钙、钛和碳掺杂的稀磁半导体及双核锰分子磁体性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用基于密度泛函理论的全势线性化缀加平面波方法(FP-LAPW),研究了本征非磁性元素钙掺杂氮化镓、钛掺杂氮化铝和碳掺杂硫化锌的电子结构和性质,及双核锰分子磁体Mn2(dpp)2(H2O)2Cl4]·2H2O,dpp=2,3-bis(2-paridyl)pyrazine的电子结构和磁性质。
     由于稀磁半导体材料在自旋电子学领域潜在的应用价值,受到研究者的广泛关注。在过去的十年间,一批过渡族金属元素掺杂的稀磁半导体材料被陆续报道。但是在过渡族金属元素掺杂的半导体材料中容易形成具有铁磁性的杂质相,难以用现有的表征方法判断其磁性的真正来源。因此,本征非磁性元素掺杂半导体材料的磁性和其它相关性质的研究逐步得到关注。相对于传统的无机磁性材料,分子基磁性材料,具有密度小、透明度高、可低温下制备和绝缘性好等特点,引起不少研究者的兴趣。因此,开展分子基磁性材料电子结构的研究,揭示其相互作用的机制,也具有十分重要的意义。
     本文通过对本征非磁性元素钙掺杂的氮化镓、钛掺杂的氮化铝和碳掺杂的硫化锌半导体材料的电子结构和性质的研究发现,本征非磁性元素掺杂形成的稀磁半导体材料也具有明显的铁磁性。相对于过渡族金属元素掺杂得到的稀磁半导体材料而言,在本文所研究的非磁性元素掺杂的体系中,非磁性元素在半导体材料中有较高的固溶度、形成较浅的杂质能级,同时可避免磁性杂质相在材料中出现。以上结果表明:利用本征非磁性元素掺杂形成的稀磁半导体材料,在自旋电子学领域会有广泛的应用,我们的研究对稀磁半导体材料的制备具有较强的指导意义。
     对双核锰分子磁体[Mn2(dpp)2(H2O)2Cl4]·2H2O,dpp=2,3-bis(2-paridyl)pyrazine的电子结构和磁性机制研究发现,该材料是分子基铁磁半导体材料,由双氯桥连接的两个Mn2+间存在较强的分子内铁磁相互作用,位于八面体晶体场中的二价锰离子d轨道上的电子与其周围的原子形成sp3d2杂化,导致锰离子的d轨道上电子形成高自旋分布。计算结果表明由双氯桥连接的两个具有八面体结构的锰原子有较强的分子内铁磁相互作用,是分子基磁性材料的合成和制备时优先选择的顺磁中心。
In this thesis, using the full potential linearized augmented plane wave (FP-LAPW) method, we studied the electronic structure and properties for the intrinsic non-magnetic elements doped semiconductors, such as, calcium-doped gallium nitride, titanium-doped aluminum nitride and carbon-doped zinc sulfide; and the electronic structure and magnetic properties for the binuclear manganese molecular magnet Mn2(dpp)2(H2O)2Cl4]·2H2O, dpp=2,3-bis (2-paridyl) pyrazine.
     Diluted magnetic semiconductors (DMSs) have attracted considerable attentions for their potential applications in spintronics. During the past decade, a number of transition metals doped DMSs with above room temperature ferromagnetism have been reported. However, there is still no consensus regarding ferromagnetism originates from a uniform alloy or from secondary phases. Therefore, it has been focus to study the intrinsic non-magnetic elements doped diluted magnetic semiconductors. Compared to the traditional inorganic magnetic material, molecule-based magnets hold some properties, such as, low density, transparency, low-temperature fabrication and electrical insulation etc. Molecule-based magnets also attract many researchers' interests. Hence, it is more significant to investigate the magnetic exchange mechanism and electronic structure for the molecule-based magnetic materials.
     Based on our calculations, we find the intrinsic non-magnetic elements Ca, Ti and C can order ferromagnetism in some semiconductors such as GaN, AlN and ZnS. Compared to the traditional transition metal elements doped diluted magnetic semiconductors, the intrinsic nonmagnetic elements doped diluted magnetic semiconductors have some merits, higher solid solubility, forming shallower impurity levels, and avoiding the secondary ferromagnetic phases. These results indicate the diluted magnetic semiconductors doped with the intrinsic non-magnetic elements would be widely used in spintronics. Our studies would guide the diluted magnetic semiconductor fabrication.
     The calculations reveal that the compound [Mn2(dpp)2(H2O)2Cl4]·2H2O,dpp=2,3-bis (2-pyridyl) pyrazine has stable ferromagnetic ground state. There exists a dominant intra-molecule ferromagnetic interaction through the double chloro-bridge between Mn2+ ions. Mn2+ and its coordination atoms form sp3d2 hybridization. Mn2+ 3d-electrons form high spin distribution. The total density of states shows this compound is a semiconductor. The obtained results indicate double chloro-bridge two Mn2+ ions with octahedron structure is good candidates for synthesizing molecular based ferromagnets.
引文
[1]王占国.信息功能材料的研究现状和发展趋势.化工进展.2004,23(2):117-126.
    [2]Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett.1988,61(21):2472-2475.
    [3]Pearton S J, Abernathy C R, Norton D P, et al. Advances in wide bandgap materials for semiconductor spintronics. Materials Science and Engineering:Reports.2003, 40:137-168.
    [4]姜寿亭,李卫.凝聚态磁性物理.第一版.北京:科学出版社,2003年.12~16.
    [5]Nakamure T, Akutagana T, Honda K. A molecular metal with ion-conducting channels. Nature.1998,394(6689):159-162.
    [6]Ohno H. Making Nonmagnetic semiconductors ferromagnetic. Science.1998, 281(5379):951-956.
    [7]王颖,湛永钟,许艳飞,等.稀磁半导体材料的研究进展及应用前景.材料导报.2007,21(7):20-23.
    [8]Prinz G A. Magnetoelectronics. Science.1998,282(5394):1660-1663.
    [9]Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromgantic semiconductor heterostructure. Nature.1999,402(6753):790-792.
    [10]Acremann Y, Yu X W, Tulapurkar A A, et al. An amplifier concept for spintronics. Appl. Phys. Lett.2008,93(10):102513.
    [11]Chin G, Yeston J. A model spin amplifier. Science.2008,322(5898):16-16.
    [12]李东,王耘波,于军,等.稀磁半导体研究的最新进展.功能材料.2004,35:1110—1115.
    [13]侯登录.稀磁半导体的制备与性质.物理实验.2005,25(8):3-7.
    [14]Overberg M E, Abernathy C R, Pearton S J, et al. Indication of ferromagnetism in molecular-beam-epitaxy-derived N-type GaMnN. Appl. Phys. Lett.2001,79 (09): 1312-1314.
    [15]Wang M, Campion R P, Rushforth A W, et al. Achieving high Curie temperature in (Ga,Mn)As. Appl. Phys. Lett.2008,93(13):132103.
    [16]Hansen L, Ferrand D, Richter G, et al. Epitaxy and magnetotransport properties of the diluted magnetic semiconductor of p-Be1-xMnxTe. Appl. Phys. Lett.2001,79 (19):3125-3127.
    [17]Kim J J, Makino H, Sakurai M, et al. Structure and magnetic properties of Cr-doped GaN. J. Vac. Sci. Technol. B.2005,23 (03):1308-1312.
    [18]Kaspar T C, Droubay T, Shutthanandan V, et al. Ferromagnetism and structure of epitaxial Cr-doped anatase TiO2 thin films. Phys. Rev. B.2006,73(15):155327.
    [19]Liu G L, Cao Q, Deng J X, et al. High TC ferromagnetism of Zn1-xCoxO diluted magnetic semiconductors grown by oxygen plasma-assisted molecular beam epitaxy. Appl. Phys. Lett.2007,90(05):052504.
    [20]Reed M L, El-Masry N A, Stadelmaier H H, et al. Room temperature ferromagnetic properties of GaNMn. Appl. Phys. Lett.2001,79(21):3473-3475.
    [21]Lee J S, Lim J D, Khim Z G, et al. Magnetic and structural properties of Co, Cr, V ion-implanted GaN. J. Appl. Phys.2003,93(08):4512-4516.
    [22]Potzger K, Kuepper K, Xu Q, et al. High cluster formation tendency in Co implanted ZnO. J Appl. Phys.2008,104(02):023510.
    [23]Hong N H, Brize V, Sakai J. Mn-doped ZnO and (Mn,Cu)-doped ZnO thin films: Does the Cu doping indeed play a key role in tuning the ferromagnetism?. Appl. Phys. Lett.2005,86(08):082505.
    [24]Gacic M, Adrian H, Jakob G. Pulsed laser deposition of ferromagnetic Zn0.95Co0.05O thin films. Appl. Phys. Lett.2008,93(15):152509.
    [25]Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Mater.2005,4(03):173-179.
    [26]Lee H-J, Jeong S Y, Cho C R, et al. Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett.2002,81(21):4020-4022.
    [27]侯登录,贾利云,岳彩霞.稀磁半导体Co:TiO2的磁性及微结构研究.中国稀土学报.2005,23(12):73-75.
    [28]Yang S G, Pakhomov A B, Hung S T, et al. Room-temperature magnetism in Cr-doped AlN semiconductor films. Appl. Phys. Lett.2002,81(13):2418-2420.
    [29]Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science.2000,287(5455):1019-1022.
    [30]Matsumoto Y, Murakami M, Hasegawa T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science.2001,291(5505): 854-856.
    [31]Sato K, Katayama-Yoshida H. Ab initio study on the magnetism in ZnO-, ZnS-, ZnSe and ZnTe based diluted magnetic semiconductors. Phys. Stat. Sol. (b).2002, 229(02):673-680.
    [32]Sharma P, Gupta A, Rao K V, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature Mater.2003,2(10): 673-677.
    [33]Liu J J, Yu M H, Zhou W L. Fabrication of Mn-doped ZnO diluted magnetic semiconductor. J. Appl. Phys.2006,99:8M119.
    [34]Tuan A C, Bryan J D, Pakhomov A B, et al. Epitaxial growth and properties of cobalt-doped ZnO on a-Al2O3 single-crystal substrates. Phys. Rev. B.2004,70(05): 054424.
    [35]Hu J F, Qin H W, Xue T F, et al. Room-temperature ferromagnetism of Zn0.97Co0.03O pressed nanocrystalline powders. Appl. Phys. Lett.2008,93(02): 022510.
    [36]Lee H J, Jeong S Y, Cho C R, et al. Study of diluted magnetic semiconductor Co doped ZnO. Appl. Phys. Lett.2002,81(21):4020-4022.
    [37]Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett.2004,93(17):177206.
    [38]Schwartz D A, Kittilstved K R, Gamelin D R. Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl. Phys. Lett.2004,85(08):1395-1397.
    [39]Radovanovic P, Gamelin D R. High-Temperature Ferromagnetism in Ni2+ -Doped ZnO aggregates prepared. Phys. Rev. Lett.2003,91(15):157202.
    [40]Potzger K, Zhou S Q, Reuther H, et al. Fe implanted ferromagnetic ZnO[J]. Appl. Phys. Lett.2006,88(05):052508.
    [41]Ramachandran S, Tiwari A, Narayan J, et al. Epitaxial growth and properties of Zn1-xVxO diluted magnetic semiconductor thin films. Appl. Phys. Lett.2005,87(17): 172502.
    [42]Liu C, Yun F, Morkoc H. Ferromagnetism of ZnO and GaN:a review. J. Mater. Science:Mater in Electronic.2005,16(09):555-597.
    [43]Hong N H, Sakai J, Prellier W, et al. Room temperature ferromagnetism in laser ablated transition-metal-doped TiO2 thin films on various types of substrates. J. Phys. D:Appl. Phys.2005,38(06):816-821.
    [44]Hong N H, Sakai J, Prellie W. Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B.2004,70(19):195204.
    [45]Droubay T, Heald S M, Shutthanandan V, et al. Cr-doped TiO2 anatase:A ferromagnetic insulator. J. Appl. Phys.2005,97(04):046103.
    [46]Hong N H, Ruyter A, Gervais F, et al. Magnetic structure of V:TiO2 and Cr:TiO2 thin films from magnetic force microscopy measurements. J. Appl. Phys.2005,97: 10D323.
    [47]Chambers S A, Thevuthasan S, Farrow R F C, et al. Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase. Appl. Phys. Lett.2001,79(24):3467-3469.
    [48]Hong N H, Sakai J, Prellier W, et al. Co distribution in ferromagnetic rutile Co-doped TiO2 thin films grown by laser ablation on silicon substrates. Appl. Phys. Lett.2003,83(15):3129-3131.
    [49]Wang Z J, Tang J, Chen Y X, et al. Room-temperature ferromagnetism in manganese doped reduced rutile titanium dioxide thin films. J. Appl. Phys.2004, 95(11):7384-7386.
    [50]Meng H J, Hou D L, Jia L Y, et al. Role of oxygen vacancies on ferromagnetism in Fe-doped TiO2 thin films. J. Appl. Phys.2007,102(07):073905.
    [51]Kim K J, Park Y Ran, Ahn G Y, et al. Ferromagnetic properties of anatase Ti1-xFexO2 thin films. J. Appl. Phys.2006,99:8M120.
    [52]Suryanarayanan R, Naik V M, Kharel P, et al. Room temperature ferromagnetism in spin-coated anatase-and rutile-Ti0.95Fe0.05O2 films. J. Phys.:Condens. Matter.2005, 17(04):755-762.
    [53]Hong N H, Sakai J, Hassini A. Ferromagnetism at room temperature with a large magnetic moment in anatase V-doped TiO2 thin films. Appl. Phys. Lett.2004, 84(14):2602-2604.
    [54]Chen J, Lu G H, Cao H H, et al. Ferromagnetic mechanism in Ni-doped anatase TiO2. Appl. Phys. Lett.2008,93(17):172504.
    [55]Park Y D, Hanbicki A T, Erwin S C, et al. A Group-IV ferromagnetic semiconductor:MnxGe1-x. Science.2002,295(5555):651-654.
    [56]Bolduc M, Awo-Affouda C, Stollenwerk A, et al. Above room temperature ferromagnetism in Mn-ion implanted Si. Phys. Rev. B.2005,71(03):033302.
    [57]Wu H W, Tsai C J, Chen L J. Room temperature ferromagnetism in Mn+-implanted Si nanowires. Appl. Phys. Lett.2007,90 (04):043121.
    [58]田昭明.TiO2/SnO2基稀磁半导体及铁氧体基复合材料磁性和交换偏置效应[博士学位论文].武汉:华中科技大学图书馆,2008.
    [59]Park J H, Kim M G, Jang H M, et al. Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett.2004,84(08): 1338-1340.
    [60]Schippan F, Behme G, Daweritz L, et al. Magnetic structure of epitaxially grown MnAs on GaAs(001). J. Appl. Phys.2000,88(05):2766-2770.
    [61]Park Y D, Wilson A, Hanbicki A T, et al. Magnetoresistance of MnGe ferromagnetic nanoclusters in a diluted magnetic semiconductor matrix. Appl. Phys. Lett.2001,78(18):2739-2741.
    [62]Sreenivasan M G, Teo K L, Jalil M B A, et al. Zinc-Blende Structure of CrTe epilayers grown on GaAs. IEEE Trans. Magn.2006,42(10):2691-2693.
    [63]Philip J, Punnoose A, Kim B I, et al. Carrier-controlled ferromagnetismin transparent oxide semiconductors. Nature Mater.2006,5(04):298-304.
    [64]Kaspar T C, Droubay T, Heald S M, et al. Hidden ferromagnetic secondary phase in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B.2008,77(20):201303.
    [65]Coey J M D, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide. Phys. Rev. B.2005,72(02):024450.
    [66]Hu J F, Zhang Z L, Zhao M, et al. Room-temperature ferromagnetism in MgO nanocrystalline powders. Appl. Phys. Lett.2008,93(19):192503.
    [67]Madhu C, Sundaresan A, Rao C N R. Room-temperature ferromagnetism in undoped GaN and CdS semiconductor nanoparticles. Phys. Rev. B.2008,77(20): 201306.
    [68]Xu Q Y, Schmidt H, Zhou S Q, et al. Room temperature ferromagnetism in ZnO films due to defects. Appl. Phys. Lett.2007,92(08):082508.
    [69]Hong N H, Sakai J, Poirot N, et al. Room-temperature ferromagnetism obseved in undoped semiconducting and insulating oxide thin films. Phys. Rev. B.2006,73(13): 132404.
    [70]Elfimov I S, Yunoki S, Sawatzky G A. Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials. Phys. Rev. Lett.2002,89 (21):216403.
    [71]Rahman G, Garcia-Suarez V M, Hong S C. Vacancy-induced magnetism in SnO2:A density functional study. Phys. Rev. B.2008,78(18):184404.
    [72]Wu R Q, Peng G W, Liu L, et al. Ferromagnetism in Mg-doped AlN from ab initio study. Appl. Phys. Lett.2006,89(14):142501.
    [73]Dev P, Xue Y, Zhang P H. Defect-induced intrinsic magnetism in wide-gap III nitrides. Phys. Rev. Lett.2008,100(11):117204.
    [74]Fan S W, Yao K L, Liu Z L, et al. Ferromagnetic properties, electronic structure, and formation energy of Ga0.9375M0.0625N (M=Vacancy, Ca) by first principles study. J. Appl. Phys.2008,104(04):043912.
    [75]Jin H, Dai Y, Huang B B, et al. Ferromagnetism of undoped GaN mediated by through-bond spin polarization between nitrogen dangling bonds. Appl. Phys. Lett. 2009,94(16):162505.
    [76]刘学超,陈之战,施尔畏,等.ZnO基稀磁半导体磁性机理研究进展.无机材料学报.2009,24(01):1-7.
    [77]Zhao Y J, Shishidou T, Freeman A J. Ruderman-Kittel-Kasuya-Yosida-like ferromagnetism in MnGe. Phys. Rev. Lett.2003,90(04):047204.
    [78]Richard B, Georges B, Timothy Z. Why RKKY exchange integrals are inappropriate to describe ferromagnetism in diluted magnetic semiconductors. Phys.Rev. B.2006, 73(02):024411.
    [79]Yan Y F, Wei S H. Doping asymmetry in wide bandgap semiconductors origins and solutions. Phys. Stat. Sol. (b).2008,245(04):641-652.
    [80]Xu H Y, Liu Y C, Xu C S, et al. Room-temperature ferromagnetism in (Mn, N)-codoped ZnO thin films prepared by reactive magnetron cosputtering. Appl. Phys. Lett.2006,88(24):242502.
    [81]Kittilstved K R, Liu W K, Gamelin D R. Electronic structure origins of polarity-dependent high-Tc ferromagnetismin oxide-diluted magnetic semiconductors. Nature Mater.2006,5(04):291-297.
    [82]Sato K, Katayama-Yoshida H. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jap. J. Appl. Phys.2000,39 (6B):L555-L558.
    [83]Sato K, Katayama-Yoshida H. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol.2002,17(04):367-376.
    [84]Coey J M D, Douvalis A P, Fitzgerald C B, et al. Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett.2004,84(08):1332-1334.
    [85]Durst Adam C, Bhatt R N, Wolff P A. Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors. Phys. Rev. B.2002,65(23): 235205.
    [86]Sasaki T, Sonoda S, Yamamoto Y, et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J. Appl. Phys.2002,91(10): 7911-7913.
    [87]Jung S W, An S J, Yi G C, et al. Ferromagnetic properties of Zn1-xMnxO epitaxial thin films. Appl. Phys. Lett.2002,80(24):4561-4563.
    [88]Diet1 T. Origin and control of ferromagnetism in diluted magnetic semiconductors and oxides. J. Appl. Phys.2008,103:07D111.
    [89]Dietl T. Origin of ferromagnetic response in diluted magnetic semiconductors and oxides. J. Phys.:Condens. Matter.2007,19(16):165204.
    [90]Cui X Y, Fernandez-Hevia D, Delley B, et al. Embedded clustering in Cr-doped AlN Evidence for general behavior in diluted magnetic Ⅲ-nitride semiconductors. J. Appl. Phys.2007,101(10):103917.
    [91]Cui X Y, Delley B, Freeman A J, et al. Neutral and charged embedded clusters of Mn in doped GaN from first principles study. Phys. Rev. B.2007,76(04):045201.
    [92]Cui X Y, Medvedeva J E, Delley B, et al. Spatial distribution and magnetism in poly-Cr-doped GaN from first principles. Phys. Rev. B.2007,75(15):155205.
    [93]Cui X Y, Medvedeva J E, Delley B, et al. Role of embedded clustering in dilute magnetic semiconductors Cr doped GaN. Phys. Rev. Lett.2005,95(25):256404.
    [94]Schilfgaarde M V, Mryasov O N. Anomalous exchange interactions in III-V dilute magnetic semiconductors. Phys. Rev. B.2001,63(23):233205.
    [95]Eriksson O, Iusan D, Knut R, et al. Ordering in diluted magnetic semiconductors:A magnetic percolation phenomenon. J. Appl. Phys.2007,101:9H114.
    [96]Fukushima T, Sato K, Katayama-Yoshida H, et al. Spinodal decomposition under layer by layer growth condition and high Curie temperature quasi-one-dimensional nano-structure in dilute magnetic semiconductors. Jpn. J. Appl. Phys. Part 2.2006, 45(12-16):L416-L418.
    [97]Miller J S, Calabrese J C, Epstein A J, et al. Ferromagnetic properties of one-dimensional decamethyl ferrocenium tetracyanoethylenide (1:1):[Fe(η5-Cs Me5)2]+[TCNE]-. J. Chem. Soc., Chem. Commun.1986,13:1026-1028.
    [98]Holmes S M, Girolami G S. Sol-Gel synthesis of KⅦ[CrⅢ(CN)6]·2H2O:A crystalline molecule-based magnet with a magnetic ordering temperature above 100℃. J. Am. Chem. Soc.1999,121(23):5593-5594.
    [99]谢希德.固体能带理论.第一版.上海:上海科学技术出版社,1982,2-11.
    [100]李正中.固体理论.第二版.北京:高等教育出版社,2002,329-340.
    [101]Born M, Huang K. Dynamically theory of crystal lattice. Oxford:Oxford University Press,1954:1.
    [102]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996,77(18):3865-3868.
    [103]Hashimoto T, Wu F, Speck J S, et al. A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nature Mater.2007,6(01):1-4.
    [104]http://baike.baidu.com/view/2207103.htm.
    [105]郭建云,郑广,何开华,等.Mg,Al掺杂GaN电子结构及光学性质的第一性原理研究.物理学报.2008,57(06):3740-3747.
    [106]Sasaki T, Sonoda S, Yamamoto Y, et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J. Appl. Phys.2002,91(10): 7911-7913.
    [107]Liu H X, Wu S Y, Singh R K, et al. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AIN. Appl. Phys. Lett.2004,85(18):4076-4078.
    [108]Lee J S, Lim J D, Khim Z G, et al. Magnetic and structural properties of Co, Cr, V ion-implanted GaN. J. Appl. Phys.2003,93(08):4512-4516.
    [109]Burch K S, Awschalom D D, Basov D N. Optical propertiesof III-Mn-V ferromagnetic semiconductors. J. Mater. Mag. Mag.2008,320 (23):3207-3228.
    [110]Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys.2001,89(11):5815-5875.
    [111]Stampfl C, Van De Walle C G. Density-functional calculations for III-V nitrides using the local-density approximationp and the generalized gradient approximation. Phys. Rev. B.1999,59(08):5521-5535.
    [112]Zhang S B, Northrup J E. Chemical potential dependence of defect formation energies in GaAs application to Ga self-diffusion. Phys. Rev. Lett.1991,67(17): 2339-2342.
    [113]Sharma B D, Donohue J. A refinement of the crystal structure of gallium. Z. Kristallogr.1962,117(03):293-300.
    [114]Zoroddu A, Bernardini F, Ruggerone P, et al. First-principles prediction of structure, energetics, formation enthalpy, elastic constants,polarization, and piezoelectric constants of A1N, GaN, and InN:Comparison of local and gradient-corrected density-functional theory. Phys. Rev. B.2001,64(04):045208.
    [115]Stampfl C, Van De Walle C G. Theoretical investigation of native defects, impurities, and complexes in aluminum nitride. Phys. Rev. B.2002,65(15):155212.
    [116]Van De Walle C G, Limpijumnong S, Neugebauer J. First-principles studies of beryllium doping of GaN. Phys. Rev. B.2001,63(24):245205.
    [117]Laurent Y, Lang J, Bihan M T L. Structure du nitrure de calcium. Acta Crystallogr., Sect. B:Struct. Crystallogr. Cryst. Chem.1968,24(04):494-499.
    [118]Merlo F, Fornasini M L. The pseudobinary systems SrAg1-xZnx, CaCu1-xGax and CaCu1-xGex and their use for testing structural maps. J. Less-Common Met.1986, 119(01):45-61.
    [119]Akai H. Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As. Phys. Rev. Lett.1998,81(14):3002-3005.
    [120]Alex Z. Practical doping principles. Appl. Phys. Lett.2003,83(01):57-59.
    [121]Haider M B, Constantin C, Al-Brithen H, et al. Ga/N flux ratio influence on Mn incorporation, surface morphology, and lattice polarity during radio frequency molecular beam epitaxy of (Ga,Mn)N. J. Appl. Phys.2003,93(09):5274-5281.
    [122]Osorio-Guillen J, Lany S, Barabash S V, et al. Magnetism without magnetic ions: Percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO. Phys.Rev. Lett.2006,96 (10):107203.
    [123]汪学铭.应用前景广阔的氮化铝.无机盐工业.1997(6):21.
    [124]Frazier R, Thaler G, Overberg M, et al. Indication of hysteresis in AlMnN. Appl. Phys. Lett.2003,83(09):1758-1760.
    [125]Ko K Y, Barber Z H, Blamire M G. Structural and magnetic properties of V-doped A1N thin films. J. Appl. Phys.2006,100(08):083905.
    [126]Gao X D, Jiang E Y, Liu H H, et al. Structure and RT ferromagnetism of Fe-doped A1N films. Appl. Surf. Sci.2007,253(12):5431-5435.
    [127]Jia W, Han P D, Chi M, et al. Electronic structure and ferromagnetic properties of Cu-doped A1N from first principles. J. Appl. Phys.2007,101(11):113918.
    [128]Xiong Z H, Shi S Q, Jiang F Y. Ti in GaN Ordering ferromagnetically from first-principles study. Chem. Phys. Lett.2007,443 (12):92-94.
    [129]Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett.2004,93 (17):177206.
    [130]Yim W M, Stofko E J, Zanzucchi P J, et al. Epitaxially grown A1N and its optiacl band gap. J. Appl. Phys.1972,44 (01):292-296.
    [131]Fan S W, Yao K L, Huang Z G, et al. Ti-doped A1N potential N-type ferromagnetic semiconductor:density functional calculations. Chem. Phys. Lett.2009,482 (1-3), 62-65.
    [132]Sato K, Dederichs P H, Katayama-Yoshida H. First-Principles Study on the ferromagnetism and Curie temperature of Mn-doped A1X and InX (X= N, P, As, and Sb). J. Phys. Soc. Jap.2007,76 (02):024717.
    [133]Osuch K, Lombardi E B, Gebicki W. First principles study of ferromagnetism in Ti0.0625Zn0.9375O. Phys. Rev. B.2006,73(07):075203.
    [134]Huang D, Zhao Y J, Chen D H, et al. Magnetism and clustering in Cu doped ZnO. Appl. Phys. Lett.2008,92(18):182509.
    [135]Speight J G. Lange's Handbook Of Chemistry.16th editon, New York:McGraw-Hill, 2005.1.160,1.170
    [136]王敦青,焦秀玲,陈代荣.硫化锌性质、用途及制备方法概述.山东化工.2003,32(02):12-15.
    [137]Saito H, Zayets V, Yamagata S, et al. Room-Temperature ferromagnetism in a Ⅱ-Ⅵ diluted magnetic semiconductor Zn1-xCrxTe. Phys. Rev. Lett.2003,90(20):207202.
    [138]Saito H, Zayets V, Yamagata S, et al. Room-temperature ferromagnetism in highly Cr-doped Ⅱ-Ⅵ diluted magnetic semiconductor Zn1-xCrxTe. J. Appl.Phys.2003, 93(10):6796-6798.
    [l39]Niwayama Y, Kura H, Sato T, et al. Room temperature ferromagnetism in diluted magnetic semiconductor Zn1-xCrxTe nanoparticles synthesized by chemical method. Appl. Phys. Lett.2008,92(20):202502.
    [140]Stern R A, Schuler T M, Maclaren J M, et al. Calculated half-metallic behavior in dilute magnetically doped ZnS. J. Appl. Phys.2004,95(11):7468-7470.
    [141]Mcnorton R D, Schuler T M, Maclaren J M, et al. Systematic trends of first-principles electronic structure computations of ZnAB diluted magnetic semiconductors. Phys. Rev. B.2008,78(07):075209.
    [142]Pan H, Yi J B, Shen L, et al. Room-Temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett.2007,99(12):127201.
    [143]Zhou S Q, Xu Q Y, Potzger K, et al. Room temperature ferromagnetism in carbon-implanted ZnO. Appl. Phys. Lett.2008,93(23):232507.
    [144]Pan H, Feng Y P, Wu Q Y, et al. Magnetic properties of carbon doped CdS A first-principles and Monte Carlo study. Phys. Rev. B.2008,77(12):125211.
    [145]Shen L, Wu R Q, Pan H, et al. Mechanism of ferromagnetism in nitrogen-doped ZnO first-principle calculations. Phys. Rev. B.2008,78(07):073306.
    [146]Yang K S, Dai Y, Huang B B, et al. On the possibility of ferromagnetism in carbon-doped anatase TiO2. Appl. Phys. Lett.2008,93(13):132507.
    [147]Fan S W, Yao K L, Liu Z L. Half-metallic ferromagnetism in C-doped ZnS:Density functional calculations. Appl. Phys. Lett.2009,94(15):152506.
    [148]Ye L H, Freeman A J, Delley B. Half-metallic ferromagnetism in Cu-doped ZnO density functional calculations. Phys. Rev. B.2006,73(03):033203.
    [149]刘爽,孙维林,何冰晶,等.有机磁体-新世纪的新材料.高分子通报.2004(8):1-9.
    [150]邹卫东.有机分子磁体的研究进展.咸宁学院学报.2005,25(03):32-35.
    [151]Manriquez J M, Yee G T, Mclean R S, et al. A Room-Temperature molecular organic-based magnet. Science.1991,252(5009):1415-1417.
    [152]贾丽惠.金属配合物分子磁体的合成结构与磁性研究[博士论文].武汉:华中科技大学图书馆,2007.
    [153]Wang W Z, Liu Z L, Yao K L. Interchain coupling model for uasi-one-dimensional π-conjugated organic ferromagnets. Phys. Rev. B.1997,55(01):012989.
    [154]Yao K L, Liu Q M, Liu Z L. Transfer matrix renormalization group studies on spin chains for molecule-based ferrimagnets. Phys. Rev. B.2004,70(22):224430.
    [155]Fu H H, Yao K L, Liu Z L. Thermodynamic properties of a spin-diamond chain as a model for a molecule-based ferrimagnet and the compound Cu3(CO3)2(OH)2. Phys. Rev. B.2006,73(10):104454.
    [156]Zhu L, Yao K L, Liu Z L. Ab initio studies of ferromagnetic properties of a nitronyl nitroxide radical and a nucleoside with-conjugated nitroxide spin label. Appl. Phys. Lett.2007,90(18):182502.
    [157]Zhu L, Yao K L, Liu Z L. First-principle calculation on the electronic structure of the molecule-based ferromagnet Co[P(CN)2]2 and M[N(CN)2]2 (M=Co, Ni). Chem. Phys. Lett.2006,424(1-3):209-213.
    [158]Armentano D, Munno G, Guerra F, et al.2,2'-Bipyrimidine-and 2,3-bis(2-pyridyl) pyrazine-containing manganese(II) compounds:structural and magnetic properties. J. Chem. Soc., Dalton Trans.2003(24):4626-4635.
    [159]Fan S W, Yao K L, Liu Z L, et al. Ab initio studies on the stability, magnetic property and electronic structure of the molecule-based magnet:[Mn2(dpp)2(H2O)2 C14]·2H2O, dpp=2,3-bis(2-paridyl) pyrazine. Solid State Commun.2008,145(7-8): 364-367.
    [160]Ruiz E, Alemany P, Alvarez S, et al. Toward the prediction of magnetic coupling in molecular systems:hydroxo- and alkoxo-bridged Cu(II) binuclear complexes. J. Am. Chem. Soc.1997,119(6):1297-1303.
    [161]Rodriguez-Fortea A, Alemany P, Alvarez S, et al. Exchange coupling in halo-bridged dinuclear Cu(II) compounds:a density functional study. Inorg. Chem. 2002,41(14):3769-3778.
    [162]Noodleman L, Peng C Y, Case D A, et al. Orbital interactions, electron delocalization and spin coupling in iron-sulf clusters. Coord. Chem. Rev.1995,144: 199-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700