Co、Mn水滑石基复合氧化物催化剂上碳烟和NOx的催化消除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳烟和NOx是柴油车尾气中的主要污染物。如何降低碳烟的燃烧温度同时提高NOx的还原效率是降低柴油车污染的关键。高效的氧化型催化剂可以显著降低碳烟催化燃烧的活化能,而具有还原活性位的催化剂可以提高碳烟还原NOx的效率。本文选取Co、Mn为主体元素的水滑石基复合氧化物作为催化剂,并用K对催化剂进行改性,优化了催化剂的组成、K的负载量、催化剂的焙烧温度等参数。另外,基于in situ DRIFTS表征结果,对NOx的储存物种进行了深入研究以揭示NOx的储存路径,并对反应机理进行了探讨。
     首先,用pH值共沉淀法成功制备了CoMgAlO水滑石基氧化物并负载了不同含量的K,考察了K负载量对催化剂的碳烟燃烧活性和NOx储存性能的影响。在200~400 oC的柴油车尾气温度范围内,所有催化剂都显示出了很高的催化活性。当K的负载量达到4.5 wt.%时,改进效果比较显著。K的添加增加了活性Co物种的数目,增强了体相晶格氧的移动性,从而提高了催化剂的碳烟燃烧活性。此外,K的添加使含氮储存物种多元化,因而提高了催化剂的NOx储存能力。电子给体K物种的存在有利于气相O_2分子和NO分子的吸附和活化。随着K含量的增加,含氮物种从螯合双齿硝酸根逐步转化为单齿硝酸根以及最终的自由态硝酸根离子,储存NOx的含K物种主要为K2O。
     选取K的负载量为4.5 wt.%的样品,进一步深入研究了K的作用的本质、焙烧温度对催化剂活性相的影响,以及碳烟催化燃烧和NOx储存/还原的机理。结果表明,对于碳烟燃烧,无K催化剂的活性随焙烧温度的升高而降低;而在含K催化剂上,即使800 oC焙烧,碳烟燃烧的高活性也可以基本维持,认为K和Co的强相互作用促使了新相K-Co-O中活性氧物种的生成,这种活性氧物种更容易与催化剂表面的碳烟进行反应。氧可以持续地从气相迁移至催化剂表面,从而维持了含K催化剂上碳烟燃烧的高活性。另外,K的添加有效提高了催化剂对NOx的消除活性。Co_3O_4、CoAl_2O_4或类似CoAl_2O_4的尖晶石都是碳烟还原NOx反应中的活性相。其中以600 oC焙烧的样品NOx消除活性最高(~32%),将其归因于高的表面K/Co比导致的K与Co之间的强相互作用。当催化剂表面上的NO被K-Co-O中的活性晶格氧物种氧化为NO_2时,NO_2可以迅速地与K物种进行反应形成硝酸盐物种,继而被碳烟还原。
     另外,还考察了MnMgAlO水滑石基复合氧化物催化剂对碳烟催化燃烧、NOx储存以及碳烟-NOx共消除的性能,着重探讨了不同Mn含量对催化剂结构和性能的影响。结果表明,对碳烟燃烧,Mn_(1.5)Mg_(1.5)AlO和Mn_(1.0)Mg_(2.0)AlO催化剂的活性最佳。结构表征结果显示,随Mn含量的增加,Mn物种从MnAl_2O_4和Mg_2MnO_4逐渐转变成Mn_3O_4和Mn_2O_3。认为Mg_2MnO_4中高度可还原性的Mn~(4+)物种为碳烟燃烧过程中最主要活性物种。对NOx消除反应,Mn_(1.0)Mg_(2.0)AlO的活性最高,基于in situ DRIFTS的结果,发现随着Mn含量的增加,体相存储的NOx物种从线性亚硝酸盐转变成了离子态硝酸盐,最后以螯合双齿硝酸盐的形式存在。认为Mg_2MnO_4中Mn~(4+)的存在可以促进具有高氧化性能的硝酸盐的形成;MnAl_2O_4中的Mn~(2+)物种可能是碳烟还原NOx的活性位。适当含量的Mn~(2+)和Mn~(4+)的共存对整个NOx消除过程是有利的。
     最后,用K对Mn_(1.5)Mg_(1.5)AlO水滑石基复合氧化物催化剂进行了改性,并考察了K的负载量对催化剂性能的影响。当K负载量低于10 wt.%时,随着K的增多,碳烟的氧化速率加快,但碳烟的最高转化速率对应的温度基本不变,认为主要遵循溢流机理。但是当K负载量高于10 wt.%时,碳烟的特征燃烧温度有所降低,但是碳烟燃烧速率与无K的催化剂相当,认为主要遵循NOx辅助的气相反应机理。KNO_3分解产生的NO_2与碳烟反应,从而降低了碳烟的燃烧温度。加入K以后,NOx的还原效率先升高后降低,当K负载量为7.5 wt.%时达到峰值。认为适量K的掺杂有利于单齿硝酸盐的生成,与亚硝酸盐、螯合双齿硝酸盐和离子硝酸盐相比,它与碳烟的反应性更强,对应的NOx消除效率也更高。当K负载量大于15wt.%时,反应过程中KNO_3分解致使K相严重流失;而当K负载量低于10 wt.%时,K_2Mn_4O_8中K与Mn物种的强相互作用稳定了K相,从应用角度考虑,这些催化剂更具有应用前景。
Soot and NOx are main pollutants in the emission of diesel engines. How to decrease the soot combustion temperature and increase the NOx reduction efficiency is important for the elimination of these pollutants. Highly effective oxidation catalysts can remarkably decrease the activation energy of soot combustion reaction, and the catalysts with reductive active sites can increase the efficiency of NOx reduction. In this dessertation, Co- and Mn-based hydrotalcite-derived catalysts, as well as the K-promoted ones, are selected. The composition of catalysts, the loading of K and the calcination temperature are optimized. Moreover, the stored NOx species were investigated carefully by in situ DRIFTS in order to reveal the reaction mechanisms.
     Firstly, hydrotalcite-based CoMgAlO mixed oxides were synthesized by pH-constant coprecipitation and then impregnated with K. All the catalysts display good catalytic activity in the range of 200~400 oC. When the weight loading of K reaches 4.5 %, prominent enhancement effect was observed. The addition of K increases the amount of active Co sites, leading to the high soot oxidation activity. Higher NOx trapping efficiency is also obtained over K-promoted catalysts. As dopant K mounts up, N-related species vary from chelating bidentate nitrates to monodentate nitrates and ionic nitrates gradually. The main storage phase is K2O.
     The loading of K is fixed at 4.5 wt.%. Further researches were carried out on the influence of calcination temperature. High catalytic performance could be maintained on K-promoted catalysts. The strong interaction between K and Co induces the formation of the active oxygen species in a new K-Co-O phase, which readily reacts with soot. Continuous transferring of oxygen from gaseous phase ensures the high soot combustion activity. The NOx reduction activity can also be improved. The catalyst calcined at 600 oC shows the highest NOx removal efficiency (~32%), attributing to the strong interaction between K and Co. Therefore, NO molecules can be easily oxidized to NO2 by the referred active oxygen species and then stored as nitrates on K species, which can be reduced by soot.
     Moreover, the performance of hydrotalcite-derived MnMgAlO catalysts was evaluated. The influence of the Mn content on the activity of the catalysts is carefully studied. Mn1.5Mg1.5AlO and Mn1.0Mg2.0AlO show the best catalytic performance for soot combustion. As dopant Mn increases, major Mn-related species vary from MnAl_2O_4 and Mg_2MnO_4 to Mn_3O_4 and Mn_2O_3. The highly reducible Mn~(4+) in Mg_2MnO_4 is most active for soot combustion. The Mn_(1.0)Mg_(2.0)AlO exhibited the highest activity for NOx removal reaction. The existence of Mn~(4+) in Mg_2MnO_4 can enhance the formation of ionic nitrates; the Mn~(2+) in MnAl_2O_4 is proposed to be the active site for NOx reduction. The coexistence of appropriate amounts of Mn~(2+) and Mn~(4+) is beneficial to the whole reaction.
     Finally, Mn_(1.5)Mg_(1.5)AlO catalyst promoted by K was investigated and the effect of K was also studied. For soot combustion, when the dopant K was lower than 10 wt.%, the average soot oxidation rate is lowered. The spillover mechanism is proposed. While when the content of K is higher than 10 wt.%, the characteristic temperatures of soot combustion are decreased. NOx-aided gas-phase mechanism was proposed. As dopant K increases, the NOx reduction percentage reaches the maximum value at the point of 7.5 wt.% of K. The introduction of proper content of K can facilitate the formation of monodentate nitrates, which show high reactivity with soot, leading to the higher removal efficiencies. When the K content is lower than 10 wt. %, the strong interaction between K and Mn species in K_2Mn_4O_8 phase stabilizes the K species, making the catalysts possess higher thermal stability, in the view of application, these catalysts are more suitable for practical use.
引文
[1] Heck R M, Farrauto R J, Automobile exhaust catalysts, Appl. Catal. A, 2001, 221: 443-457
    [2]原培胜,张永,朱大林等。汽车尾气污染控制方法探讨,中国环保产业, 2009,2:52-55
    [3] Bernstein J A, Alexis N, Barnes C, et al. Health effects of air pollution, J. Allergy and Clin. Immun., 2004, 114(5): 1116-1123
    [4] Ye S H., Zhou W, Song J, et al. Toxicity and health effects of vehicle emissions in Shanghai, Atmos. Environ., 2000, 34(3): 419-429
    [5] Cohen A J, Nikula K, Stephen T H, et al. The health effects of diesel exhaust: Laboratory and epidemiologic studies, In: Holgate S, Koren H, Maynard R, Samet J M, eds. Air Pollution and Health, Academic Press: London, 1999, 707-748
    [6] Latza U, Gerdes S, Baur X, Effects of nitrogen dioxide on human health: Systematic review of experimental and epidemiological studies conducted between 2002 and 2006, Int. J. of Hyg. E., 2009, 212(3): 271-287
    [7] Larssen T, Schnoor J L, Seip H M, et al. Evaluation of different approaches for modeling effects of acid rain on soils in China, Sci. Total E., 2000, 246(2-3): 175-193
    [8] Larssen T, Carmichael G R, Acid rain and acidification in China: the importance of base cation deposition. Environ. Pollu., 2000, 110(1): 89-102
    [9] Benedick R E, Schneider T, United States Policy on Acid Rain, Stud. Environ. Sci., 1986, 30: 391-396
    [10] Lioy P J, Spektor D, Thurston G, et al. The design considerations for ozone and acid aerosol exposure and health investigations: The fairview lake summer camp -Photochemical smog case study, Environ. Int., 1987, 13(3): 271-283
    [11] Rosen B N, Sloane G B, Environmental product standards, trade and European consumer goods marketing: Processes, threats and opportunities, The Columbia J. World Bus., 1995, 30(1): 74-86
    [12] Knecht W, Diesel engine development in view of reduced emission standards, Energy, 2008, 33(2): 264-271
    [13] Nelson P F, Tibbett A R, Day S J, Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles, Atmos. Environ., 2008, 42(21): 5291-5303
    [14] Hao J, Hu J, Fu L, Controlling vehicular emissions in Beijing during the last decade, Transport. Res. Pol. Pract., 2006, 40(8): 639-651
    [15]邓文杰,汽车尾气排放标准,汽车实用技术,2005,6:104-104
    [16]臧橱良,李俊,汽车尾气净化催化剂,当代化工,2001,30(4):187-192
    [17]肖彦,我国汽车尾气净化催化剂的现状与思考,中国稀土学报,2002,20(催化专辑):14-19
    [18]皇甫艺,周晓谋,稀薄燃烧型汽车尾气净化的研究,环境污染治理技术与设备,2003, 4(1):22-25
    [19]王凤艳,吴海波,柴油车的颗粒捕集器,内燃机,2008,4:25-27
    [20]赵震,张桂臻,刘坚等。柴油机尾气净化催化剂的最新研究进展,催化学报,2008,29(3):303-312
    [21] Zelenka P, Cartellieri W, Herzog P, Worldwide diesel emission standards, current experiences and future needs, Appl. Catal. B, 1996, 10(1-3): 3-28
    [22] Mosbach S, Celnik M S, Raj A, et al. Towards a detailed soot model for internal combustion engines, Combust. Flame, 2009, 156(6): 1156-1165
    [23] Geller M D, Ntziachristos L, Mamakos A, et al. Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmos. Environ., 2006, 40(36): 6988-7004
    [24] Matti M M, Chemical characterization of particulate emissions from diesel engines: A review, J. Aerosol Sci., 2007, 38(11): 1079-1118
    [25] de Kok T M C M, Driece H A L, Hogervorst J G F, et al. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies, Mut. Res.-R. M., 2006, 613(2-3): 103-122
    [26] Yao Q, Li S Q, Xu H W, et al. Studies on formation and control of combustion particulate matter in China: A review, Energy, 2009, 34(9): 1296-1309
    [27] Alvarez R W M, Novak P, Pollutant emissions from vehicles with regenerating after-treatment systems in regulatory and real-world driving cycles, Sci. Total Environ., 2008, 398(1-3): 87-95
    [28] Han X, Naeher L P, A review of traffic-related air pollution exposure assessment studies in the developing world, Environ. Int., 2006, 32(1): 106-120
    [29] Darcovich K, Jonasson K A, Capes C E, Developments in the control of fine particulate air emissions, Adv. Powder Technol., 1997, 8(3): 179-215
    [30] Long F J, Sykes K W, The catalysis of the oxidation of carbon, Chim. Phys., 1950, 47: 361-378
    [31] Saracco G, Russo N, Ambrogio M, et al. Diesel particulate abatement via catalytic traps, Catal. Today, 2000, 60(1-2): 33-41
    [32] Howitt J S, Montierth M R, Cellular ceramic diesel particulate filter, SAE paper, 1981, 810114
    [33] Cauda E, Fino D, Saracco G, et al. Preparation and regeneration of a catalytic diesel particulate filter, Chem. Eng. Sci., 62(18-20): 5182-5185
    [34] Li H, Westerholm R, Almen J, et al. Chemical characterization of exhaust emissions originating from the regeneration mode of a diesel particulate trap, Fuel, 1994, 73(1): 11-16
    [35] Russo N, Fino D, Saracco G, et al. Promotion effect of Au on perovskite catalysts for the regeneration of diesel particulate filters, Catal. Today, 2008, 137(2-4): 306-311
    [36] Lee S J, Jeong S J, Kim W S, Numerical design of the diesel particulate filter for optimum thermal performances during regeneration, Appl. Energ., 86(7-8): 1124-1135
    [37] Zhang-Steenwinkel Y, van der Zande L M, Castricum H L, et al. Microwave-assisted in situ regeneration of a perovskite coated diesel soot filter, Chem. Eng. Sci., 2005, 60(3): 797-804
    [38] Fino D, Specchia V, Open issues in oxidative catalysis for diesel particulate abatement, Powder Technol., 2008, 180(1-2): 64-73
    [39] Amariglio H, Duval X, Etude de la Combustion catalytique du graphite, Carbon, 1966, 4(3): 323-332
    [40] McKee D W, Carbon oxidation catalyzed by low melting point oxide phases, Carbon, 1987, 25(4): 587-588
    [41] McKee D W, Mechanisms of the alkali metal catalysed gasification of carbon, Fuel, 1983, 62: 170-175
    [42] Goethel P J, Yang R T, Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession, J. Catal., 1989, 119(1): 201-214
    [43] Baker R T K, Catalytic gasification of graphite, Chem. Ind., 1982, 18: 698-702
    [44] Hennig G R, Electron microscopy of reactivity changes near lattice defects in graphite, Chem. Phys. Carbon, 1966, 2: 1-49
    [45] Baker R T K, Factors controlling the mode by which a catalyst operates in the graphite–oxygen reaction, Carbon, 1986, 24(6): 715-717
    [46] Cooper B J, Thoss J E, Role of NO in diesel particulate emission control. SAE Paper, 1989, 890404
    [47] Setiabudi A, Makkee M, Moulijn J A, An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design, Appl. Catal. B, 2003, 42(1): 35-45
    [48] Baumgarten E, Schuck A, Oxygen spillover and its possible role in coke burning, Appl. Catal., 1988, 37: 247-257
    [49] Baker R T K, Chludzinski J J, Catalytic gasification of graphite by chromium and copper in oxygen, Steam and Hydrogen. Carbon, 1981, 19: 75-82
    [50] Mul G, Kapteijn F, Doornkamp C, et al. Transition metal oxide catalyzed carbon black oxidation: A study with 18O2, J. Catal., 1998, 179: 258-266
    [51] Oi Uchisawa J, Yang R T, Carbon oxidation with platinum supported catalysts, Appl. Catal. B, 1998, 18(3-4): L183-L187
    [52] Oi-Uchisawa J, Obuchi A, Enomoto R, et al. Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black, Appl. Catal. B, 2000, 26(1): 17-24
    [53] Oi-Uchisawa J, Obuchi A, Wang S, et al. Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation, Appl. Catal. B, 2003, 43(2): 117-129
    [54] Oi-Uchisawa J, Wang S, Nanba T, et al. Improvement of Pt catalyst for soot oxidation using mixed oxide as a support, Appl. Catal. B, 2003, 44(3): 207-215
    [55] Neri G, Bonaccorsi L, Donato A, et al. Catalytic combustion of diesel soot over metal oxide catalysts, Appl. Catal. B, 1997, 11(2): 217-231
    [56] Krishna K, Makkee M, Soot oxidation over NOx storage catalysts: Activity and deactivation, Catal. Today, 2006, 114(1): 48-56
    [57] Tschamber V, Jeguirim M, Villani K, et al. Comparison of the activity of Ru and Pt catalysts for the oxidation of carbon by NO2, Appl. Catal. B, 2007, 72(3-4): 299-303
    [58] Masato M, Yuichiro M, Kouji K, et al. On the reasons for high activity of CeO2 catalyst for soot oxidation, Chem. Mater., 2008, 20: 4489-4494
    [59] Aneggi E, Llorca J, de Leitenburg C, et al. Soot combustion over silver-supported catalysts, Appl. Catal. B, 2009, 91(1-2): 489-498
    [60] van Doorn J, Varloud J, Meriaudeau P, et al. Effect of support material on the catalytic combustion of diesel soot particulates, Appl. Catal. B, 1992, 1(2): 117-127
    [61] Issa M, Petit C, Brillard A, et al. Oxidation of carbon by CeO2: Effect of the contact between carbon and catalyst particles, Fuel, 2008, 87(6): 740-750
    [62] Atribak I, Such-Basanez I, Bueno-Lopez A, et al. Comparison of the catalytic activity of MO2 (M=Ti, Zr, Ce) for soot oxidation under NOx/O2, J. Catal., 2007, 250(1): 75-84
    [63] Setiabudi A, Chen J L, Mul G, et al. CeO2 catalysed soot oxidation: The role of active oxygen to accelerate the oxidation conversion, Appl. Catal. B, 2004, 51(1): 9-19
    [64] AhlstriSm A F, Odenbrand C U I, Combustion of soot deposits from diesel engines on mixed oxides of vanadium pentoxide and cupric oxide, Appl. Catal., 1990, 60: 157-172
    [65] Ciambelli P, Palma V, Russo P, et al. Catalytic oxidation of soot from diesel exhaust gases: Screening of metal oxide catalysts by TG-DTG-DTA analysis, Thermochim. Acta, 1990, 162(1): 83-89
    [66] Yuan S, Mériaudeau P, Perrichon V, Catalytic combustion of diesel soot particles on copper catalysts supported on TiO2: Effect of potassium promoter on the activity, Appl. Catal. B, 1994, 3(4): 319-333
    [67] Lox E S, Engler B H, Koberstein E, et al. Diesel emission control, Stud. Surf. Sci. Catal., 1991, 71: 291-321
    [68] Mul G, Zhu W D, Kapteijn F, et al. The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon black oxidation: An exploratory study, Appl. Catal. B, 1998, 17(3): 205-220
    [69] Fino D, Russo N, Saracco G, et al. The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot, J. Catal., 2003, 217(2): 367-375
    [70] Hong S-S, Lee G-D, Catalytic removal of diesel soot particulates over LaMnO3 perovskite-type oxides, Stud. Surf. Sci. Catal., 2006, 159: 261-264
    [71] Russo N, Fino D, Saracco G, et al. Studies on the redox properties of chromite perovskite catalysts for soot combustion, J. Catal., 2005, 229 (2): 459-469
    [72] Russo N, Furfori S, Fino D, et al. Lanthanum cobaltite catalysts for diesel soot combustion, Appl. Catal. B, 2008, 83(1-2): 85-95
    [73] Querini C A, Ulla M A, Requejo F, et al. Catalytic combustion of diesel soot particles, Activity and characterization of Co/MgO and Co,K/MgO catalysts, Appl. Catal. B, 1998, 15(1-2): 5-19
    [74] Querini C A, Cornaglia L M, Ulla M A. et al. Catalytic combustion of diesel soot on Co,K/MgO catalysts, Effect of the potassium loading on activity and stability, Appl. Catal. B, 1999, 20(3): 165-177
    [75] Mir? E E, Ravelli F, Ulla M A, et al. Catalytic combustion of diesel soot on Co, K supported catalysts, Catal. Today, 1999, 53(4): 631-638
    [76] Liu J, Zhao Z, Wang J Q, et al. The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion, Appl. Catal. B, 2008, 84(1-2): 185-195
    [77] Dhakad M, Mitshuhashi T, Rayalu S, et al. Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation, Catal. Today, 2008, 132(1-4): 188-193
    [78] Sui L, Yu L, Diesel soot oxidation catalyzed by Co-Ba-K catalysts: Evaluation of the performance of the catalysts, Chem. Eng. J., 2008, 142(3): 327-330
    [79] Shangguan W F, Teraoka Y, Kagawa S, Kinetics of soot-O2, soot-NO and soot-O2-NO reactions over spinel-type CuFe2O4 catalyst, Appl. Catal. B, 1997, 12(2-3): 237-247
    [80] Baldi M, Escribano V S, Amores J M G, et al. Characterization of manganese and iron oxides as combustion catalysts for propane and propene, Appl. Catal. B, 1998, 17(3): L175-L182
    [81] L?pez-Fonseca R, Elizundia U, Landa I, et al. Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates, Appl. Catal. B, 2005, 61(1-2): 150-158
    [82] Dobber D, Kiebling D, Schmitz W, et al. MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane, Appl. Catal. B, 2004, 52(2): 135-143
    [83] Escribano V S, Lopez F E, Gallardo-Amores J M, et al. A study of a ceria-zirconia-supported manganese oxide catalyst for combustion of Diesel soot particles, Combust. Flame, 2008, 153(1-2): 97-104
    [84] Saab E, Aouad S, Abi-Aad E, et al. Carbon black oxidation in the presence of Al2O3, CeO2, and Mn oxide catalysts: An EPR study, Catal. Today, 2007, 119(1-4): 286-290
    [85] Tikhomirov K, Krocher O, Elsener M, et al. MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot, Appl. Catal. B, 2006, 64(1-2): 72-78
    [86] Liang Q, Wu X D, Weng D, et al. Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation, Catal. Today, 2008, 139(1-2): 113-118
    [87] Ivanova A S, Litvak G S, Mokrinskii V V, et al. The influence of the active component and support nature, gas mixture composition on physicochemical and catalytic properties of catalysts for soot oxidation, J. Mol. Catal. A, 2009, 310(1-2): 101-112
    [88] Garin F, Environmental catalysis, Catal. Today, 2004, 89(3): 255-268
    [89] Kaspar J, Fornasiero P, Hickey N, Automotive catalytic converters: current status and some perspectives, Catal. Today, 2003, 77(4): 419-449
    [90] Forzatti P, Castoldi L, Nova I, et al. NOx removal catalysis under lean conditions, Catal. Today, 2006, 117(1-3): 316-320
    [91] Matsumoto S I, Recent advances in automobile exhaust catalysts, Catal. Today, 2004, 90(3-4): 183-190
    [92] Roy S, Hegde M S, Madras G, Catalysis for NOx abatement, Appl. Energ., 2009, 86(11): 2283-2297
    [93] Shin S, Hatakeyama Y, Ogawa K, et al. Catalytic decomposition of NO over brownmillerite-like compounds, Ca2Fe2O5 and Sr2Fe2O5, Mater. Res. Bull., 1979, 14(1): 133-136
    [94] Efstathiou A M, Fliatoura K, Selective catalytic reduction of nitric oxide with ammonia overV2O5/TiO2 catalyst: A steady-state and transient kinetic study, Appl. Catal. B, 1995, 6(1): 35-59
    [95] Kotsifa A, Kondarides D I, Verykios X E, Comparative study of the chemisorptive and catalytic properties of supported Pt catalysts related to the selective catalytic reduction of NO by propylene, Appl. Catal. B, 2007, 72(1-2): 136-148
    [96] Luo Y M, Hao J M, Hou Z Y, et al. Influence of preparation methods on selective catalytic reduction of nitric oxides by propene over silver-alumina catalyst, Catal. Today, 2004, 93-95: 797-803
    [97] Kubacka A, Janas J, Wloch E, et al. Selective catalytic reduction of nitric oxide over zeolite catalysts in the presence of hydrocarbons and the excess of oxygen, Catal. Today, 2005, 101(2): 139-145
    [98] Yu Y, Zhang X, He H, Evidence for the formation, isomerization and decomposition of organo-nitrite and -nitro species during the NOx reduction by C3H6 on Ag/Al2O3, Appl. Catal. B, 2007, 75(3-4): 298-302
    [99] Millet C N, Chedotal R, Da Costa P, Synthetic gas bench study of a 4-way catalytic converter: Catalytic oxidation, NOx storage/reduction and impact of soot loading and regeneration, Appl. Catal. B, 2009, 90(3-4): 339-346
    [100] Summers J C, Van Houtte S, Psaras D, Simultaneous control of particulate and NOx emissions from diesel engines, Appl. Catal. B, 1996, 10(1-3): 139-156
    [101] Balle P, Bockhorn H, Geiger B, et al. A novel laboratory bench for practical evaluation of catalysts useful for simultaneous conversion of NOx and soot in diesel exhaust, Chem. Eng. Process., 2006, 45(12): 1065-1073
    [102] Yoshida K, Makino S, Sumiya S, Simultaneous reduction of NOx and particulate emissions from diesel engie exhaust, SAE paper, 1989, 892046
    [103] Shangguan W F, Teraoka Y, Kagawa S, Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate, Appl. Catal. B, 1998, 16(2): 149-154
    [104] Shangguan W F, Teraoka Y, Kagawa S, Simultaneous catalytic removal of NO[chi] and diesel soot particulates over ternary AB2O4 spinel-type oxides, Appl. Catal. B, 1996, 8(2): 217-227
    [105] Fino D, Fino P, Saracco G, et al. Studies on kinetics and reactions mechanism of La2-xKxCu1-yVyO4 layered perovskites for the combined removal of diesel particulate and NOx, Appl. Catal. B, 2003, 43(3): 243-259
    [106] Liu J, Zhao Z, Xu C M, et al. Simultaneous removal of NOx and diesel soot particulates over nanometric La2-xKxCuO4 complex oxide catalysts, Catal. Today, 2007, 119(1-4): 267-272
    [107] Wang H, Zhao Z, Xu C M, et al. Nanometric La1?xKx MnO3 Perovskite-type oxides–highly active catalysts for the combustion of diesel soot particle under loose contact conditions, Catal. Lett., 2005, 102: 251-256
    [108] Liu J, Zhao Z, Xu C M, et al. Study of the catalytic combustion of diesel soot over nanometric lanthanum-cobalt mixed oxide catalysts, Reaction Kinetics and Catal. Lett., 2005, 87: 107-114
    [109] Wang H, Zhao Z, Xu C M,纳米La-Mn-O钙钛矿型氧化物催化剂上柴油机尾气碳颗粒催化燃烧性能的研究, Chinese Sci. Bull., 2005, 50(4): 1440-1444
    [110] Liu J, Zhen Z, Xu C M, et al. Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts, Appl. Catal. B, 2008, 78(1-2): 61-72
    [111] Allansson R, Blakeman P G, Cooper B J, et al. Optimizing the low temperature performance and regeneration efficiency of the continuously regenerating diesel particulate filter, SAE paper, 2002, 2002-01-0428
    [112] Setiabudi A, Makkee M, Moulijn J A, An optimal usage of NOx in a combined Pt/ceramic foam and a wall-flow monolith filer for an effective NOxassisted soot oxidation, Topics Catal., 2004, 30: 305-308
    [113] Liu Z M, Woo S I, Recent advances in catalytic DeNOx science and technology, Catal. Rev., 2006, 48: 43-89
    [114] Teraoka Y, Nakano K,Kagawa S, et al. Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides, Appl. Catal. B, 1995, 5(3): L181-L185
    [115] Teraoka Y, Nakano K, Shangguan W F, et al. Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides, Catal. Today, 1996, 27(1-2): 107-113
    [116]彭小圣,林赫,上官文峰等。K和Cu部分取代对LaMnO3钙钛矿型催化剂同时去除NO和碳烟的影响,催化学报, 2006,27(9):767-771
    [117] Fino D, Russo N, Saracco G, et al. Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides, J. Catal., 2006, 242(1): 38-47
    [118] An H, McGinn P J, Catalytic behavior of potassium containing compounds for diesel soot combustion, Appl. Catal. B, 2006, 62(1-2): 46-56
    [119] Jimenez R, Garcia X, Cellier C, et al. Soot combustion with K/MgO as catalyst: II Effect of K-precursor, Appl. Catal. A, 2006, 314(1): 81-88
    [120] Aneggi E, de Leitenburg C, Giuliano D, et al. Diesel soot combustion activity of ceria promoted with alkali metals, Catal. Today, 2008, 136(1-2): 3-10
    [121] Toops T J, Smith D B, Partridge W P, NOx adsorption on Pt/K/Al2O3, Catal. Today, 2006, 114(1): 112-124
    [122] Liu Y, Meng M, Zou Z Q, et al. In situ DRIFTS investigation on the NOx storage mechanisms over Pt/K/TiO2-ZrO2 catalyst, Catal. Commun., 2008, 10(2): 173-177
    [123]刘咏,孟明,郭丽红等。载体焙烧温度对NO储存还原催化剂K/Pt/TiO2-ZrO2结构与性能的影响,催化学报,2007,28(10): 850-856
    [124] Zou Z Q, Meng M, Tsubaki N, et al. Influence of Co or Ce addition on the NOx storage and sulfur-resistance performance of the lean-burn NOx trap catalyst Pt/K/TiO2-ZrO2, J. Hazard. Mater., 2009, 170(1): 118-126
    [125] Milt V G, Banus E D, Ulla M A, et al. Soot combustion and NOx adsorption on Co,Ba,K/ZrO2, Catal. Today, 2008, 133-135: 435-440
    [126] Milt V G, Pissarello M L, Mir? E E, et al. Abatement of diesel-exhaust pollutants: NOx storage and soot combustion on K/La2O3 catalysts, Appl. Catal. B, 2003, 41(4): 397-414
    [127] Hizbullah K, Kureti S, Weisweiler W, Potassium promoted iron oxide catalysts for simultaneous catalytic removal of nitrogen oxides and soot from diesel exhaust gas, Catal. Today, 2004, 93-95: 839-843
    [128] Ito K, Kishikawa K, Watajima A, et al. Soot combustion activity of NOx-sorbing Cs-MnOx-CeO2 catalysts, Catal. Commun., 2007, 8(12): 2176-2180
    [129] Reichle W T, Anioc clay minerals, Chemtech., 1986, 16: 58-63
    [130] Rives V, Ulibarri M A, Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxommetalates, Coordin. Chem. Rev., 1999, 181(22): 105-115
    [131] Newman S P, Jones W, Synthesis, charactrization and applications of layered double hydroxides containing organic guests, New J. Chem., 1998, 22: 105-115
    [132] Vaccari A, Clays and catalysis: a promising future, Appl. Clay. Sci., 1999, 14(4): 161-198
    [133] Cavani F, Trifiro F, Vaccari A, Hydrotalcite-type anionic clays: preparation, properties and application, Catal. Today, 1991, 11(2): 173-301
    [134] Casenave S, Martinez H, Guimon C, et al. Acid and base properties of MgCuAl mixed oxides, J. Therm. Anal. Calorim., 2003, 72: 191-198.
    [135] M. Park, Lee C, Lee E J, et al. Layered double hydroxides as potential solid base for beneficial remediation of endosulfan-contaminated soils, J. Phys. Chem. Solids, 2004, 65: 513-516
    [136]张慧,齐荣,刘丽娜等。镁铁双羟基复合金属氧化物的可控合成及晶面生长特征研究,化学物理学报,2003,16:45-50
    [137] Yu J J, Cheng J, Ma C Y, et al. NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds, J. Colloid Interface Sci., 2009, 333(2): 423-430
    [138] Wang Z P, Shangguan W F, Su J X, et al. Catalytic oxidation of diesel soot on mixed oxides derived from hydrotalcites, Catal. Lett., 2006, 112: 149-154
    [139]王学中,刘玉闽,吴越,水滑石衍生复合氧化物的CO催化还原NO的性能,物理化学学报,1999, 15(1):50-56
    [140]刘钰,杨向光,王学中等。以水滑石类化合物为前体的Co-M-Al (M=过渡金属)复合氧化物对催化消除NO活性的研究,化学学报,1999,57:782-789
    [141]刘钰,杨向光,张忠良等。以水滑石为前体的Mg-Al-M复合氧化物对催化消除NO的活性,催化学报,1999,20(4):450-454
    [142] Kannan S, Decomposition of nitrous oxide over the catalysts derived from hydrotalcite-like compounds, Appl. Clay Sci., 1998, 13(5-6): 347-362
    [143] Kovanda F, Rojka T, Dobe?ováJ, et al. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties, J. Solid State Chem., 2006, 179(3): 812-823
    [144] Ni Z M, Chen A M, Fang C P, et al. Enhanced NOx adsorption using calcined Zn/Mg/Ni/Al hydrotalcite-like compounds, J. Phys. Chem. Solids, 70(3-4): 632-638
    [145] Obalov L, Jiratov K, Kovanda F, et al. Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds, Appl. Catal. B, 2005, 60(3-4): 289-297
    [146] Obalov L, Jiratov K, Kovanda F, et al. Structure-activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors, J. Mol. Catal. A, 2006, 248(1-2): 210-219
    [147] Pacultov K, Obalov L, Kovanda F, et al. Catalytic reduction of nitrous oxide with carbon monoxide over calcined Co-Mn-Al hydrotalcite, Catal. Today, 2008, 137(2-4): 385-389
    [148] Yu J J, Jiang Z, Zhu L, et al. Adsorption/Desorption Studies of NOx on Well-Mixed Oxides Derived from Co-Mg/Al Hydrotalcite-like Compounds,. J. Phys. Chem. B, 2006, 110: 4291-4300
    [149] Yu J J, Tao Y X, Liu C C, et al. Novel NO Trapping Catalysts Derived from Co-Mg/X-Al (X=Fe, Mn, Zr, La) Hydrotalcite-like Compounds, Environ. Sci. Technol., 2007, 41: 1399-1404
    [150]程昊,陈光文,王树东等。Pt/Mg-Al-O催化剂上NOx的存储性能,催化学报,2004,25(4):272-276
    [151] Morandi S, Prinetto F, Ghiotti G, et al. FT-IR investigation of NOx storage properties of Pt-Mg(Al)O and Pt/Cu-Mg(Al)O catalysts obtained from hydrotalcite compounds, Micropor. Mesoporous Materials, 2008, 107(1-2): 31-38
    [152] Obalov L, Karaskov K, Jiratov K, et al. Effect of potassium in calcined Co-Mn-Al layered double hydroxide on the catalytic decomposition of N2O, Appl. Catal. B, 2009, 90(1-2): 132-140
    [153] Wang Z P, Jiang Z, Shangguan W F, Simultaneous catalytic removal of NOx and soot particulate over Co-Al mixed oxide catalysts derived from hydrotalcites, Catal. Commun., 2007, 8(11): 1659-1664
    [154]王仲鹏,陈铭夏,上官文峰,类水滑石衍生CuA1O催化剂同时去除碳颗粒和氮氧化物,物理化学学报,2009,25(1):79-85
    [155] Walsh M P, Global trends in diesel emissions regulation-A 2001 Update, SAE Paper, 2001, 2001-01-0183
    [156] Liu S T, Obuchi A, Oi-Uchisawa J, et al. Synergistic catalysis of carbon black oxidation by Pt with MoO3 or V2O5, Appl. Catal. B, 2001, 30(3-4): 259-265
    [157] Nova I, Castoldi L, Lietti L, et al. NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments, J. Catal., 2004, 222(2): 377-388
    [158] Scholz C M L, Gangwal V R, de Croon M H J M, et al. Model for NOx storage/reduction in the presence of CO2 on a Pt-Ba/[gamma]-Al2O3 catalyst, J. Catal., 2007, 245(1): 215-227
    [159] Broqvist P, Panas I, Gr?nbeck H, Toward a realistic description of NOx storage in BaO: The Aspect of BaCO3, J. Phys. Chem. B, 2005, 109 (32): 9613-9621
    [160] Watanabe Y, Irako K, Miyajima T, et al.“Trapless Trap”-A catalytic combustion system of diesel particulates using ceramic foam, SAE Paper, 1983, 1983-83-0082
    [161] Mul G, Neeft J P A, Kapteijn F, et al. Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst, Appl. Catal. B, 1995, 6(4): 339-352
    [162] van Setten B A A L, van Dijk R, Jelles S J, et al. The potential of supported molten salts in the removal of soot from diesel exhaust gas, Appl. Catal. B, 1999, 21(1): 51-61
    [163] Neeft J P A, van Pruissen O P, Makkee M, et al. Catalytic oxidation of diesel soot: Catalyst development, Stud. Surf. Sci. Catal., 1995, 96: 549-561
    [164] Janiak C, Hoffmann R, Sj?vall P, et al. The potassium promoter function in the oxidation of graphite: An experimental and theoretical Study, Langmuir, 1993, 9: 3427-3440
    [165] Courcot D, Pruvost C, Zhilinskaya E A, et al. Potential of supported copper and potassium oxide catalysts in the combustion of carbonaceous particles, Kinet. Catal., 2004, 45: 580-588
    [166] Tikhomirov K, Kr?cher O, Wokaun A, Influence of potassium doping on the activity and the sulfur poisoning resistance of soot oxidation catalysts, Catal. Lett., 2006, 109: 49-53
    [167] Lesage T, Saussey J, Malo S, et al. Operando FTIR study of NOx storage over a Pt/K/Mn/Al2O3-CeO2 catalyst, Appl. Catal. B, 2007, 72(1-2): 166-177
    [168] Takahashi N, Matsunaga S, Tanaka T, et al. New approach to enhance the NOx storage performance at high temperature using basic MgAl2O4 spinel support, Appl. Catal. B, 2007, 77(1-2): 73-78
    [169] Vaccari A, Preparation and catalytic properties of cationic and anionic clays, Catal. Today, 1998, 41(1-3): 53-71
    [170] Corma A, Palomares A E, Rey F, et al. Simultaneous catalytic removal of SOx and NOx with hydrotalcite-derived mixed oxides containing copper and their possibilities to be used in FCC Units, J. Catal., 1997, 170(1): 140-149
    [171] Zhang Z L, Mou Z G, Yu P F, et al. Diesel soot combustion on potassium promoted hydrotalcite-based mixed oxide catalysts, Catal. Commun., 2007, 8(11): 1621-1624
    [172] Chmielarz L, Kustrowski P, Lasocha A R, et al. Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems, Thermochim. Acta, 2003, 395: 225-236
    [173] Xu Z P, Zeng H C, Decomposition processes of organic-anion-pillared clays CoaMgbAl(OH)c(TA)d·nH2O, J. Phys. Chem. B, 2000, 104(44): 10206-10214
    [174] Braterman P S, Xu Z P, Yarberry F, In: Auerbach S M, Carrado K A, Dutta P K, eds. Handbook of Layered Materials, Marcel Dekker Inc., New York, 2004, 373-474
    [175] Arnoldy P, Moulijn J A, Temperature-programmed reduction of CoO/Al2O3 catalysts, J. Catal., 1985, 93: 38-54
    [176] Stratakis G A, Stamatelos AM, Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel, Combust. Flame, 2003, 132(1-2): 157-169
    [177] Hadjiivanov K I, Identification of neutral and charged NxOy surface species by IR spectroscopy, Catal. Rev., 2000, 42: 71-144
    [178] Prinetto F, Ghiotti G, Nova I, et al. FT-IR and TPD Investigation of the NOx storage properties of BaO/Al2O3 and Pt-BaO/Al2O3 catalysts, J. Phys. Chem. B, 2001, 105(51): 12732-12745
    [179] Su Y, Amiridis M D, In situ FTIR studies of the mechanism of NOx storage and reduction on Pt/Ba/Al2O3 catalysts, Catal. Today, 2004, 96(1-2): 31-41
    [180] Sedlmair C, Seshan K, Jentys A, et al. Elementary steps of NOx adsorption and surface reaction on a commercial storage-reduction catalyst, J. Catal., 2003, 214(2): 308-316
    [181] Perdana I, Creaser D, Ohrman O, et al. NOx adsorption over a wide temperature range on Na-ZSM-5 films, J. Catal, 2005, 234(1): 219-229
    [182] Epling W S, Campbell L E, Yezerets A, et al. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysis, Catal. Rev., 2004, 46: 163-245
    [183] Lamontagne B, Semond F, Roy D, K overlayer oxidation studied by XPS: the effects of the adsorption and oxidation conditions, Surf. Sci., 1995, 327(3): 371-378
    [184] Nagase K, Itoh M, Watanabe A, Thermodynamics and kinetics of steam steam splitting over a potassium aluminosilicate electrolyte, J. Therm. Anal. Calorim., 2002, 70: 329-336
    [185] Matsuoka K, Orikasa H, Itoh Y, et al. Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen, Appl. Catal. B, 2000, 26(2): 89-99
    [186] Fritz A, Pitchon V, The current state of research on automotive lean NOx catalysis, Appl. Catal. B, 1997, 13(1): 1-25
    [187] Teraoka Y, Kanada K, Kagawa S, Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates, Appl. Catal. B, 2001, 34(1): 73-78
    [188] Li Q, Meng M, Zou Z Q, et al. Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts, J. Hazard. Mater., 2009, 161(1): 366-372
    [189] Morales F, Grandjean D, Mens A, et al. X-ray Absorption Spectroscopy of Mn/Co/TiO2 Fischer Tropsch Catalysts: Relationships between Preparation Method, Molecular Structure, and Catalyst Performance, J. Phys. Chem. B, 2006, 110(17): 8626–8639
    [190] Luo J Y, Meng M, Li X, et al. Mesoporous Co3O4-CeO2 and Pd/Co3O4-CeO2 catalysts: Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation, J. Catal., 2008, 254(2): 310-324
    [191] Meng M, Zha Y Q, Luo J Y, et al. A study on the catalytic synergy effect between noble metals and cobalt phases in Ce-Al-O supported catalysts, Appl. Catal. A, 2006, 301(2): 145-151
    [192] Komova O V, Simakov A V, Rogov V A, et al. Investigation of the state of copper in supported copper-titanium oxide catalysts, J. Mol. Catal. A, 2000, 161(1-2): 191-204
    [193] Chang J R, Chang S L, Lin T B, [gamma]-Alumina-Supported Pt Catalysts for Aromatics Reduction: A Structural Investigation of Sulfur Poisoning Catalyst Deactivation, J. Catal., 1997, 169(1): 338-346
    [194] Jelles S J, van Setten B A A L, Makkee M, et al. Molten salts as promising catalysts for oxidation of diesel soot: importance of experimental conditions in testing procedures, Appl. Catal. B, 1999, 21(1): 35-49
    [195] Luo J Y, Meng M, Zha Y Q, et al. A comparative study of Pt/Ba/Al2O3 and Pt/Fe-Ba/Al2O3 NSR catalysts: New insights into the interaction of Pt-Ba and the function of Fe, Appl. Catal. B, 2008, 78(1-2): 38-52
    [196] Luo J Y, Meng M, Zha Y Q, et al. Highly thermo-stable mesoporous catalyst Pt/BaCO3-Al2O3 used for efficient NOx storage and desulfation: Comparison with conventional impregnated catalyst, Micropor. Mesopor. Mater., 2008, 113(1-3): 277-285
    [197] Liu Y, Meng M, Li X G, et al. NOx storage behavior and sulfur-resisting performance of the third-generation NSR catalysts Pt/K/TiO2-ZrO2, Chem. Eng. Res. Des., 2008, 86(8): 932-940
    [198] Meng M, Lin P Y, Fu Y L, The catalytic removal of CO and NO over Co-Pt(Pd, Rh)/γ-Al2O3 catalysts and their structural characterizations, Catt. Lett., 1997, 48: 213-222
    [199] Climate change and human health: Risks and responses, McMichael A J, Campbell-Lendrum D H, Corvalan C F, Eds., World Health Organization, Geneva, 2003
    [200] Li W B, Yang X F, Chen L F, et al. Adsorption/desorption of NOx on MnO2/ZrO2 oxides prepared in reverse microemulsions, Catal. Today, 2009, 148(1-2): 75-80
    [201] Qi G, Yang R T, Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst, J. Catal., 2003, 217(2): 434-441
    [202] Li Q, Meng M, Tsubaki N, et al. Performance of K-promoted hydrotalcite-derived CoMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal, Appl. Catal. B, 2009, 91(1-2): 406-415
    [203] Chmielarz L, Kustrowski P, Rafalska-Lasocha A, et al. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia, Appl. Catal. B, 2002, 35(3): 195-210
    [204] Perez-Ramirez J, Overeijnder J, Kapteijn F, et al. Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds, Appl. Catal. B, 1999, 23(1): 59-72
    [205] ObalováL, Fíla V, Kinetic analysis of N2O decomposition over calcined hydrotalcites, Appl. Catal. B, 2007, 70(1-4): 353-359
    [206] Jiang Z, Hao Z P, Yu J J, et al. Catalytic combustion of methane on novel catalysts derived from Cu-Mg/Al-hydrotalcites, Catal. Lett., 2005,. 99: 157-163
    [207] Yu J J, Jiang Z, Kang S F, et al. Cu-Mg/Al复合氧化物催化碳颗粒物燃烧性能的研究, Acta. Phys. Chim. Sin., 2004, 20(12): 1459-1464
    [208] Lucredio AF, Jerkiewicz G, Assaf E M, Cobalt catalysts promoted with cerium and lanthanum applied to partial oxidation of methane reactions, Appl. Catal. B, 2008, 84(1-2): 106-111
    [209] Fornasari G, Glockler R, Livi M, et al. Role of the Mg/Al atomic ratio in hydrotalcite-based catalysts for NOx storage/reduction, Appl. Clay Sci., 2005, 29(3-4): 258-266
    [210] Handbook of chemistry and Physics, Weast R C, Eds., CRC Press, FL, USA, 1980
    [211] Chitrakar R, Tezuka S, Sonoda A, et al. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides, J. Colloid Interface Sci., 2005, 290: 45-51
    [212] Tang Q H, Huang X N, Wu C M, et al. Structure and catalytic properties of K-doped manganese oxide supported on alumina, J. Mol. Catal. A, 2009, 306(1-2): 48-53
    [213] Velu S, Shah N, Jyothi T M, et al. Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides, Micropor. Mesopor. Mater., 1999, 33(1-3): 61-75
    [214] Jouinia A, Yoshikawa A, Fukuda T, et al. Growth and characterization of Mn2+-activated magnesium aluminate spinel single crystals, J. Cryst. Growth, 2006, 293: 517-521
    [215] Kijlstra W S, Poels E K, Bliek A, et al. Characterization of Al2O3-Supported Manganese Oxides by Electron Spin Resonance and Diffuse Reflectance Spectroscopy, J. Phys. Chem. B, 1997, 101: 309-316
    [216] Milella F, Gallardo-Amores J M, Baldi M, et al. A study of Mn-Ti oxide powders and their behavior in propane oxidation catalysis, J. Mater. Chem., 1998, 8(11): 2525-2531
    [217] Castro V D, Polzonetti G, XPS study of MnO oxidation, J. Electron Spectrosc. Relat. Phenom., 1989,. 48(1): 117-123
    [218] Chen A M, Xu H L, Yue Y H, et al. Hydrogenation of methyl benzoate to benzaldehyde over manganese oxide catalysts prepared from Mg/Mn/Al hydrotalcite-like compounds, Appl. Catal. A, 2004, 274(1-2): 101-109
    [219] Dula R, Janik R, Machej T, et al. Mn-containing catalytic materials for the total combustion of toluene: The role of Mn localisation in the structure of LDH precursor, Catal. Today, 2007, 119(1-4): 327-331
    [220] Meunier F C, Zuzaniuk V, Breen J P, et al. Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study, Catal. Today, 2000, 59(3-4): 287-304
    [221] Bialobok B, Trawczynski J, Rzadki T, et al. Catalytic combustion of soot over alkali doped SrTiO3, Catal. Today, 2007, 119(1-4): 278-285
    [222] An H, Kilroy C, McGinn P J, Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion, Catal. Today, 2004, 98(3): 423-429
    [223] Banus E D, Milt V G, Mir? E E, et al. Structured catalyst for the catalytic combustion of soot: Co, Ba, K/ZrO2 supported on Al2O3 foam, Appl. Catal. A, 2009, 362(1-2): 129-138
    [224] Carrascull A, Lick I D, Ponzi E N, et al. Catalytic combustion of soot with a O2/NO mixture. KNO3/ZrO2 catalysts, Catal. Commun., 2003, 4(3): 124-128
    [225] Castoldi L, Matarrese R, Lietti L, et al. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot, Appl. Catal. B, 2009, 90(1-2): 278-285
    [226] Kennedy S W, Kriven W M, Topotaxial decomposition of calcite-type KNO3 crystals, J. Solid State Chem., 1980, 34(1): 71-77
    [227] Hoflund G B, Epling W S, Minahan D M, Surface characterization study of a 1 wt% K-promoted ZnO, higher alcohol synthesis catalyst, J. Electron. Spectrosc. Relat. Phenom., 1998, 95(2-3): 289-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700