Xu, et al., Stable field emission from hydrothermallygrown ZnO nanotubes. Appl. Phys. Lett.,2006,88:213102
    [27] C F Zhang, Z W Dong, K J Liu, et al., Multiphoton absorption pumpedultraviolet stimulated emission from ZnO microtubes. Appl. Phys. Lett.,2007,91:142109
    [28] H Xu, R Q Zhang, X H Zhang, et al., Structural and electronic properties of ZnOnanotubes from density functional calculations. Nanotechnology,2007,18:485713
    [29] Q J Yu, W Y Fu, C LYu, et al., Fabrication and optical properties of large-scaleZnO nanotube bundles via a simple solution route. J. Phys. Chem. C,2007,111(47):17521–17526
    [30] D S Kim, S M Lee, R Scholz. Synthesis and optical properties of ZnO andcarbon nanotube based coaxial heterostructures. Appl. Phys. Lett.,2008,93:103108
    [31] P Liu, G W She, Z L Liao, et al., Observation of persistent photoconductance insingle ZnO nanotube. Appl. Phys. Lett.,2009,94:063120
    [1] H Ohno. Making nonmagnetic semiconductors ferromagnetic. Science,1998,281:951-954
    [2] Z W Pan, Z R Dai, Z L Wang. Nanobelts of semiconducting oxides. Science,2001,281:1947-1949
    [3] W B Jian, Z Y Wu, R T Huang,et al., Direct observation of structure effect onferromagnetism in Zn1xCoxO nanowires. Phys.Rev.B.,2006,73:233308
    [4] H F S Marcel, Y Kawazoe, P Sharma, et al., First principles based design andexperimental evidence for a ZnO-based ferromagnet at room temperature.Phys.Rev. Lett.,2005,94(18):187204
    [5] J S kulkarni, O kazakova, J D holmes. Dilute magnetic semiconductor nanowires. Appl. Phys. A,2006,85:277–286
    [6] Y Q Chang, D B WANG, X H Luo, et al., Synthesis, optical, and magneticproperties of diluted magnetic semiconductor Zn1–xMnxO nanowires via vaporphase growth. Appl.Phys.Lett,2003,83(19):4020
    [7] S Y Chou, P R Krauss, W. J Zhang. Sub-10nm imprint lithography andapplications. Vac. Sci. Technol,1997, B15:2897
    [8] Y Wang, P Perdew. Correlation hole of the spin-polarized electron gas, withexact small-wave-vector and high-density scaling. Phys. Rev. B.,1991,44:13298
    [9] T Chanier, M Sargolzaei, I Opahle, et al., LSDA+U versus LSDA: towards abetter description of the magnetic nearest-neighbor exchange coupling in Co-and Mn-doped ZnO. Phys.Rev.B.,2006,73:134418
    [10] J M Baik and J L Lee. Fabrication of vertically well-aligned (Zn,Mn)o nanorodswith room temperature ferromagnetism. Adv. Mater.(Weinheim, Ger),2005,17:2745
    [11] U Philipose, S V Nair, S Trudel, et al., High-temperature ferromagnetism inMn-doped ZnO nanowires. Appl. Phys. Lett.,2006,88:263101
    [12] Y H Zhu and J B Xia. ectronic structure of Mn-doped ZnO quantum wires: Amean-field theory study. Phys. Rev. B.,2007,75:205113
    [13] A K Pradhan, K Zhang, S Mohanty, et al., High-temperature ferromagnetism inpulsed-laser deposited epitaxial (Zn,Mn)O thin films: Effects of substratetemperature. Appl. Phys. Lett.,2005,86:152511
    [14] Q Wang, Q Sun, B K Rao and P Jena. Magnetism and energetics of Mn dopedZnO (0001) thin film. Phys. Rev. B.,2004,69:233310
    [15] J Antony, S Pendyala, A Sharma, et al., Room temperature ferromagnetic andUV optical properties of Co-doped ZnO nanocluster films. J. Appl. Phys.,2005,97:10D307
    [16] J Antony, X B Chen, J Morrison, et al., ZnO nanoclusters: synthesis andphotoluminescence. Appl. Phys. Lett.,2005,87:241917
    [17] J Antony, Y Qiang, M Faheem,et al., Ferromagnetic semiconductor nano-clusters: Co-doped ZnO. Appl. Phys. Lett.,2007,90:013106
    [18] Y F Tian, J Antony, R Souza, et al., Giant positive magnetoresistance inCo-doped ZnO nanocluster films. Appl. Phys. Lett,2008,92:192109
    [19] H Saeki, H Tabata and T Kawai. Magnetic and electric properties of vanadiumdoped ZnO films. Solid State Communication,2001,120:439
    [20] Y Ishida, J I Hwang, M Kobayashi, et al., High-energy spectroscopy study of theferromagnetic diluted magnetic semiconductor Zn1-xVxO. Physica B,2004,351:304
    [21] N Hong, J Sakai and A Hassini. Magnetic properties of V-doped ZnO thin films.J. Appl. Phys.,2005,97:10D312
    [22] N Hong, J Sakai and A Hassini. Magnetism in V-doped ZnO thin films. J. Phys.:Condens. Matter,2005,17:199
    [23] M Venkatesan, C B Fitzgerald, J G Lunney and J M D Coey. Anisotropicferromagnetism in substituted ZInc oxide. Phys.Rev. Lett.,2004,93:177206
    [24] J R Neal, A J Behan, R M Ibrahim, et al., Room-temperature magneto-optics offerromagnetic transition-metal-doped ZnO thin films. Phys. Rev. Lett.,2006,96:197208
    [25] H Saeki, H Matsui, T Kawai and H Tabata. Transparent magnetic semi-conductors based on ZnO. J. Phys.: Condens. Matter,16,2006, S5533
    [26] S Ramachandran, A Tiwari, J Narayan and J T Prater. Epitaxial growth andproperties of Zn1–xVxO diluted magnetic semiconductor thin films. Appl. Phys.Lett.,2005,87:172502
    [27] S Q Zhou, K Potzger, H Reuther, et al., Absence of ferromagnetism inV-implanted ZnO single crystals, J. Appl.Phys.,2007,101:09H109
    [28] S H Liu, J C A Huang, C R Lin and X Qi. Electrical transport and acconductivity properties of hydrogenated annealing V-doped ZnO. J. Appl.Phys.,2009,105:07C502
    [29] Q Wang, Q Sun, P Jena and Y Kawazoe. Magnetic coupling between Cr atomsdoped at bulk and surface sites of ZnO. Appl. Phys. Lett.,2005,87:162509
    [30] P Gopal and N A Spaldin. Magnetic interactions in transition-metal-doped ZnO:An ab initio study. Phys. Rev. B.,2006,74:094418
    [31] K Sato, Y H Katayama. Electronic structure and ferromagnetism oftransition-metal-impurity-doped zinc oxide. Physica B.,2001,904:308
    [32] Y Uspenskii, E Kulatov, H Mariette, et al., Ab initio calculation and analysis ofthe properties of digital magnetic heterostructures and diluted magneticsemiconductors of IV and III–V groups. J. Magn. Magn.Mater.,2003,258–259:248
    [33] Y M Hu, Y T Chen, Z X Zhong, et al., The morphology and optical properties ofCr-doped ZnO films grown. Applied Surface Science,2008,254:3873-3878
    [34] B K Roberts, A B Pakhomov, V S Shutthanandan and K M Krishnan.Ferromagnetic Cr-doped ZnO for spin electronics via magnetron sputtering.J.Appl. Phys.,2005,97(10):10D310
    [35] D Chua, Y P Zeng, D L Jiang. Synthesis and growth mechanism of Cr-dopedZnO single-crystalline nanowires. Solid State Communications,2007,143:308
    [36] H Liu, X Zhang, L Y Li, et al., Role of point defects in room-temperatureferromagnetism of Cr-doped ZnO. Appl.PhysS.Lett.,2007,91:072511
    [37] G Y Ahn, S I Park, S J Kim and C S Kim. Ferromagnetic properties ofFe-substituted ZnO-based magnetic semiconductor. J. Magn. Magn. Mater.,2006,304:498-500
    [38] Y Lin, D M Jiang, F Lina, et al., Fe-doped ZnO magnetic semiconductor bymechanical alloying. Journal of Alloys and Compounds,2007,436,(1-2):30-33
    [39] K Potzger, S Zhou and H Reuther. Fe implanted ferromagnetic ZnO. Appl.Phys.Lett.,2006,88:052508
    [40] J H Shim, T Hwang, S Lee, et al., Origin of ferromagnetism in Fe-andCu-codoped ZnO. Appl. Phys. Lett.,2005,86:082503
    [41] X X Wei, C Song, K W Geng, et al., Local Fe structure and ferromagnetism inFe-doped ZnO films. J. Phys.: Condens. Matter.,2006,18:7471-7479
    [42] Y Q Wang, S L Yuan, L Liu, et al., Magnetic properties of doped ZnO preparedby different synthetic routes. J. Magn.Magn. Mater.,2007,10:1016
    [43] P V Radovanovic and D R Gamelin. High-temperature ferromagnetism inNi2+-doped zno aggregates prepared from colloidal diluted magnetic semi-conductor quantum dots. Phys. Rev. Lett.,2003,91:157202
    [44] D A Schwartz, K R Kittilstved and D R Gamelin. Above-room-temperatureferromagnetic Ni2+-doped ZnO thin films prepared from colloidal dilutedmagnetic semiconductor quantum dots. Appl. Phys. Lett.,2004,85:1395
    [45] X Y Mao, W Zhong, Y W Du. Ferromagnetism of Ni cluster in Ni-doped ZnO bysolid state reaction. Journal of Magnetism and Magnetic Materials,2008,320(6):1102-1105
    [46] S Ramachandran, A Tiwari and J Narayan. Zn0.9Co0.1O-based diluted magneticsemiconducting thin films. Appl. Phys. Lett.,2004,84:5255
    [47] J B Cui and U J Gibson. Electrodeposition and room temperature ferromagneticanisotropy of Co and Ni-doped ZnO nanowire arrays. Appl.Phys.Lett.,2005,87:133108
    [48] X X Liu, F T Lin, L L Sun, et al., Doping concentration dependence ofroom-temperature ferromagnetism for Ni-doped ZnO thin films prepared bypulsed-laser deposition. Appl.Phys.Lett.,2006,88:062508
    [49] H Akai. Ferromagnetism and its stability in the diluted magnetic semiconductor(In, Mn)As. Phys.Rev.Lett.,1998,81:3002-3005
    [50] J K Furdyna and J Kossut. Semiconductor and Semimetels(San Diego:Academic):2002, P133
    [51] J J Chen, M H Yu, W L Zhou, et al., Room-temperature ferromagnetic Co-dopedZnO nanoneedle array prepared by pulsed laser deposition. Appl.Phys.Lett.,2007,87:173119
    [52] T Zhua, W S Zhang, W G Wang and Q Xiao. Room temperature ferro-magnetism in two-step-prepared Co-doped ZnO bulks. Appl. Phys. Lett.,2006,89:022508
    [53] Y F Tian, J Antony, R Souza, et al., Giant positive magnetoresistance inCo-doped ZnO nanocluster films. Appl. Phys. Lett.,2008,92:192109
    [54] Y Fukuma, H Asada, J Yamamoto, F Odawara and T Koyanagi. Large magneticcircular dichroism of Co clusters in Co-doped ZnO. Appl. Phys. Lett.,2008,93:142510
    [55] Y L Liu, J L Mac and Manus-Driscoll. Impurity control in Co-doped ZnO filmsthrough modifying cooling atmosphere. Appl. Phys. Lett.,2009,94:022503
    [56] Y F Tian, S S Yan, Q Cao, et al., Origin of large positive magnetoresistance inthe hard-gap regime of epitaxial Co-doped ZnO ferromagnetic semiconductors.Phys. Rev.B.,2009,79:115209
    [57] Z H Zhang, X Y Qi, J K Jian and X F Duan. Investigation on optical propertiesof ZnO nanowires by electron energy-loss spectroscopy. Micron,2006,37(3):229-233
    [58] Y C Kong, D P Yu, B Zhang, W Fang and S Q Feng. Ultraviolet-emitting ZnOnanowires synthesized by a physical vapor deposition approach. Appl. Phys.Lett.,2001,78(4):407
    [59] J B Cui and U Gibson. Thermal modification of magnetism in cobalt-doped ZnOnanowires grown at low temperatures. Phys.Rev.B,2006,74:045416
    [60] C F Zhang, Z W Dong, G J You, et al., Femtosecond pulse excited two-photonphotoluminescence and second harmonic generation in ZnO nanowires. Appl.Phys. Lett.,2006,89:042117
    [61] T Chen, G Z Xing, Z Zhang, et al., Tailoring the photoluminescence of ZnOnanowires using Au nanoparticles. Nanotechnology,2008,19:435711
    [62] A Twardowski, T Dietl and M Demianiuk. The study of the s-d type exchangeinteraction in Zn1xMnxSe mixed crystals. Solid State Commun,1983,48:845
    [63] L A Kolodziejski, R L Gunshor, R Venkatasubramanian, et al., SummaryAbstract:(100)-oriented wide gap II–VI superlattices. J.Vac.Sci.Technol.B,1986,4:583-587
    [64] R B Bylsma, W M Becker, J Kossut,et al., Dependence of energy gap on x and Tin Zn1-xMnxSe: The role of exchange interaction. Phys.Rev.B.,1986,33:8207-8209
    [65] Y R Lee, A K Ramdas and R L Aggarwal. Energy gap, excitonic, and internalMn2+optical transition in Mn-based II-VI diluted magnetic semiconductors.Phys.Rev.B,1988,38:10600
    [66] Zhang F C, Zhang Z Y, Zhang W H, et al,. First-priciples study on electronicstructure and optical properties of Sb-doped ZnO. Chin.Phys.Lett.,2008,25(10):3735
    [67] Zhang Wei-hu, Zhang Fu-chun, Zhang Zhi-yong,Yan Jun-fen. Theoreticalinvestigation on structural, electronic and optical properties of ZnO doped with,Al, Ga and In.2nd IEEE International Nanoelectronics Conference,2008,24-27:114
    [68]张富春,邓周虎,阎军锋,张志勇. ZnO电子结构与光学性质的第一性原理计算.光学学报,2006,26(8):1203-1209
    [69]张富春,邓周虎,阎军锋,王雪文,张志勇. Ga掺杂ZnO晶体的密度泛函计算.功能材料,2005,36(8):1268-1272
    [70] Zhang F C, Zhang Z Y, Zhang W H, et al,. First-principles study of theelectronic and optical properties of ZnO nanowires. Chin.Phys.B,2009,18(6):1674-1679
    [71]张富春,邓周虎,阎军锋,允江妮,张志勇. Ga Al In掺杂ZnO电子结构的第一性原理计算.电子元件与材料,2005,24(8):4-10
    [72]张富春,张志勇,张威虎,阎军峰,允江妮. AZO(ZnO:Al)电子结构与光学性质的第一性原理计算.光学学报,2009,29(4):1025
    [1] S Iijima. Helical microtubules of graphitic carbon. Nature,1991,354(7):56-59
    [2] W Z Xu, Z Z Ye, D W Ma, et al., Quasi-aligned ZnO nanotubes grown on Sisubstrates. Appl. Phys. Lett.,2005,87:093110
    [3] Y J Xing, Z H Xi, X D Zhang,et al., Nanotubular structures of zinc oxide. SolidState Communications,2004,129:671
    [4] Y J Xing, Z H Xi, Z Q Xue, et al., Optical properties of the ZnO nanotubessynthesized via vapor phase growth. Appl. Phys. Lett.,2003,83:1689
    [5] A Wei, X W Sun, C X Xu. Stable field emission from hydrothermally grownZnO nanotubes. Appl. Phys. Lett.,2006,88:213102
    [6] Tu Z C and X Hu. Elasticity and piezoelectricity of zinc oxide crystals, singlelayers, and possible single-walled nanotubes. Phys. Rev. B,2006,74:035434
    [7] X Kong, X Sun, X Li and Y Li. Catalytic growth of ZnO nanotubes. Mater.Chem. Phys.,2003,82:997-1001
    [8] R M Wang, Y J Xing, J Xu and D P Yu. Fabrication and microstructure analysison zinc oxide nanotubes. New.J. Phys.,2003,115(5):1
    [9] X H Zhang, S Y Xie, Z Y Jiang, et al., Rational design and fabrication of ZnOnanotubes from nanowire templates in a microwave plasma system. J.Phys.Chem.B.,2003,107:10114-10118
    [10] Y J Xing, Z H Xi, Z Q Xue, et al., Optical properties of the ZnO nanotubessynthesized via vapor phase growth. Appl. Phys. Lett.,2003,83:1689-1691
    [11] G W She, X H Zhang, W S Shi, et al., Controlled synthesis of orientedsingle-crystal ZnO nanotube arrays on transparent conductive substrates. Appl.Phys. Lett.,2008,92:053111
    [12] H Xu, R Q Zhang, X H Zhang, et al., Structural and electronic properties of ZnOnanotubes from density functional calculations. Nanotechnology,2007,18:485713
    [13] J M D Coey, M Venkatesan, C B Fitzgerald., Donor impurity band exchange indilute ferromagnetic oxides. Nat.Mater.,2005,4:173
    [14] S J Chen, Y C Liu, C L Shao, et al., Photoluminescence study of ZnO nanotubesunder hydrostatic pressure. Appl. Phys. Lett.,2006,88:133127
    [15] B Y Geng, X W Liu, X W Wei, S W Wang. Large-scale synthesis of single-crystalline ZnO nanotubes based on polymer-inducement. Materials ResearchBulletin,2006,41:1979-1983
    [16] P Liu, G W She, Z L Liao, et al., Observation of persistent photoconductance insingle ZnO nanotube. Appl. Phys. Lett.,2009,94:063120
    [17] J P Liu, X P Huang. A low-temperature synthesis of ultraviolet-light-emittingZnO nanotubes and tubular whiskers. Journal of Solid State Chemistry,2006,179:843-848
    [18] G S Wu, T Xie, X Y Yuana, et al., Controlled synthesis of ZnO nanowires ornanotubes via sol-gel template process. Solid State Communications,2005,134:485
    [19] Bhat S Venkataprasad, F L Deepak. Tuning the band gap of ZnO by substitutionwith Mn2+, Co2+and Ni2+. Solid State Communications,2005,135:345-347
    [20] D S Kim, S M Lee, R Scholz. Synthesis and optical properties of ZnO andcarbon nanotube based coaxial heterostructures. Appl. Phys. Lett.,2008,93:103108
    [21] P Liu, G W She, Z L Liao, et al., Observation of persistent photoconductance insingle ZnO nanotube. Appl. Phys. Lett.,2009,94:063120
    [22] G Wei She, X H Zhang, W S Shi. Controlled synthesis of oriented single-crystalZnO nanotube arrays on transparent conductive substrates. Appl.Phys.Lett.,2008,92:053111
    [23] B Q Cao, W P Cai, Y Li, et al., Ultraviolet-light-emitting ZnO nanosheetsprepared by a chemical bath deposition method. Nanotechnology,2005,16:1734

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700