室温核辐射探测器用T1Br材料的制备与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴化铊(TlBr)晶体具有高原子序数(Z_(T1)=81,Z_(Br)=35)、宽禁带(2.68eV)、高电阻率(10~(11)Ω·cm)、高密度(7.56g/cm~3)等特点,是目前最有可能成为下一代核辐射探测器用的理想材料之一。TlBr核辐射探测器可在室温条件下工作,并且对X、γ射线有较高的探测效率和较好的能量分辨率,因此可广泛应用于天文物理学、高能物理学、核医学、安检、环境监测等领域。
     目前,国外关于T1Br的报道主要集中在晶体生长和探测器的研制方面,而对T1Br多晶原料的提纯和晶体退火处理尚末见深入细致的研究。杂质和缺陷导致生长态TlBr晶体质量不高,直接严重影响探测器的性能。在国内,尚末见关于TlBr材料研究方面的报道。本文采用水热重结晶法提纯TlBr多晶粉料,并对单晶体进行了热退火、气氛退火、水热溶液退火研究,制备出了高纯度、低缺陷密度的高质量TlBr晶体材料,为制备高性能TlBr探测器提供实验基础。因此,本文的研究具有重要的理论意义和现实的应用价值。
     本文采用水热重结晶法提纯TlBr原料粉体。根据TlBr溶解度的正温度系数,通过调整釜体上、下部溶液降温速率,确定了最佳的重结晶提纯工艺参数,取得了很好的提纯效果和提纯效率。经一次水热重结晶提纯后,粉体中杂质Ca、Fe、Mg、K、Zn、Cu、Na、Si的浓度大幅度地下降,提纯前后的浓度比值分别为67.26、28.05、26.76、18.78、11.08、8.69、5.86、5.40,提纯TlBr粉体纯度达到99.999%。
     系统地研究了各种热退火工艺参数(退火温度、升温速率、退火时间)对退火晶片光学性能的影响。退火过程中的升温速率从40℃/h增大到160℃/h,在晶体表面与晶体中心位置产生一个更大的指向晶体表面的温梯,此温梯将驱动晶内的位错和富Tl相向表面迁移,从而T_(4000)、T_(1000)、T_(400-4000)、T_(500)和T_(750)等几项重要指标均有明显提升;退火温度由200℃上升到320℃,晶体光学性能改善更明显,说明高温退火有利于晶内的缺陷向表面扩散迁移,同时参与热迁移的Tl沉淀相临界尺寸也会有所减小;退火时间从40h延长到200h,退火后晶片光学性能略有提升。
     晶片的氩气、氧气气氛退火过程表明,氧气气氛的退火效果较好,退火后晶片的平均红外光透过率T_(400-4000)为63.5%,紫外-可见光区透过率T_(750)为33.89%,均接近于理论值。氧气气氛退火过程中,氧原子可向晶内扩散至Tl沉淀相处,并将其氧化为Tl_2O,而Tl_2O具有较好的挥发性和在TlBr中很好的相溶性,从而减少了晶片内的Tl沉淀相密度,提升晶体的光学性能。
     晶片的水热溶液退火研究发现,水热溶液退火可有效地消除富Tl相,但效率较低。将热退火过程与水热溶液退火进行了结合,能快速有效地提高晶片的光学性能。退火晶片的透过率T_(4000)、T_(1000)、T_(400-4000)、T_(500)、T_(750)分别为58.56%、62.41%、60.89%、24.68%、34.94%,退火后晶片的电阻率在1.023×10~(11)Ωcm,满足制备TlBr探测器所需的高电阻率要求。
Thallium bromide (TlBr) is one of the very promising materials used for next generation nuclear radiation detectors due to its high atomic number (Tl:81 and Br:35), wide bandgap (2.68eV), high resistivity (10~(11)Ω·cm) and high density(7.56g/cm~3) . TlBr radiation detectors can operate at room temperature, and have high detection efficiency and energy resolution for X- and gamma rays. So TlBr detectors are widely used in X-ray astronomy, high-energy physics, nuclear medicine, safety inspection and environment monitoring.
     Presently, the studies oversea focus mostly on TlBr crystal growth and preparation of detectors. But TlBr powder purification and crystals modification have not been studied by the numbers. Impurities and defects in TlBr crystals result in poor quality which badly affects the performance of detectors. There is not publication on TlBr material research in our country. The aim of this paper is to purify TlBr powder by hydrothermal re-crystallization method, to get high quality TlBr crystals by the annealing at heat treatment, in atmosphere or under hydrothermal conditions, and to establish an experimental foundation for fabrication of high performance TlBr detectors.
     In this paper, hydrothermal re-crystallization method was used for TlBr powder purification. Based on the positive temperature coefficient of TlBr solubility, optimal parameters in re-crystallization process were ascertained through adjustment of the solution cooling rate in the autoclave, and good purification effect and high purification efficiency were obtained. After one time hydrothermal re-crystallization process, the impurities of Ca, Fe, Mg, K, Zn, Cu, Na and Si obviously decrease. The ratios of impurity concentration in raw material to that in purified powder are 67.26, 28.05, 26.76, 18.78, 11.08, 8.69, 5.86 and 5.40, respectively. The purity of purified TlBr powder is up to 99.999%.
     The influences of various annealing parameters (annealing temperature, heating rate, annealing time) on the optical properties were investigated. When heating rate changes from 40℃/h to 160℃/h in the annealing processes, there is a larger temperature gradient which point to the surface of wafers between the surface and the wafer center. The temperature gradient drove out the defects and Tl-rich phases from wafer inner to surface. Therefore, some important property indexes are improved evidently, such as T_(4000), T_(1000), T_(400-4000), T_(500), T_(750). When annealing temperature changes from 200℃to 320℃, wafers' optical properties can be improved significantly. It can be explained that high temperature is valid for detects diffusing and migrating to wafer surface, and the critical size of which Tl precipitates can migrate may reduce. With the annealing time prolongs from 40h to 200h, optical characteristics enhanced slightly.
     Wafers were annealed in argon, oxygen atmosphere. The annealing effect of oxygen is better, and the transmissions of T_(400-4000) and T_(750) are 63.5% and 33.89%, respectively, which are closed to the theoretical value. In the oxygen annealing process, oxygen atoms can diffuse to the Tl precipitation locality and Tl precipitation phases are oxidized to Tl_2O. Because Tl_2O has good volatility and is very soluble in TlBr, the concentration of Tl precipitation phase in annealed wafer is decreased and optical characteristics are upgraded.
     Hydrothermal annealing of wafers was investigated. Hydrothermal treatment can effectually eliminate the Tl-rich phase, but the efficiency is low. Thermal annealing process with a combination of hydrothermal annealing can improve wafers' optical properties quickly and efficiently. Transmissions T_(4000), T_(1000), T_(400-4000), T_(500) and T_(750) of the annealed wafer are 58.56%, 62.41%, 60.89%, 24.68% and 34.94%, respectively. The resistivity value of annealed wafer is 1.023×l0~(11)Ω·cm, which meet to the high-resistivity requirement for used as TlBr radiation detectors.
引文
[1]Bavdaz M, Peacock A, Owens A. Future space applications of compound semiconductor X-ray detectors. [J]Nucl. Instr. and Methods A, 2001, 458:123-131.
    [2]复旦大学,清华大学,北京大学,合编.原子核物理实验方法[M].原子能出版社,1985(第二版),201-206.
    [3]Mcgregor D S, Hermon H. Room-temperature compound semiconductor radiation detectors[J].Nucl. Instr. and Methods A, 1997, 395: 101-124.
    [4]Shah K S, Lund J C, Olschner F, et al. Thallium bromide radiation detectors[J].IEEE Trans. Nucl. Sci., 1989, 36(1): 199-202.
    [5]Oliveria I B, Costa F E, P K Kiyohara, et al. Influence of crystalline surface quqlity on T1Br radiation detector performance[J]. IEEE Trans. Nucl. Sci., 2005, 52(5): 2058-2062.
    [6]周东祥,余石金,胡云香,龚树萍,郑志平.高能辐射室温探测器用T1Br单晶及其器件[J].材料导报,2008,22(8):1-5.
    [7]Gostilo V, Owens A, Bavdaz M, et al. Single detectors and Pixel arrays Based on TlBr[J]. IEEE Trans. Nucl. Sci., 2002, 49(5): 2513-2516.
    [8]Owens A, Bavdaz M, Brammertz G, et al. The X-ray response of TlBr[J]. Nucl. Instr. and Methods A, 2003, 497: 370-380.
    [9]Owens A, Bavdaz M. Hard X-ray spectroscopy using a small-format TiBr array[J]. Nucl. Instr. and Methods A, 2003, 497: 359-369.
    [10]Costa F E, Rela P R, Oliverira I B, et al. Surgical gamma probe with TlBr semiconductor for identification of sentinel lymphnode[J]. IEEE Trans. Nucl. Sci., 2006, 53(3): 1403-1407.
    [11]Hitomi K, Muroi O, Matsumoto M, et al. X-ray detection characteristics of Thallium Bromide nuclear radiation detectors [J]. IEEE Trans. Nucl. Sci., 2000, 36(3): 339-341.
    [12]ESA: Invitation to Tender, Compound semiconductors for hard X-ray and gamma ray astronomy, Appendix 1, AO 1-3907/O1/N1/Ec, 2002 p, 3.
    [13]Kozlov V, Leskela M, Prohaska T, et al. T1Br crystal growth purification and characterization[J]. Nucl. Instr. and Methods A, 2004, 531: 165-173.
    [14]Kozlov V, Leskela M, Sipila H, et al. Annealing and characterisation of T1Br crystals for detector applications[J]. Nucl. Instr. and Methods A, 2005, 546: 200-204.
    [15]Cheung D T. An over view on defect studles in MCT. [J]J. Vac. Sci. Technol., 1985, A3(1):128-134.
    [16]Jones C L. Queleh M J T., Capper P, et al. Fabrication and assessment of optically immersed CdHgTe detector arrays. [J]J. Appl. phys., 1982, 53:9080-9085.
    [17]Yang B, Ishikawa Y, Doumae, et al. Growth and characterization of high Purity CdTe single crystals, J. Cryst. Growth, 1997, 172: 370-376.
    [18]Jones C E. Structure study of CdTe—ZnTe super lattice and its improved version by first order phonon Raman scattering, J. Vac. Sci. Technol., 1985, A3(1):4271-4279.
    [19]丁洪林,张秀凤.化合物半导体探测器及其应用[M].原子能出版社, 1994: 10-11.
    [20]朱世富,赵北君,王瑞林等.室温半导体核辐射探测器新材料及其器件研究[J]. 人工晶体学报, 2004,33(1):6-12.
    [21]Onodera T, Hitomi K, Shoji T, et al. Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging[J]. Nucl. Instr. and Methods A, 2004, 525: 199-204.
    [22]Schlesinger T E, Toney J E, Yoon H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material[J]. Materials science and engineering, 2001, 32:103-189.
    [23] Burcham W E. Nuclear physics: an introduction[M]. Longmans, London,1963.
    [24] Rose A. Concepts in photoconductivity and allied problems[M]. Wiley, New York, 1963.
    [25] Schlesinger T E, James R B. Semiconsuctors for room temperature nuclear applications[M]. Academic press, New York, 1995.
    [26] Malm H L, Raudorf T W, Martini M, et al. Gamma ray efficiency comparisons for Si (Li), Ge, CdTe and HgI2 detecctors[J]. IEEE Trans. Nucl. Sci,1973,20:500-509.
    [27] Kutny V E, Rybka A V, Abyzov A S, et al. AlSb single crystal grown by HPBM[J]. Nucl. Instru. and Meth A., 2001,458:448-454.
    [28] Burger A, Shilo I, Schieber M. Cadmium Selenide: A promising novel room temperature radiation detector[J]. IEEE Trans. Nucl.Sci. 1983, 30(1):368-370.
    [29] Prince M B, Polishuk P. Survey of materials for radiation detection at elevated temperatures [J]. IEEE Trans. Nucl. Sci., 1967, 14:537-543.
    [30] Samic H, Sun G C, Donchev, et al. Characterization of thick epitaxial GaAs layers for X-ray detection[J]. Nucl. Instru. and Meth A.,2002,487:107-112.
    [31] Bertolucci E, Cola A, De luca A, et al. Evidence for charge gain mechanism in Si-GaAs detectors with epitaxial junction. [J], IEEE Trans. Nucl. Sci.,2000, 54:709-712.
    [32] Chen H, Hayse M, Ma X, et al. Physical properties and evlauation of spectrometer grade GaAs single crystal. [J] SPIE, 1998, 3446:17-28.
    [33] Amantrout G A, Swferkowski S P, Sheerohman J W, et al. What can be expected from high-Z semiconductor detectors. [J] IEEE Trans. Nucl. Sci., 1977,24:121-125.
    [34] Shifu Zhu, Zhenghui Lin, Beijun Zhao, et al. Crystal growth and differential thermal analysis of Mercuric Iodide crystals. [J] Crys. Res.Technol., 1992, 27(7):115-118.
    [35] Schieber M, Carlscon R, Schnepple W. Preliminary studies of charge carrier transport in mercuric Iodide radiation detectors. [J] IEEE Trans.Nucl. Sci., 1974, 21:305-314.
    [36] Hazlett T, Cole H, Squillante Mr. Large , high resolution CdTe gamma ray sensors. [J] IEEE Trans. Nucl. Sci., 1986, 33:332-335.
    [37] Takahaski T, Hirose K, Takizawa K, et al. Performance of a new schottky CdTe detector for hard X-ray spectroscopy. [J] SPIE, 1998, 3446:29-37.
    [38] Eisen Y. Current state of the art industrial and research applications using room temperature CdTe and CdZnTe solid state detectors. [J] Nucl.Instr. and Methods. A 1996,380:431-439.
    [39] Asahi T, Oda 0, Taniguchi, et al. Growth and characterization of 100mm diameter CdZnTe single crystal by vertical gradient freezing method [J],J crysal growth, 1996, 161:20-27.
    [40] Verger L. New developments in CdTe and CdZnTe detectors for X and gamma ray applications[J]. J Electron mater, 1997, 26:738-744.
    [41] Cheuvart P, Hanani U E. CdTe and CdZnTe crystal growth by horizontal Bridgman technique, J. crystal growth, 1990, 101, 270-276.
    [42] Matuchova M, Prochazkova 0, Zdansky K et al. Preparation of lead iodide as input material for X-ray detectors[J]. Materials Science Forum.2005,480:477-482.
    [43] Zentai G, Partain L, Pavlyuchkova, et al. Improved properties of PbI2 x-ray imagers with tighter process control and using positive bias voltage[J]. Proc of SPIE. 2004,5368,668-676
    [44] Shah K S, Bennett P, Klugerman M, et al. Lead iodide optical detectors for gamma ray spectroscopy[J]. IEEE Trans Nucl Sci, 1997,44,448-450.
    [45] Ivanov V I, Aleksejava L A, Gagliardi M A, et al. The influence of M-structure on CdTe X-ray detector performance. [J]IEEE Trans. Nucl. Sci., 1998, 43(3): 390-393.
    [46]Bennett PR, Shaah K S, Dmitriev Y, et al. Polycrystalline lead iodide films for digital x-ray sensors. [J]Nucl Instr and Meth A, 2003,505:269-272.
    [47]Hitomi K, Muroi O, Shoji T, et al. Thallium bromide photodetectors for scintillation detection[J]. Nucl. Instr. and Methods A, 2000, 448: 571-575.
    [48]Sellin P J. Recent advances in compound semiconductor radiation detectors[J]. Nucl Instr and Meth A, 2003,513:332-339.
    [49]Hitomi K, Muroi O, Matsumoto M, et al. Large-volume thallium bromide detectors for gamma-ray spectroscopy[J]. IEEE Trans. Nucl. Sci., 2001, 48(6): 2313-2316.
    [50]Chen H, Hayse M, Ma X, et al. Physical properties and evaluation of spectrometer grade Cdse single crystal[J]. SPIE, 1998,3446:17-28.
    [51]Rahman I, Hofstadter R. Thallium halide radiation detectors[J]. Physical review B, 1984, 29(6): 29.
    [52]Hofstadter R. Crystal counters[J]. Nucleonics, 1949, 4(2):29.
    [53]Shah K S, Lund J C, Olschner F, et al. Thallium bromide radiation detectors[J].IEEE Trans. Nucl. Sci., 1989, 36(1): 199-202.
    [54]Lisitsky I.S., Kuznetsov M.S., Sultanova Y.A. et al. Optical characteristics of T1Br crystals grown in various ambient[J]. Nucl. Instr. and Meth A, 2008,591:213-217.
    [55]Hitomi K, Matsumoto M, Muroi O, et al. Thallium bromide optical and radiation detectors for X-ray and gamma-ray spectroscopy [J]. IEEE Trans. Nucl. Sci.,2002, 49:2526-2529.
    [56]张克从.晶体生长科学与技术(第二版)[M],科学出版社,1997,472-486.
    [57]Oliveria I B, Costa F E, Chubaci J F D, et al. Multielementar Segregation Coefficient of Thallium Bromide Impurities from Inductively Coupled Plasma Mass Spectroscopy Measurements[A]. 2003 IEEE Nuclear Science Symposium[C], Portland Oregon, 2003:3431-3435.
    [58] Kouznetsov M S, Lisitsky I S, Zatoloka S I, et al. Development of the technology for growing TlBr detector crystals[J]. Nucl. Instr. and Methods A, 2004, 531: 174-180.
    [59] Owens A, Peacock A, Bavdaz M, et al. Progress in compound semiconductors [A]. Proceedings of SPIE, X-Ray and Gamma-Ray telescopes and instruments for astronomy[C], Waikoloa, 2003: 1059-1070.
    [60] Bertucco G. Prospect for energy resolving X-ray imaging with compound semiconductor pixel detectors[J]. Nucl Instr and Meth A, 2005, 546:232-241.
    [61] Kozlov V, Leskela M, Prohaska T, et al. TlBr crystal growth purification and characterization[J]. Nucl. Instr. and Methods A, 2004, 531: 165-173.
    [62] Bolshakov K A . Chemistry and technology of rare and scattered elements(M). 2nd Edition,Vol 1, Visshaja Shkola, Moskva, 1976:359.
    [63] Owens A, Bavdaza M, Andersson H, et al. Development of compound semiconductors for planetary and astrophysics space missions[A].proceedings of SPIE, In X-ray optics instruments and missions ?[C],Munich, 2000, :225-236.
    [64] Hitomi K, Matsumoto M, Muroi 0, et al. Characterization of thallium bromide crystal for radiation detector applications[J]. J. Cryst. Growth,2001, 225: 129-133.
    [65] Onodera T, Hitomi K, Shoji T, et al. Spectroscopic performance of pixellated thallium bromide detectors[J]. IEEE Trans. Nucl.Sci.,2005, 52(5):1999
    [66] Scorohov M, Grigorjeva L, Millers D. Optical properties and spectrometric performance of TlBr detector crystals. [J] Nucl. Instr. and Meth A, 2006,563: 78-81.
    [67]Schlesinger T E, Brunett B, Yao H, et al. Large volume imaging arrays for gamma-ray spectroscopy. [J]J. Electron Materials. 1999, 28:864-869.
    [68]Sen S, Konkel W H, Tighe S J, et al. Crystal growth of large-area single-crystal CdTe and CdZnTe by the computer controlled vertical modified Bridgman process, [J]J. Cryst Growth, 1987, 86:111-117.
    [69]Melnikov A, Sigov A, Vortiov K, et al. Growth of CdZnTe single crystals for radiation detectors. [J]J. Cryst Growth, 1999, 197:666-669.
    [70]Cheuvart P, Hanani U E. CdTe and CdZnTe crystal growth by horizontal Bridgman technique,[J]J. Crystal Growth, 1990, 101:270-275.
    [71]Oliverira I B, Chubaci J F D. Purification and crystal growth of TlBr for application as a radiation detector [J]. Cryst. Res. Technol., 2004, 39: 849-855.
    [72]Dongmei Z, Wanqi J, Tao W, et al. The relationship between stress and photoluminescence of CdZnTe single crystal. [J]Materials science and engineering B, 2007, 142: 144-147.
    [73]Gangqiang Z, Wanqi J, Tingting T, et al. Dislocation incduced IR absorption and photoluminescence emission in CdZnTe. [J]Materials science and emgineering A, 2006, 432:126-128.
    [74]Moss T S. Optical properties of Semiconductors. [M]Butterworths scientific publications, London, 1959,17.
    [75]Alexander H, Teichler H, in: Chan R W (eds). Materials science and technology, vol. 4 Vich weinheim, Cambridge, 1993:291.
    [76]杨戈.化合物半导体Cd1-xZnxTe中的In掺杂及其与Au的接触特性.[博士研究生论文]。西安:西北工业大学,2007.
    [77]李宇杰.Cd1-xZnxTe晶体的缺陷研究及退火改性.[博士研究生论文].西安:西北工业大学,2001.
    [78]Sen S, Rhiger D R, Curtis C R, et al. Infrared absorption behavior in CdZnTe substrates. [J] J. Electron Mater, 2001 ,30: 611-618.
    [79] Zhu J, Chu J, Zhang X, et al. Study of Zinc inclusions/precipitates in CdZnTe crystals. J. Cryst Growth, 1997,171:357-361.
    [80] Sen S, Liang C S, Rhiger D R, et al. Recuction of CdZnTe substrate defects and relation to epitaxial HgCdTe quality. [C] The 1995 U. S. Workshop on the physics and Chemistry of Mereury Cadmium Telluride and other IR Materials, New York, 1995.
    [81] Yadava R D S, Sundersheshu B S, Anandan M, et al. Precipitation in CdTe crystals studied through Mie scattering. [J], J. Eleetron. Mater., 1994,23(12): 1349-1356.
    [82] Sen S, Rhiger D R, Curtis C R, et al. Infrared absorption behavior in CdZnTe substrates. [J] J. Electr Mater, 2001, 30: 611?18.
    [83] 朱基千,褚君浩,张小平,等。退火对 CdZnTe 晶体质量的影响,半导体学报,1997, 18(10): 782-786.
    [84] Jiqian Z , Junhao C , XiaoPing Z, et al. Study of zinc inclusions/precipitates in CdZnTe crystals. [J] J. Cryst. Growth, 1997,171:357-363.
    [85] Dmitriev Y, Cirignano L J, Shah K S. The effect of doping on X-ray response of TlBr crystals[J].Nucl.Instr. and Methods A, 2008, 594: 206-209.
    [86] Y. Dmitriev, P. R. Bennet, L. J. Cirignano, et al. Doping impact on the electro-optical properties of a TlBr crystal. Nucl. Instr. and Meth A,2007, 578 : 510-515.
    [87] Johnson E J, Kafalas, Davies R W. The role of deep level centers and compensation in producing semi-insulating GaAs. J. Appl. Phys.1983,54:204
    [88] Fiederle M, Eiche C, Salk M, et al. Modified compensation model of CdTe.J. Appl. Phys., 1998, 84(12):6689-6692.
    [89] Fiederle M, Ebling D, Eiche C, et al. Studies of the compensation mechanism in CdTe grown from the vapour phase. J. Cryst. Growth, 1995, 146:142-148.
    [90]Schlesinger T E, Toney J E, Yoon H et al. Cadmium zinc telluride and its use as a nuclear radiation detector material. Materials Science and Engineering R, 2001,32:103-189.
    [91]李艺星.硒化镉单晶体生长原料的提纯及其标准极图的计算机实现.[硕士研究生论文]成都:四川大学, 2005.
    [92]王庆学,杨建荣,魏彦锋.HgCdTe外延薄膜临界厚度的理论分析[J].物理学报,2005,54(12):5814-5819.
    [93]Wanwan Li, Wenbin Sang, Jihua Min, et al. Cdl-xZnxTe crystal growth controlled by Cd/Zn partial pressures[J]. Semiconductor Science and Technology, 2002, 17(10): L55-L58.
    [94]Qi-feng Li, Shi-fu Zhu, Bei-jun Zhao, et al. Growth of high resistivity CdZnTe crystals by modified Bridgman method[J]. J Crystal Growth, 2001, 233: 791-794.
    [95]Ge Yang, Wanqi Jie, Tao Wang, et al. Correlation between ingot diameter and crystal properties of CdZnTe:In grown by the modified bridgman method[J]. Crystal growth and design, 2007,7(2):435-438.
    [96]Kozlov V, Leskela M, Vehkamaki M, et al. Effects of metallisation on TiBr single crystal for detector applications[M]. Nucl. Instr. and Methods A, 2007, 573: 212-215.
    [97]Oliveira I B, CostaF E, Chubaci J FD, et al. Purification and Preparation of TlBr Crystals for Room Temperature Radiation Detector Application[J]. IEEE Trans. Nucl. Sci., 2004, 51(3): 1224-1228.
    [98]DmitrievY, Bennett P R, Cirignano L J, et al..Doping impact on the electro-optical properties of a TlBr crystal. Nucl. Instr. and Meth.,2007,578:510-514.
    [99]Pearton S. Wide bandgap semiconductors[M]. New York, William Andrew Publishing, 1999: 80-150.
    [100]Luke P N. Single-polarity charge sensing in ionization detectors using coplanar electrodes[J]. Applied physics letters, 1994, 65(22): 2884-2886.
    [101]Onodera T, Hitomi K, Shoji T, et al. Spectroscopic performance of pixellated thallium bromide detectors[J]. IEEE Trans. Nucl. Sci., 2005, 52(5): 1999-2002.
    [102]Hitomi K, Onodera T, Shoji T. Influence of zone purification process on TlBr crystals for radiation detector fabrication. Nucl. Instr. and Meth.,2007,579:153-156.
    [103]迪安.J A(eds).尚久方等译.兰氏化学手册(15~(th))(M).北京,1999.
    [104]Benrath A, Gjedebo F, Schiffers B, et al. Over the solubility of and salt mixtures in water at temperatures above 100 oC salts[J]. Magazine for Inorganic and General Chemistry, 1937,231:285-297.
    [105]Becker U, Rudolph P, Boyn R, et al. Characterization of p-Type CdTe Bridgman Crystals by Infrared Extinction Spectra[J]. Phys. Stat. Sol. (a) 120 (1990) 653-660.
    [106]Zong X, Wong Y, The Foundations of Material Physics[M], Fudan University Press, Shangshai, 2001, 706.
    [107]ShijinYu, DongxiangZhou, ShupingGong, et al. Purification and optical properties of T1Br crystals[J]. Nucl. Instr. and Methods A. 2009,602: 484-488.
    [108]Chiwon C, Chul K, Sangsik K, et al.. Comparsion of compound semiconductor radiation films deposited by screen printing method. [C]Medical imaging 2007:Physics of medical imaging, edited by Jiang Hsieh, Michael J F. Proc. of SPIE, 2007,6510:651042.
    [109]周东祥,余石金,龚树萍,郑志平,权琳.一种无籽晶垂直气相生长溴化铊单晶方法.中国发明专利,申请号:200710168947.3
    [110]黄昆,固体物理学,北京,高等教育出版社,1988.
    [111]闵乃本.晶体生长的物理基础[M].上海科学技术出版社,上海,1982.
    [112]Sergio C, Maurizio M. Fundamentals of convection in melt growth. [J]J. Cryst. Growth. 1989,97:173-185
    [113]Chong E, Dupret F. Ryckmans Y, et al.. Numerical simulation of crystal growth in a vertical Bridgman furnace. [J]J. Cryst. Growth, 1974,21:153-157.
    [114]朱兴华.碘化铅多晶合成与单晶生长研究[博士研究生论文],四川大学,成都: 2006.
    [115]李国强,高电阻CZT的晶体生长、性能表征及退火改性.[博士学位论文],西安:西北工业大学,2004.
    [116]Hitomi K, Murayama T, Shoji T, et al. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors[J]. Nucl. Instr. and Methods A, 1999, 428: 372-378.
    [117]李汉达译,Wieder著.半导体材料电磁参数的测量[M].计算机出版社.1996, 262-265.
    [118]Lampert M A. Simplified theory of space charge limited currents in an insulator with traps[J], Phys. Rev., 1956,103(6):1648-1656.
    [119]方俊鑫,陆栋.固体物理学(下册)[M].上海科学技术出版社,上海,198l: 98-106.
    [120]Smakula A, Kalnajs J, Sils V. Densities and Imperfections of Single Crystals. [J], Phys. Rev. 1955, 99(6):1747-1751.
    [121]Rai R S, Mahajan S, Mcdevittand S, et al. Characterization of CdTe, (Cd, Zn)Te and Cd(Te, Se) single crystals by transmission electron microscopy[J]. J. Vac. Sci. Technol.,1991,9(3):1892-1897.
    [122]Rudolph P, Neubert M, Muhlberg M. Defects in CdTe Bridgman monocrystals caused by nonstoichiometric growth conditions[J]. J. Cryst. Growth, 1993,128:582-587.
    [123]Schwarz R, Benz K W. Thermal field influence on the formation of Te inclusions in CdTe grown by the traveling heater method.[J]J. Cryst. Growth, 1994,144:150-157.
    [124]Annual Book of ASTM Standards part 43, 1976 F416-577; F80-74; F47-70.
    [125]Runyan W R. Semiconductor Measurements and Instrumentation.[M]McGraw-Hill Book Company, 1975:21.
    [126]陈敬中.现代晶体化学:理论与方法,高等教育出版社[M],北京,200l,267-280
    [127]Roth M, Burger A. Improved spectrometer performance cadmium selenide room temperature gamma-ray detectors[J], IEEE Trans. Nuci. Sci.,1986,33(1):407-410
    [128]Vydyanath H R, Ellsworth J A, Parkinson J B. Thermomigration of Te precipitates and improvement of CZT substrates characteristics for the fabrication of LWIR HgCdTe photodiodes[J]. J. Electron Mater., 1993, 22(8):1073-1079
    [129]张克从.晶体生长,科学出版社[M],北京,1981年.
    [130]沈学础.半导体光谱和光学性质.[M]科学出版社,北京,2002:48-263.
    [131]方容川. 固体光谱学.[M]中国科学技术大学出版社,合肥,2003:57-96.
    [132]Cody G D, Tiedje T, Abeles Bet al.. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. [J]Phys Rev Lett, 1981, 47,1480-1483.
    [133]Pavesi L, Guzzi M. Photoluminescence of AlGaAs alloys. [J]J. Appl. Phys. 1994.75.4779-4838.
    [134]Dhar S, Brandt O, Trampert A, et al.. Origin of high temperature ferromagnetism in (Ga, Mn)N layers grown on 4H-SiC (0001) by reactive molecular beam epitaxy. [J]Appl. Phys. Lett, 2003, 82(13) :2077-2079.
    [135]Guo L L, Zhang Y H, Shen W Z. Temperature dependence of raman scattering in GaMnN. [J]App1. Phys. Lett, 2006, 89:161920.
    [136] 朱基千,褚君浩,张小平等.退火对 CdZnTe 晶体质量的影响[J],半导体学报,1997, 15(10): 782-785.
    [137] Sen S, Liang C S, Rhiger D, et. al. Reeuetion of CdZnTe substrate defeets and relationto epitaxial HgCdTe quality[C], The 1995 U. S. Workshop on the Physics and Chemistry of Mereury CadmiumTelluride and other IR Materials, Baltimore, Maryland, USA, 1995 :5-6.
    [138] Yadava R D S, . Sundersheshu B S, Anandan M, et. al.. Precipitation in CdTe crystals studied through Mie scattering[J], J. Electron. Mater. ,1994, 23(12):1349-1348.
    [139] Bogdanov S V (Ed.). Crystals of Thallium Halides, Production,Properties and Application, [M] Nauka, Sibirskoe otdelenie, Novosibrsk,Russia, 1989:31-39
    [140] Capper P. Low temperature thermal annealing effects in bulk and epitaxial CdHgTe. [J] J. Electr. Mater. 1989,28(6):637-648.
    [141] Vydyanath H R, Ellsworth J. Recipe to minimize Te precipitation in CdTe and CZT crystal. [J] J. Vac. Sci. Technol. B 1998,10(4);1477-1485.
    [142] Lee T S, Park J W. Thermomigration of Tellurium precitates in CZT crystals grown by VGM. [J] J. Electr .Mater. 1985, 24(9) : 1053-1056.
    [143] Sharma B L. Diffusion in semiconductors. [M] Trans Tech Publications,Germany, 1970:254.
    [144] Anthony T R, Cline H E. Thermal migration of liquild droplets through solids[J]. J Appl Phys., 1971, 42(9):3380-3386.
    [145] Anthony T R, Cline H E. Thermal migration of gold-rich droplets in silicon[J]. J Appl Phys., 1972,43(5):2473-2481.
    [146] Bratukhin Y K. Convective effects in liquid inclusions drifting in non-uniformly heated solids[J]. Journal of Applied Mechanics and Technical Physics, 1978, 19(2), 1573-1582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700