超顺磁性氧化铁(SPIO)标记人脐血间充质干细胞移植治疗犬急性心肌梗死的MR动态观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人脐血间充质干细胞体外分离培养与鉴定
     目的:探索建立一种稳定的人脐血间充质干细胞的体外分离培养方法。
     方法:无菌条件下采集正常足月剖宫产胎儿脐血,采用密度梯度离心法结合直接贴壁法分离脐血间充质干细胞(human umbilical cord blood mesenchymal stem cells ,UCB-MSCs) ,用DMEM/F12培养基加10%胎牛血清并添加生长因子(GM-CSF和IL-3)后,接种于塑料培养瓶培养并传代,对其增殖情况进行观察并利用流式细胞仪检测细胞表面抗原表达情况。
     结果:24h后可见有少量圆形细胞贴壁,1周左右可见贴壁细胞增多,出现少量单极梭形细胞,2周后可见细胞形成集落,经培养3-4周左右,形成平行排列、辐射状或旋涡状细胞界限不清楚的似成纤维样细胞,且80~90 %呈现融合。第二代细胞接种后12小时开始贴壁,10d左右即可达80~90 %融合。流式细胞分析显示此类细胞稳定地表达相关的抗原标记CD29、CD44、CD105 ,但不表达造血细胞系的表面标记CD34、CD45、CD14。
     结论:此种培养方法可成功体外培养UCB-MSCs,细胞纯度较高,贴壁细胞表面抗原表达与骨髓间充质干细胞有较强的一致性。
     第二部分超顺磁性氧化铁纳米粒子(SPIO)标记人脐血间充质干细胞的可行性研究
     目的:探讨SPIO标记人脐血间充质干细胞干细胞(UCB-MSCs)的方法及安全性、有效性。
     方法:采用密度梯度离心法结合直接贴壁法分离培养UCB-MSCs,应用不同浓度的SPIO标记UCB-MSCs,分别通过普鲁士蓝染色测标记率;台盼蓝染色检测标记后细胞活性;MTT比色实验评价SPIO对细胞生长能力的影响。
     结果:普鲁士蓝染色证实SPIO标记阳性率均在95%以上,低浓度的SPIO对细胞活性无明显影响,当SPIO浓度达140ug/ml以上时对UCB-MSCs活性有一定程度的影响。
     结论:适宜浓度的SPIO标记UCB-MSCs方法简单、安全、有效。
     第三部分两种方法制备犬急性心肌梗死模型
     目的:探索建立稳定的急性心肌梗死模型的造模方法。
     方法:将16只健康杂种犬随机分为两组,每组8只,一组采用开胸冠脉结扎的方法造模,另一组采用闭胸冠脉栓塞的方法造模。术后均通过心电图、心肌酶学、病理组织切片对急性心肌梗死模型建立情况作出评价。
     结果:两种方法均可成功建立犬急性心肌梗死模型,并经心电图、心肌酶学和病理检测证实。其中开胸结扎法8只动物中,4只存活,4只死亡;闭胸介入法8只动物中,7只存活,1只死亡。
     结论:开胸结扎法效果确实可靠,但操作难度高,创伤大,动物不容易存活,而介入法简便易行,创伤小,死亡率低,是一种值得推广的犬急性心肌梗死造模方法。
     第四部分标记干细胞移植于梗死心肌的核磁动态观察
     目的:探讨利用磁共振成像活体示踪SPIO标记的人脐血间充质干细胞(UCB-MSCs)心肌移植的可行性及准确性。
     方法:采用密度梯度离心法结合直接贴壁法分离培养UCB-MSCs,体外进行SPIO标记,采用开胸及闭胸两种方法制备犬急性心肌梗死模型,将标记细胞或纯SPIO以开胸直接注射和闭胸经导管冠脉注入两种方式进行细胞移植,分别于移植前、植入后即刻、1-4周行核磁扫描,每次核磁扫描后处死动物1只,取心脏组织切片行HE染色和普鲁士蓝染色。
     结果:通过开胸心肌直接注射方式植入的标记细胞可通过磁共振成像检测到,并为病理所证实。4周后植入细胞仍可被核磁检测到,病理结果显示植入细胞在心梗区域存活,并向同一方向排列,而通过冠脉途径植入的标记细胞未能被磁共振成像及病理检测到。
     结论:以开胸心肌直接注射方式植入的SPIO标记细胞可以通过磁共振成像技术准确实现活体示踪,而通过冠脉途径植入的标记细胞未被检测到。
Part 1 Optimization and identification of in vitro isolation and culture condition of human umbilical cord blood mesenchymal stem cells
     Ojective: To explore establish an optimized methord to isolate,culture and expend mesenchymal stem cells (MSCs) from human umibilical cord blood (UCB).
     Method: Under sterile condition, Human UCB sample was harvested from full term delivery by cesarean section. MSCs were isolated from UCB by combination of gradient centrifugation and different adherent time method. And the isolated cells(MSCs) were cultivated in plastic culture flask containing DMEM/F12, 10% fetal calf serum (GM-CSF , IL-3). The cells were observed and their immunophenotypes were determined by flowcytometry(FCM).
     Results: After 24 hours , there gave rise to a small quantity adherent round cells,after 1 week the adherent cells increased and part of them exhibited single -point -shuttled,after 2 weeks formed cells group, after 3-4 weeks cultured to show parallelly arranged, radiat or whirlpool-shaped fibroblast-like cells and 80%-90% cells were fused. Serial subcultivation cells were found within 12 hours adhered and after about 10 days 80%-90% cells were fused. FCM showed that these cells expressed CD29,CD44,CD105 ,but no hematopoietic lineage markers , such as CD34,CD45,CD14.
     Conclusion: MSCs can be successfully isolated from human cord blood by using this method,and the cells purification is higher, and the adherent cells have the same immunophenotype with bone marrow derived.
     Part 2 The Study of the Feasibility of Human Umbilical Cord Blood Mesenchymal Stem Cells
     Objective:To evaluate the safety and efficiency of a new labeling agent,superparamagnetic iron oxide(SPIO).
     Methods:MSCs were isolated from UCB by combination of gradient centrifugation and different adherent time method. UCB-MSCs were labeled with different concentration of SPIO agent.The labeling efficiency was tested through Prussian blue staining ,cells viability were tested through Trypan blue rejection method,and the ability of growth was evaluated through MTT.
     Results:There were intracyto plasmic blue part- icles in nearly every cell in Prussian blue staining.The positive rate was more than 95%.With the concentration of SPIO increasing (14ug/ml~140ug/ml),there was no obvious diffenence in cell viability of UCB-MSCs(p>0.05).When the concentration of SPIO exceeded 280ug/ml,there was a significient difference(p<0.05).
     Conclusion:The UCB-MSCs could be safety and effi- ciently labledwith suitable concentration of SPIO.
     Part 3 Development and evaluation of the canine models of acute myocardial infarction using two ways
     Objective:To explore establish an optimized methord to develop and evaluate the canine model of acute myocardial infarction.
     Method: The 16 healthy canines were divided into two groups randomly,and each group contained 8 canines . One group was established the myocardial infarction model by using open-chest coronary artery ligation method,and another was received closed-chest coronary artery embolization method of modeling. Then electrocardiogram, CK-MB and histopathologic slide were investigated to confirm AMI.
     Results: The two methods both can successfully establish canine model of acute myocardial infarction, and be confirmed by the electrocardiogram, CK-MB and pathology.In the group of coronary artery ligation, 4 canines survived and 4 canines died ,while another group of coronary artery embolization,7 canines survived and 1 canines died.
     Conclusion:The method of coronary artery ligation is reliable,but the operation is difficult and the animal is not easy to survive.While the coronary artery embolization method of modeling is simple, convenient and safe, it is worth to spread.
     Part 4 Imaging Stem Cells Implanted in Infarcted Myocardium
     Objective:To investigate the feasibility of in vivo tracking for umbilical cord blood mesenchymal stem cells delivered to infracted myocardium by MRI.
     Methods:MSCs were isolated from UCB by combination of gradient centrifugation and different adherent time method and were labeled with different concentration of SPIO agent. The acute myocardial infarction models were established by two methods of coronary artery ligation and coronary artery embolization.Then the labeled cells or SPIO were transplanted into the myocardium in two ways-direct injection and through coronary catheter. The MRI was respectively carried out immediately and 1–4 weeks. After MRI the hearts were excised, the segment in which injections were performed were thin cut and stained with hematoxylin-eosin and Prussian blue staining.
     Results:The labeled cells transplanted by direct injection could be detected through MRI and were confirmed on pathology. After 4 weeks the injected labeled cells could still be detected through MRI, and the pathology showed the injected cells could survive in the MI area, and parallel in the same direction.While the labeled cells transplanted through coronary catheter could not be detected by MRI and pathology.
     Conclusion:The labeled cells could be reliably detected by MRI in vivo.
引文
1 Kan I , Melamed E , Offen D. Integral therapeutic potential of bone marrow mesenchymal stem cells [J]. CurrDrug ,2005 ,6(1):31
    2 Weissleder R.Molecular imaging: exploring the next frontier. Radiology,1999,212:609-614
    3 Unger EC.How can superparamagnetic iron oxides be used to moitor disease and treatment?Radiology,2003,229:615-616
    4 Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279-4295
    5 Gang EJ, Jeong JA, Hong SH et al. Skeletal myogenic differ- entiation of mesenchymal stem cells isolated from human umbilical cord blood.STEM CELLS 2004;22:617-624
    6 Karahuseyinoglu S, Cinar O, Kilic E et al. Biology of the stem cells in human umbilical cord stroma: In situ and in vitro surveys. STEM CELLS 2007;25:319-331
    7 Kern S, Eichler H, Stoeve J et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue.STEM CELLS 2006;24:1294-1301
    8 Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: Implication for cell-based therapies. Tissue Eng 2001;7:211-228
    9 Gronthos S, Brahim J, Li W et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002;81:531-535
    10 Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-49
    11 Lee OK, Kuo TK, Chen WM et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004;103:1669-1675
    12 Yen BL, Huang HI, Chien CC et al. Isolation of multipotent cells from human term placenta. STEM CELLS 2005;23:3-9
    13 De Coppi PD, Bartsch G, Siddigui MM et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25:100-106
    14 Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 2001;82:583-590
    15 Stenderup K, Justuesen J, Clausen C et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone2003;33:919-926
    16 Gang E J , Hong S H , J eong J A ,et al . I n vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells[J ] . Biochem Biophys Res Commun ,2004 ,321 :102-108
    17 Cohena Y, Nagler A. Hematopoietic stem-cell transplantation using umbilical-cord blood. Leuk Lymphoma 2003;44:1287-1299
    18 Ooi J. The efficacy of unrelated cord blood transplantation for adult myelodysplastic syndrome. Leuk Lymphoma 2006;47:599-602
    19 Laughlin MJ, Barker J, Bamback B et al. Hematopoietic engraftment and survival in adult recipients of umbilical cord blood from unrelated donors. N Engl J Med 2001;344:1815-1822
    20 Hayani A, Lampeter E, Viswanatha D et al. First report of autologous cord blood transplantation in the treatment of a child with leukemia.Pediatrics 2007;119:e296-e300
    21 Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109:235-242
    22 Goodwin HS, Bicknese AR, Chien SN et al. Multilineage differentiation activity by cells isolated from umbilical cord blood: Expression of bone,fat and neural markers. Biol Blood Marrow Transplant 2001;7:581-588
    23 Bieback K, Kern S, Kluter H et al. Critical parameters for the isolationofmesenchymal stem cells from umbilical cord blood. STEM CELLS 2004;22:625-634
    24 Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. STEM CELLS 2003;21:105-110
    25 Mareschi K, Biasin E, Piacibello W et al. Isolation of human mesenchymal stem cells: Bone marrow versus umbilical cord blood. Haematologica 2001;86:1099-1100
    26 Wexler SA, Donaldson C, Denning-Kendall P et al. Adult bone marrow is a rich source of human mesenchymal‘stem’cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003;121:368-374
    27杨维东,胡平,钱其春,等.应用聚羟基丁酸酯支架构建组织工程软骨[J ].实用口腔医学杂志, 2002, 18(2):157-159
    28蔡琼霞,熊华锋等.脐血间充质干细胞分离培养的理论研究与应用[J ].中国组织工程研究与康复,2007, 28(2): 5630-5633
    29范秀波,刘天庆等.脐带血来源间充质干细胞体外分离培养条件的优化[J ].生物化学与生物物理进展,2008, 35(8):905-913
    30孙绪丁,王利培.人脐血间充质干细胞的体外培养[J ].山东医药,2008,16(48):26-28
    31杨辉,蔡光先等.首次换液时间对贴壁法培养骨髓间充质干细胞纯度及增殖的影响[J].中国组织工程研究与临床康复.2007, 20(11): 3868-3871
    32 Elisabeth H, Javazon KJ, Alan W, et al. Mesenchymal stem cells: Paradoxes of passaging. Exp Hematol 2004;32 (5):414-425
    33 Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003;102(4):1548-1549
    34 Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004;103(5):1662-1668
    35 Leo AJ, Grande DA. Mesenchymal stem cells in tissue engineering. Cells Tissues Organs 2006;183(3):112-122
    36 Bieback K, Kern S, Kluter H, et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical co rd blood [ J ].Stem Cells, 2004, 22 (4) : 625-634
    37 Gulbins H,Meiser B M,Reichenspruner H,et al.Cell transplantation-a potential therapy for cardiac repair in the future?Heart Surg Forum,2002,5(4):E28-34
    38 Wagner W , Wein F , Seckinger A , et al. Comparative characteristics of mesenchymal stem cells f rom human bone marrow , adipose tissue , and umbilical cord blood [J ] . Exp Hematol ,2005 ,33 (11) : 1402
    39郑敏文,宦怡等. SPIO标记自体骨髓间充质细胞移植治疗心肌梗死的MR成像研究.第四军医大学博士学位论文. 2007:28
    40何庚戌,要彤,幺雯等.超顺磁性氧化铁作为细胞标记试剂的可行性研究.华北国防医药.2009,21(2): 9-11
    41刘永浩;郭亮等.超顺磁性氧化铁标记猪骨髓间充质干细胞的体外MR成像研究.实用放射学杂志[J ] .2008,24(3):390-398
    42 Arbab A S,Bashaw L A,Miller B R,et al.Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation:methods and techniques [J]. Transplantation, 2003, 76 (7):1123-1130
    43 Suzuki M,Asano H,Tnaka H,et al.Development and evaluation of a new Canine myocardial infarction model using a closed chest injection of Thrombogenic material[J].Jpn Circ J.1999, 63(11):900-905
    44 Zhang WZ,Zha DG,Cheng GX,et al.Assessment of regional myocardial blood flow with myocardial contrast echoeardiography:an experimental study[J].Eehocardiography.2004, 21(5):409-416
    45李可,刘卫金,邹利光,等.闭胸式冠状动脉插管法建立犬急性心肌缺血模型[J].第三军医大学学报,2007,29(16):1630-1631
    46 Murasat o Y, Nagamot o Y, Urabe T, et al . Effects of lidocaine and diltiazem on recovery of electr ophysi ologic activity during partialreperfusion following severe myocardial ischemia in canine hearts [ J ]. J Electrocardiol, 1997, 30 (2) : 113-125
    47 Thom T, Haase N, Rosamond W, et al. Heart Disease and Stroke Statistics-2006 Update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006;113:e85-151
    48 St. John Sutton M, Pfeffer MA, Moye L, et al. Cardiovascular death and left ventricular remodeling two years after myocardial infarction:baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 1997;96:3294-3299
    49 McMurray J, Pfeffer MA. New therapeutic options in congestive heart failure: part I. Circulation 2002;105: 2099-2106
    50 Tomita S, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002; 123 (6):1132-1140
    51 Yau TM, et al. Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells. Ann Thorac Surg 2003; 75(1):169-76 discussion 176-177
    52 Min JY, et al. Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs. Ann Thorac Surg 2002 ; 74(5):1568-75
    53 Jackson KA, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107(11):1395-402
    54 Wang JS, et al. Marrow stromal cells for cellular cardiomy- oplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 2000;120(5):999-1005
    55 Hofmann M, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005; 111(17): 2198-202
    56 Hou D, et al. Radiolabeled cell distribution after intra- myocardial,intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005;112(9 Suppl): I150-156
    57 Beek AM, et al. Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 2003 ; 42 (5) : 895-901
    58 Genove G, Demarco U, Xu H,et al. A new transgene reporter for in vivo magnetic resonance imaging.NatMed,2005,11(2):450-454
    59 Hill JM, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 2003;108(8): 1009-1014
    60 Ittrich H,Lange C,Dahnke H,et al.Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI a 3T. Rofo, 2005, 177(8): 1151-1163
    61 Dick AJ,Gutman MA,Raman VK,et a1.Magnetic resonance fluoro- scopy allows targeted delivery of mesenchymal stem cels to infarct borders in Swine.Circulation, 2003, 108(6): 2899-2904
    1 Philippe Menasche. Skeletal muscle satellite cell transplanttation cardiovascular Rasearch, 2003, 58: 351-357
    2 Orlic D, Kajstura J, Chimenti S, etal. Bone marrow cells regenerate infarcted myocardium. Nature, 2001, 410: 701-705
    3 Jackson KA, Majka SM, Wang H, etal. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J clin Invest, 2001, 107: 1395-1402
    4 Nygren JM, Jouinge S, Breitbach M, etal. Bone marrow derived hematopoietic cells generare cardiomyocytes at a low frequency through cell fusion, but nou transdifferentiation. Nat Med.2004, 10: 494-501
    5 Balsam LB, Wagers AJ, Christensen JL, etal. Haematopoietic stem cells adopt mature haematoietic fate in ischaemic myocardium. Nature.2004,428: 668-673
    6 Klug MG, Soompaa MH, Foh CY, etal. Genetically selected cardiomycytes from differentiating embryonic stem cells from stable intracardiac grafrs[J]. J Clin Invest, 1996, 98(1): 216-224
    7 Min JY, Yang Y, Converso KL, etal. Ttansplantation of embryonic stem cells improves cardiac function inpostinfarcted rats[J]. J Appl physiol, 2002, 92(1): 288
    8 TAKAYASU A, THEO K, JEFF WM, et al. Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t.[J]. Magnetic Resonance in Medicine, 2006,55 (1) :203-209
    9 Menasche P, Hagege AA, Vilquin JT, etal. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction.J Am Coll Cardiol, 2003, 41: 1078-1083
    10 Hamano K, Nishida M, Hirata K, etal. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: Clinical trial and preliminary results. Jpn Circ J, 2001, 65:845-847
    11 Waksman R, Fournadjiev J ,Baffour R, et al. Transep icardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium [J]. Cardiovasc RadiatMed, 2004, 5 (3): 125-131
    12单守杰,陈绍良,刘煜昊,等.自体骨髓间质干细胞移植对梗死心肌的修复作用[J].中国临床康复, 2005, 9(7) :63-65
    13 KAI J, KORFF T,JOACHIMD,et al. Reduction of myocardial scar size after implantation of mesenchymal stem cells in rats: what is the mechanism? [J]. Stem Cells and Development,2005,14 (3) :299-309
    14 Guo J, Lin G, Bao C, et al. Insulin - like growth factor 1 im- proves the efficacy of mesenchymal stem cells transplantation in a ratmodel ofmyocardial infarction[ J ]. J Biomed Sci, 2008, 15(1) : 89-97
    15 Silva GV, Litovsky S, Assad JA, etal. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance Vascular mode[J]. Circulation , 2005, 111(2): 150-156
    16 Zhang M, Methot D, Poppa V, etal. Cardiomyocyte grafring for cardiac repair:graft cell death and anti-death strategies[J]. J Mol cell Cardio, 2001, 33: 907-921
    17 Perin EC, Dohmann HF, Borojevic etal. Transendocardial, autologous bone marrow cell transplantation for severe,chronic ischemic heart failure[J]. J Circulation, 2003, 107: 2294-2302
    18朱志勇,周庆国,魏毅东,等。骨髓间充质干细胞静脉移植治疗大鼠急性心肌梗死的试验研究[J].临床心血管杂志,2006,22(3):161-163
    19 Kocher AA, Schuster MD, Szaboles MJ, etal. Neovascularization of ischemic myocardiom by human bone marrow derived angioblasts prevents Cardiomyocyte apoptosis, reduces remodling and improves cardiac function [J]. Nat Med, 2001, 7: 430-436
    20 Hofmann M, Wollert KC, Meyer GP, et al.Monitoring of bone marrow cell homing into the infacted human myocardium. Circulation,2005, 111(17): 2198-2202
    21 Liu JB, Hu QS, Wang ZL, etal. Autologous stem cell transplantation for myocardial repair[J].Am J Physiol Heart Circ Physiol, 2004, 287(2): H501-511
    22 Yoon YS, Park JS, Tkebuchava T, etal. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation, 2004, 109: 3154-3157
    23 Rubio D, Garcia-Castro J, Martin MC, etal. Spontaneous human adult stem cell transformation.Cancer Res, 2005, 65: 3035-3039
    24朱洪生,黄日太,连锋,等.骨髓间质干细胞移植对香猪急性心肌梗死后心肌结构和心功能的影响.中国胸心血管外科临床杂志,2004, 11(2): 112-115
    25 Strauer BE, Brehm M, Zeus T,et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 2002, 106 (15):1913-1918
    26 Unger EC.How can superparamagnetic iron oxides be used to moitor disease and treatment?Radiology, 2003, 229:615-616
    27 Weissleder R. Molecular imaging: exploring the next frontier. Radiology,1999, 212:609-614
    28李坤成,于春水.分子影像学研究进展.中国医疗设备,2008, 23(1):1-4
    29 Weissleder R.Molecular imaging:exploring the next frontier [J].Radiology, 1999,212(3):609-614
    30滕皋军,居胜红.开展干细胞标记和MR活体示踪研究推进分子影像学发展.中华放射学杂志,2006,40(2):117-119
    31 Rudin M, Rausch M, Stoeckli M. Molecular imaging in drug discovery and development: potential and limitations of nonnu-clear methods. Mol Imaging Biol, 2005,7(1): 5-13
    32 Kirik D,Breysse N,Bjorklund T,et al.Imaging in cell-based therapy for neurodegenerative diseases[J].Eur J Nucl Med Mol Imaging, 2005, 32(Suppl 2):417-434
    33 Kraitchman DL, Tatsumi M, Gilson WD,et al. Dynamic imaging ofallogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 2005, 112(10): 1451-1461
    34 Yeh TC, ZhangW, Ildstad ST, eta.l In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic ironoxide particles.Magn ResonMed, 1995, 33: 200-208
    35许乙凯,颜江华,张嘉宁,等.标记杭人肺癌单杭超顺磁性氧化铁粒子的磁共振免疫显像实验.临床床放射学杂志,1998,17:310-312
    36 Weissleder R,Stark DD,Engelstad BL,etal. SuPerparamagetic iron oxide Pharmacokinetics and toxieity.AJR,1989,152:167-173
    37 Jendelova P, Herynek V, Urdzikova L, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord.J Neurosci Res, 2004, 76: 232-243
    38 Jendelova P, Herynek V, DeCroos J, et al. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn ResonMed , 2003, 50: 767-776
    39 Moore A, Basilion JP, Chiocca EA, et al. Measuring transferring receptor gene expression by MR imaging. Biochim Biophys Acta,1998, 1402: 239-249
    40 Arbab AS, Bashaw LA, Miller BR, et al. Intracytop lasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation, 2003, 76: 1123-1130
    41 Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood, 2004, 104: 1217-1223
    42居胜红,滕皋军,毛曦,等.脐血间充质干细胞磁探针标记和MR成像研究.中华放射学杂志, 2005, 39: 101-106
    43 Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonicstem cells develop into functional dopaminergic neurons after transp- lantation in a Parkinson ratmodel. Proc NatlAcad SciU SA ,2002, 99: 2344-2349
    44 van den Bos EJ, WagnerA, Mahrholdt H, et al. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes.Cell Transplant, 2003,12:743-756
    45 Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology,2003, 228: 480-487
    46 Weber A,Pedrosa I,Kawamoto A,et al.Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease[J].Eur J Cardiothorac Surg,2004,26(1):137-143
    47 Ittrich H,Lange C,Dahnke H,et al.Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T[J]. Rofo, 2005, 177(8): 1151-1163
    48郑敏文,宦怡,徐健,等.超顺磁性氧化铁纳米颗粒标记兔骨髓间充质干细胞的孵育时间优选.实用放射学杂志,2006,22(8),897-900
    49 Arbab AS,Bashaw LA,Miller BR,et al. Intracytoplasmic tagging of cells with Ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. TransPlan- tation, 2003,76(7): 1123-1130
    50 Hill JM, Dick AJ, Raman VK, etal. Serial cardiac magnetic resonance imaging of Injeeted mesenchymal stem cells. Circulation, 2003, 108(8):1009-1014
    51 Dai GH, Xiu JG, Zhou ZJ, et al. Effect ofsuperparamagnetic iron oxide labeling on neural stem cell survival and proliferation [J].Nan FangYi Ke Da Xue Xue Bao, 2007, 27(1): 49-51,55
    52 Arbab AS,BashawLA,Miller BR,et al.Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques[J]. Transplan- tation, 2003, 76(7): 1123-1130
    53 Himes N,Min JY,Lee R,et al.In vivo MRI of embryonic stemcells in a mouse model of myocardial infarction[J].Magn Reson Med,2004, Med, 2004, 52(5):1214-1219
    54 Bos C,Delmas Y,Desmouliere A,et al.In vivo MR imaging of intrava- scularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver [J]. Radiology, 2004, 233(3):781-789
    55 Arbab AS,Yocum GT,Rad AM,et al.Labeling of cells with feru- moxides- protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells[J].NMR Biomed, 2005, 18(8):553-559
    56 Kraitchman DL, Heldman AW, Atalar E,et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 2003, 107(18): 2290-2293
    57 Bos C, Delmas Y, Desmoulière A,et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 2004, 233(3): 781-789
    58 Terrovitis JV, Bulte JW, Sarvananthan S,et al. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng, 2006, 12(10): 2765- 2775
    59 Hill JM, Dick AJ, Raman VK,et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation, 2003, 108(8): 1009-1014

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700