Proline-Rich Tyrosine Kinase 2 (PYK2)在系统性红斑狼疮患者发病机制和治疗中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     富含脯氨酸的非受体酪氨酸激酶(Proline-Rich Tyrosine Kinase 2,PYK2)和粘着斑激酶(FAK)同属于粘着斑激酶家族成员,二者具有相同的结构域和很高的序列相似性。PYK2的多肽链包含三个结构域,即N末端结构域、中央酪氨酸激酶结构域和C末端结构域。N末端结构域包含一个受体结合域,该结构域可与酪氨酸激酶受体如EGF受体(EGFR)及细胞骨架蛋白如埃兹蛋白(Ezrin)等结合。C末端结构域包含两个富含脯氨酸的区域:(aa712-713)和(aa876-877),其中PXXPK、PXXLG基序是SH3结构域的结合位点,分别结合含有SH3结构域的蛋白,如p130cas, Graf, PI3K, Hic-5,paxillin等。中央酪氨酸激酶结构域包含三个酪氨酸磷酸化位点402,579,580(Tyr402,Tyr579,Tyr580),是PYK2的活性部位,其中,Tyr402可以发生自动磷酸化,磷酸化的Tyr402可与含有SH2结构域的蛋白质,如Src,Abl等结合,Src与Tyr402结合并被磷酸化而活化,活化后的Src反过来磷酸化PYK2的其它磷酸化位点,使PYK2活性进一步增强。故PYK2蛋白活化的标志是其402位点的磷酸化。
     PYK2分布在神经系统和造血来源的细胞,可以感受包括细胞外基质在内的多种物理和化学的细胞外信号而激活,活化后的PYK2作为细胞内信号转导途径的上游调节分子,通过调节细胞内多条信号转导途径(PI3K、MAPK、JAK/STAT途径)参与胞内信号传递,从而在细胞粘附、迁移、生存、增殖、凋亡、分化等生理过程中发挥重要作用。由于PYK2主要在造血系统来源的细胞表达,因此PYK2对淋巴细胞功能的影响更为重要。活化后的PYK2参与免疫细胞形态的维持和细胞迁移、调节淋巴细胞的活性和增值、扩增淋巴细胞表面多种受体信号。由此可见,PYK2途径的活化是多种细胞外信号促进淋巴细胞活化的一条重要通路。
     系统性红斑狼疮是最具代表性的多系统受累的自身免疫性炎性疾病,其主要特征是自身反应性T、B淋巴细胞的异常活化和多种自身抗体的出现。SLE发病机理仍然不清楚,但多种细胞因子、趋化因子、生长因子、整合素以及外界物理化学刺激(如紫外线、某些药物等)的调节异常导致的T、B淋巴细胞异常活化,是SLE发病机制的一个必然环节,并且已经成为治疗SLE的靶目标。
     目前研究已经证实,和PYK2同一家族的成员FAK介导的整合素β1信号促进了SLE患者T淋巴细胞共刺激分子CD40L的表达和T淋巴细胞的活化。既往研究也表明,PYK2的异常活化及对细胞内多条信号途径的失调控反应是造成细胞异常生长、分化或迁移的重要因素,参与了多种肿瘤、血管疾病和急慢性炎症,特别是有免疫因素参与的炎症的病理生理过程。鉴于PYK2信号分子在调节淋巴细胞活化中的重要作用以及淋巴细胞的异常活化在SLE发病机制中的重要地位,我们推测PYK2可能通过干扰淋巴细胞的异常活化而参与了SLE的发病。但是PYK2信号途径的活化在SLE的研究国内外相关报道极少,本研究将通过测定SLE患者外周血单个核细胞(PBMCs)PYK2蛋白和磷酸化水平探讨PYK2的活化;通过测定促进或阻断PYK2活化后对SLE患者PBMCs共刺激分子CD40L、CTLA4蛋白表达以及PBMCs增值的影响,探讨PYK2活化后的功能,从而探讨PYK2活化在SLE发病机制中的作用。
     自从半个多世纪以前人们开始应用皮质激素治疗系统性红斑狼疮以来,激素治疗己成为狼疮肾炎治疗的主流。然而,重症狼疮肾炎(主要是Ⅳ型及部分Ⅲ型)的高死亡率并未因此得到解决。上个世纪80年代美国国立卫生研究院(NIH)开始倡导环磷酞胺(cyclophosphamide, CTX)大剂量静脉注射疗法,从此糖皮质激素结合免疫抑制剂的药物治疗方案成为SLE治疗的首选。糖皮质激素和免疫抑制剂对免疫反应的许多环节都有抑制作用,对合并有肾脏等重要脏器损害患者有重要价值,是现有治疗SLE最重要的药物。然而,在糖皮质激素结合免疫抑制剂的治疗过程中,由于用药量大、时间长,容易出现副作用和并发症,60%以上患者最后死于它们的毒副作用,严重影响患者的生存期和生活质量。近年来发展起来的血液净化、生物制剂和造血干细胞移植等治疗方法虽然能在不同程度上缓解病情,但均不能达到根治的目的。SLE的治疗仍然是当今的难点问题,人们一直在探索一种疗效确切又无副作用的药物以改善患者的长期预后和生存质量。
     姜黄素(Curcumin)是古老亚洲的一种药用植物姜黄的有效成分,自从1937年Lancet刊登了一篇姜黄素治疗人类疾病的文献后,至今已有2700多篇关于研究姜黄素的文献发表。姜黄素可以在基因、细胞信号传导、阻滞细胞周期、免疫调节等多途径上发挥抗肿瘤、抗炎、抗调亡、抗氧化作用。从目前动物实验及临床应用的效果看,姜黄素是一种疗效好、无毒、无副作用的新型抗肿瘤和免疫调节药物,姜黄素与免疫抑制剂联合应用均有良好的协同作用。目前姜黄素已在治疗肿瘤、粥样硬化、感染]、多发性硬化和类风湿关节炎发挥了重要作用。但对于姜黄素治疗SLE的研究目前尚无报道。鉴于姜黄素在自身免疫性疾病治疗中具有良好的应用前景,并且本研究第一部分已经探讨了PYK2信号蛋白的活化可能在SLE发病机理和治疗中具有重要意义,因此阐明姜黄素的抗自身免疫作用是否与PYK2途径相关显得尤为重要。本研究将测定姜黄素对SLE患者PBMCs PYK2表达和活性的影响,探讨姜黄素对SLE的治疗作用是否与姜黄素对PYK2的活化的影响有关。
     研究对象与方法
     第一部分研究PYK2信号蛋白在SLE患者PBMCs的表达和活化及活化后的功能。选用48例SLE患者、32例类风湿关节炎患者(RA)和24例健康自愿者作为研究对象。晨起空腹抽取静脉血20ml,分离PBMCs,一部分直接用于PYK2表达和活化的测定,另一部分PBMCs用RPMI 1640培养液稀释成1 x 109/ml,取细胞悬液置6孔板中,每孔各1ml,设3个组:①单纯培养组;②PMA刺激组;③PMA刺激组+TyrA9阻断组。Western Blotting测定各组患者PBMCs PYK2总蛋白和其活化蛋白(p-PYK2)的表达,细胞免疫组化测定p-PYK2表达的细胞类型,流式细胞术测定PYK2活化对PBMCs表达共刺激分子CD40L和CTLA4的影响,3H-thymidine渗入法测定PYK2活化对PBMCs增值的影响。第二部分研究姜黄素对SLE患者PBMCsPYK2表达和活化的影响。选用20例活动期SLE患者和20例健康志愿者作为研究对象。晨起空腹抽取静脉血20ml,分离PBMCs,用RPMI 1640培养液稀释成1 X 106/ml,取细胞悬液置6孔板中,每孔各1ml,设4个组:①单纯培养组;②PMA刺激组;③PMA刺激组+TyrA9阻断组;④PMA刺激组+姜黄素组。培养结束收集各孔细胞,Western Blotting测定各组患者PBMC PYK2总蛋白和其活化蛋白(p-PYK2)的表达;细胞免疫组化测定p-PYK2表达的细胞类型;SYBR GreenⅠreal-time定量PCR研究姜黄素对PBMCs表达共刺激分子CD40L和CTLA4 mRNA的影响;流式细胞术测定姜黄素对PBMCs表达共刺激分子CD40L和CTLA4蛋白表达的影响,3H-thymidine渗入法测定姜黄素对PBMCs增值的影响。
     结果
     1、与健康自愿者比较,非活动期SLE患者和活动期SLE患者的PBMCPYK2表达和活化均明显增高,而RA患者的PBMCs PYK2表达和活化均未见明显升高。
     2、WHOⅣ型狼疮肾炎的患者PBMCs p-PYK2的表达明显高于健康自愿者、其他类型狼疮肾炎和伴有中枢神经合并症者。p-PYK2的活化和SLE患者血清总补体水平呈明显负相关(P〈0.01,r=-0.668),与抗核小体抗体呈正相关(P〈0.05,r=0.535),与其他抗体的滴度均无相关性。p-PYK2的表达水平和SLEDAI积分亦无相关性。
     3、PMA刺激后,SLE组、RA组和健康对照组PBMCs PYK2活化均明显增高。
     4、应用PMA促进PYK2的活化后,SLE患者、RA患者和健康志愿者PBMCs CD40L和CTLA4的表达明显增高,TyrA9阻断PYK2的活化,则PMA的刺激不能诱导SLE患者PBMCs CD40L和CTLA4的表达,但仍能诱导RA患者和健康志愿者PBMCs CD40L和CTLA4的表达。这些结果提示,p-PYK2是PMA诱导SLE患者PBMC共刺激分子CD40L和CTLA4上调表达的一个调节因子。
     5、单纯体外培养SLE患者、RA患者和健康志愿者PBMCs, RA患者和健康志愿者PBMCs增值弱于SLE患者,PMA刺激促进PBMCs PYK2活化后,SLE患者、RA患者和健康志愿者PBMCs的增殖均明显增高。TyrA9阻断PYK2的活化,则SLE患者PBMCs增殖被抑制,RA患者和健康志愿者PBMCs增值未见明显抑制。
     6、健康对照组PBMCs PYK2的表达和活化明显弱于SLE患者组,PMA刺激后,两组PBMCs PYK2的表达和活化均明显增高,应用姜黄素或TyrA9预处理,两组PBMCs PYK2的表达和活化均明显减弱。姜黄素可以发挥酪氨酸激酶抑制剂样作用。
     7、PMA刺激后,SLE患者和正常人外周血单个核细胞共刺激分子CD40L、CTLA4 mRNA和蛋白的表达均明显升高。姜黄素或TyrA9预处理,姜黄素能抑制两组PBMCs CD40L、CTLA4 mRNA和蛋白的表达,TyrA9仅能抑制SLE患者外周血单个核细胞共刺激分子CD40L、CTLA4 mRNA和蛋白的表达,不能抑制正常人外周血单个核细胞共刺激分子CD40L、CTLA4 mRNA和蛋白的表达。
     8、体外细胞培养,正常人PBMCs的增值弱于SLE患者PBMCs的增值。PMA刺激后,正常人和SLE组PBMCs的增值均明显增高。姜黄素预处理,可抑制正常人和SLE患者PBMCs的增值。TyrA9预处理仅能抑制SLE患者PBMCs的增值,不能抑制正常人PBMCs的增值。
     9、姜黄素对SLE患者外周血单个核细胞PYK2活化的抑制率与与SLE患者血清补体水平C3(r=-0.52)、C4(r=-0.42)呈负相关(P<0.05);与24小时尿蛋白定量成正相关(P<0.01),相关系数r=0.63;而与SLEDAI积分无相关性。
     结论及意义
     1、PYK2信号蛋白的表达和活化在SLE患者PBMCs明显升高,推测PYK2信号途径的异常可能参与和促进了SLE体内淋巴细胞的高度活化。
     2、SLE患者PBMCs PYK2的表达和活化明显升高而类风湿关节炎患者PBMCs PYK2的表达和活化无明显变化,提示PYK2的异常活化可能对SLE具有特异性。
     3、活动期SLE患者和非活动期SLE患者外周血单个核细胞PYK2的表达和活化均明显升高,并且PYK2的活化与SLEDAI积分无相关性,提示PYK2的表达和活化可能参与非活动期SLE多系统损伤的过程,具体作用机制尚需进一步研究。
     4、在Ⅳ型狼疮肾炎患者中,p-PYK2表达明显增高,并且与血清补体水平呈负相关,与血清核小体抗体呈正相关,提示PYK2信号途径可能和狼疮肾炎的发生、发展有关。
     5、PMA刺激后,SLE患者PBMCs共刺激分子CD40L、CTLA4表达增高,应用PYK2特异性抑制剂TyrA9阻断PYK2的活化,PMA刺激则不能诱导SLE患者PBMCs CD40L、CTLA4的表达,提示PYK2信号蛋白可能是PMA诱导的SLE患者PBMCs共刺激分子CD40L、CTLA4表达的一个关键信号通路蛋白。
     6、PMA刺激可诱导SLE患者PBMCs的增值,应用PYK2特异性抑制剂阻断PYK2的活化,则PMA刺激不能诱导SLE患者PBMCs的增值,提示SLE患者PYK2活化可促进PBMCs增值。
     7、PMA刺激后,健康组和RA组PBMCs的增值及共刺激分子CD40L和CTLA4表达均明显升高,但不能被PYK2特异性抑制剂TyrA9抑制,这表明在RA患者,除PYK2信号途径外,PMA还可通过其他途径促进PBMCs的增值和共刺激分子的表达,进一步提示PYK2的异常活化可能对SLE具有特异性。
     8、健康对照组PBMCs PYK2的表达和活化明显弱于SLE患者组,PMA刺激后,两组PBMCs PYK2的表达和活化均明显增高,应用姜黄素或TyrA9预处理,两组PBMCs PYK2的表达和活化均明显减弱。证实姜黄素可以发挥酪氨酸激酶抑制剂样作用。
     9、PMA刺激后,SLE患者和正常人外周血单个核细胞共刺激分子CD40L、CTLA4 mRNA和蛋白的表达均明显升高。姜黄素或TyrA9预处理,姜黄素能抑制两组PBMCs CD40L、CTLA4 mRNA和蛋白的表达,TyrA9仅能抑制SLE患者外周血单个核细胞共刺激分子CD40L、CTLA4 mRNA和蛋白的表达,不能抑制正常人外周血单个核细胞共刺激分子CD40L、CTLA4 mRNA和蛋白的表达。提示姜黄素除可通过抑制PYK2信号蛋白的活化进而抑制SLE患者PBMCs共刺激分子CD40L、CTLA4 mRNA和蛋白的表达外,还可能通过抑制其他途径的信号蛋白进而抑制正常人PBMCs共刺激分子CD40L、CTLA4 mRNA和蛋白的表达。由此推测,姜黄素可能为一种多靶点抑制剂。
     10、.姜黄素可通过抑制SLE患者外周血单个核细胞PYK2的活化进而抑制PBMCs的增殖,由此推测,姜黄素可能成为治疗系统性红斑狼疮的有效药物。
     11、姜黄素对SLE患者外周血单个核细胞PYK2活化的抑制率与SLE患者血清补体水平C3(r=-0.52)、C4(r=-0.42)呈负相关(P<0.05);与24小时尿蛋白定量成正相关(P<0.01),相关系数r=0.63;提示姜黄素的抑制作用与SLE患者的病情相关,特别是有肾脏损伤的SLE患者。
Backgroud and objective
     Proline-rich tyrosine kinase 2 (PYK2)is a non-receptor protein tyrosine kinase that belongs to the focal adhesion kinase(FAK) subfamily. Similar to the prototype FAK,PYK2 contains three structural domains:a centrally located kinase domain, C-terminal domain and N-terminal domain.N-terminal domain contains a receptor combine domain and cytoskeletal protein combine domain.In the C-terminal tail,there are two proline-rich regions that are aa712-713 and aa876-877,PXXPKand PXXLG are domains binding of SH3 domain-containing proteins,including p130cas,Graf, PI3K,Hic-5,paxillin.The centrally located kinase domain contains tree sites of tyrosine phosphorylation402,579,580(Tyr402,Tyr579,Tyr580),which are the active sites of PYK2.Tyr 402 has been shown recently to be the PYK2 autophosphorylation site and was first shown to be bound by the SH2 domain of Src and later to other Src-family protein.Binding of Src is thought to allow for the subsequent phosphorylation of other tyrosine residues on PYK2 leading to increased activity. Phosphorylation of Tyr402 means the activation of PYK2 molecules.
     PYK2 is primarily expressed in the central nervous system and the hematopoietic system.PYK2 is activated in response to a myriad of stimuli in many different cell types.In response to these stimuli,PYK2 is thought to mediate activation of mitogen-activated protein kinases(MAPK),phosphatidylinositol 3'-kinase(PI3),the Janus kinase/signal transducer and activator of transcription(JAK/STAT) pathway. PYK2 is a signaling molecule that regulates fundamental cellular processes,including adhesion,survival,proliferation,apoptosis differentiation.Because PYK2 is expressed in hematopoietic system,we focus here only on the role of PYK2 in lymphocyte. PYK2 phosphorylation participates to maintain the immunocyte morphological, regulates lymphocytic activity and proliferation,amplifies signals transmitted through various receptors on lymphocyte.Thus,the activation of PYK2 is an important pathway by which a variety of extracellular signals promote lymphocyte activation.
     Systemic lupus erythematosus is the most representative multi-system involvement in autoimmune disease,it's main feature is the abnormal activation of self-reactive T,B lymphocytes and a variety of the emergence of autoantibodies.The pathogenesis of SLE is still not clear,However,the abnormal activation of lymphocytes resulted by the abnormal regulation of T,B caused by a variety of cytokines,chemokines,growth factors,integrins as well as the outside of physical or chemical irritants (such as ultraviolet light,certain drugs, etc)is an inevitable part of the pathogenesis of SLE,and has become the target goal of treatment of SLE.
     The present study has confirmed that FAK,members of the same family with PYK2,mediated integrinβ1 signaling promotes SLE patients with T-lymphocyte costimulatory molecules CD40L expression and T lymphocyte activation.
     Many researches have shown that the abnormal activation of PYK2 and the loss of regulatory response to a number of signaling pathways are the important factors resulted to abnormal cell growth,differentiation, or migration,involved in a variety of tumors,vascular diseases and acute or chronic inflammation,especially those with immune factors involved in the pathophysiological process of inflammation.In view of the important role of PYK2 signaling molecule in the regulation of lymphocyte activation,as well as the important role of the abnormal activation of lymphocytes in the pathogenesis of SLE,We speculate that PYK2 may be involved in the pathogenesis of SLE by interfering with the abnormal activation of lymphocytes. However,the related research about the activation of PYK2 signaling pathway in SLE reported rarely at home and abroad.In this study,we will reseach the activation of PYK2 in SLE by measuring the levels of PYK2 protein and phosphorylation in the peripheral blood mononuclear cells from SLE patients,to explore the function of activated PYK2 by measuring the expression of costimulatory molecules CD40L, CTLA4 protein in SLE patients'PBMCs cultured with promoting or blocking the PYK2 activation.And to explore the role of PYK2 activation in the pathogenesis of SLE.
     Over half a century ago people began to use corticosteroid to treat systemic lupus erythematosus patients,the hormone therapy has become the mainstream treatment of lupus nephritis. However,high mortality rates of severe lupus nephritis (mainly typeⅣand someⅢ-type) has not been resolved.80s of last century,the U.S. National Institutes of Health (NIH) began to advocate high-dose intravenous therapy of CTX (cyclophosphamide,CTX),and since then,glucocorticoid hormone-binding immunosuppressant drug treatment programs has been a first treatment of choice for SLE.
     Glucocorticoid and immunosuppressive drugs can inhibite immune response in many aspects,and have important value in SLE patients invovled in important organ damage including lupus nephritis.In the current treatment of SLE,Glucocorticoid and immunosuppressive are the most important drugs.However,in the process of treatment with glucocorticoid and immunosuppressive agents,because of a large quantity of drugs,long duration and prone to side effects or complications, more than 60% of patients died of their toxic side-effects,which seriously affects the patient's survival and quality of life.
     In recent years,the development of blood purification,biological agents and hematopoietic stem cell transplantation therapy can alleviate the disease to some degrees.But all of these threatments can not achieve the purpose of cure.The treatment of SLE is still a difficult problems to date.Exploring curative effect drugs without side effects to improve the patient's long-term prognosis and quality of life is still clinicians' goal.
     Curcumin is a component of turmeric,the yellow spice derived from the roots of the plant Curcuma longa used in ancient Asian. Since the first article referring to the use of curcumin to treat human disease was published in The Lancet in 1937,>2,600 research studies using curcumin or turmeric have been published. The mechanisms implicated in the inhibition of tumorigenesis by curcumin are diverse and appear to involve a combination of antiinflammatory,antioxidant,immunomodulatory,pro-apoptotic,and antiangiogenic properties via pleiotropic effects on genes and cell-signaling pathways at multiple levels.Judging from the current animal experiments and clinical application of the effect,curcumin is a new anti-tumor and immuno-modulatory drugs with good curative effect,neither toxic nor side-effects.Curcumin in combination with immunosuppressive agents have good synergy.Curcumin has played an important role in the treatment of cancer,atherosclerosis,infections,multiple sclerosis and rheumatoid arthritis.But for the study about the treatment of SLE with curcumin is currently no reports.In view of a good application prospect of curcumin in the treatment of autoimmune diseases,and the first part of this study has explored that the activation of PYK2 signaling protein may be importantly significant in the pathogenesis and treatment of SLE,to clarify the role of curcumin's anti-autoimmunity is associated with PYK2 or not show a particular importantane.This study will explore the therapeutic effect of curcumin on SLE by determining the effect of curcumin on SLE patients PBMC PYK2 expression and activition.
     Objects and methods
     The first part of the research studyed the expression and activation and functions of PYK2 signaling protein in SLE PBMCs.48 cases of SLE patients,32 cases of patients with rheumatoid arthritis (RA) and 24 healthy volunteers were selected in the present study.Peripheral blood mononuclear cells(PBMCs) from healthy volunteers, RA patients,and SLE patients were isolated from 20ml heparinized peripheral blood by Ficoll-Paque gradient centrifugation,The isolated PBMCs were divided into two groups:one group was used for Western blotting and Immunocytochemistry;in the other group,the PBMCs were resuspended at 1×109 PBMC/ml in RPMI-1640 medium cultured with PMA or TyrA9.Control cultures without stimulants were included in each experiment.The cultures were incubated at 37℃in a humidified atmosphere containing 5% CO2 for 24h.Conditioned cells were then collected and analyzed for the expression of CD40L and CTLA4 by flow cytometric analysis.PBMCs proliferation was determined with [3H]-thymidine incorporation.The second part of the reseach studyed the impact of curcumin on SLE PBMCs' PYK2 expression and activation.20 cases of SLE patients and 20 healthy volunteers were selected in the present study.PBMCs from healthy volunteers and SLE patients were isolated from 20ml heparinized peripheral blood by Ficoll-Paque gradient centrifugation,The isolated PBMCs were resuspended at 1×106 PBMCs/ml in RPMI-1640 medium cultured with PMA or TyrA9 and PMA or curcumin and PMA.Control cultures without stimulants were included in each experiment.The cultures were incubated at 37℃in a humidified atmosphere containing 5% CO2 for 24h.Conditioned cells were then collected and analyzed for the expression and activation of PYK2 in PBMCs by Western blotting and Immunocytochemistry,the expression of CD40L and CTLA4 mRNA was measured by SYBR green dye I real-time PCR,the expression of CD40L and CTLA4 protein was measured by flow cytometric analysis.PBMCs proliferation was determined with [3H]-thymidine incorporation.
     Result
     1、PYK2 is increased and activated in PBMCs from patients with SLE: Quantitative analysis shows PYK2 in PBMCs from SLE,but not RA patients,was significantly up-regulated in inactive and active SLE patients,respectively,compared with that from healthy donors.
     2、The correlation between the levels of p-PYK2 and clinical manifestation of SLE:the expression of p-PYK2 was markedly up-regulated in PBMCs from SLE patients with class IV lupus nephritis,whereas this up-regulation was not seen in either healthy donors or SLE patients with CNS disease or nephritis other than classⅣ.PYK2 activation showed a significant negative correlation with serum complement level(CH50)(p (0.01,r=-0.668),and a positive correlation with the level of AnuA.PYK2 activation did not show a correlation with the other autoantibodies and the SLEDAI score.
     3、The effect of PMA on phosphorylation of PYK2 in SLE:Quantitative analysis shows that p-PYK2 in PBMCs stimulated by PMA,but not by medium,was significantly up-regulated in healthy control,RA and SLE patients.
     4、The impact of phosphorylation of PYK2 in the expression of costimulatory molecules in SLE PBMCs:Using PMA to stimulate PBMCs from active SLE resulted in a significant upregulation of CD40L and CTLA4,whereas this upregulation is not observed in PBMCs pretreated with chemical inhibitor of PYK2 kinase activity (TyrA9).In PBMCs from normal individuals and RA patients,CD40L and CTLA4 expression were also significantly upregulated by stimulation with PMA.This effect, however,cannot be suppressed by administration of TyrA9.
     5、The phosphorylation of PYK2 promotes the proliferation of SLE PBMCs:The proliferation of PBMCs from all sources were enhanced by PMA.However,in the presence of TyrA9,only PBMCs from SLE patients showed a repressed proliferation when stimulated with PMA.
     6、Effect of curcumin on the expression and activation of PYK2 in cultured PBMCs from patients with SLE.The expression and activation of PYK2 in normal individuals PBMCs were significantly weaker than those of SLE patient group.Using PMA to stimulate PBMCs,The expression and activation of PYK2 in PBMCs from two groups were upregulated.However, pretreated with curcumin or TyrA9 before PMA stimulus,the expression and activation of PYK2 in PBMs from two groups were decreased. So curcumin can play a role like as tyrosine kinase inhibitor.
     7、The effect of curcumin on the expression of CD40L,CTLA4 mRNA and protein:PMA induced the upregulation of CD40L,CTLA4 mRNA and protein in PBMCs from SLE as well as normal individuals.Pretreated with curcumin,the expression of CD40L,CTLA mRNA and protein in PBMCs from SLE and normal groups was inhibited.however,TyrA9,PYK2 inhibitor,can only inhibit the expression of CD40L,CTLA4 mRNA and protein in PBMCs from SLE patients,but not from normal groups.
     8、The effect of curcumin on the proliferation of SLE PBMCs:In vitro, proliferation of PBMCs from normal individuals was weaker than that from SLE patients.With stimulation by PMA,proliferation of PBMCs from SLE was signi-ficantly increased as well as normal idividuals.Pretreated with curcumin,the proliferation of PBMCs from SLE and normal idividuals was inhibited.But,TyrA9 can only inhibit the proliferation of PBMCs from SLE,not from normal individuals.
     9、The correlation between the effect of curcumin on the activation of PYK2 and the clinical indices in SLE patients:In SLE group,the inhibition rate of PYK2 activation caused by curcumin showed a negative correlation with the level of serum complements (P<0.05) and a positive correlation with quantity of 24 hours' urinary protein(P<0.01,r=0.63).How-ever,we can see that the inhibition rate of PYK2 activation caused by curcumin in SLE patients displayed no correlation with the SLEDAI score.
     Conclusions and significances
     1、The expression and activation of PYK2 signaling protein were both elevated in PBMCs from active SLE and inactive SLE patients.which implys that disregulated activation of PYK2 signaling protein may be of pathogenic significance in the abnormal activation of lymphocyte in SLE.
     2、The expression and activation of PYK2 in SLE PBMCs was significantly higher than that in rheumatoid arthritis,suggesting that the abnormal activation of PYK2 maybe specific to SLE.
     3、The expression and activation of PYK2 in PBMCs from active SLE and inactive SLE patients were significantly higher,and did not show a correlation with the SLEDAI score,suggesting that disregulated activation of PYK2 signaling protein may be of pathogenic significance in the organ involverrient and progression of SLE in inactive phase.But the mechanism needs further study.
     4、The expression of p-PYK2 was markedly up-regulated in PBMCs from SLE patients with class IV lupus nephritis,and showed negative correlation with the level of serum complements,positive correlation with the level of AnuA,which imply that PYK2 signaling protein may be associated with the development of Lupus nephritis.
     5、Using PMA to stimulate PBMCs from active SLE resulted in a significant upregulation of CD40L and CTLA4,whereas this upregulation is not observed in PBMCs pretreated with TyrA9,suggesting PYK2 signaling protein may be a key signaling pathway protein through which PMA-induced the expression of costimulatory molecules CD40L,CTLA4 in SLE PBMCs.
     6、The proliferation of PBMCs from all sources were enhanced by PMA. However,in the presence of TyrA9,only PBMCs from SLE patients showed a repressed proliferation when stimulated with PMA.Which suggests that the phosphorylation of PYK2 promotes the proliferation of SLE PBMCs.
     7、The proliferation of PBMCs and expression of costimulatory molecules CD40L and CTLA4 were significantly increased in normal individuals as well as RA patients,but this upregulation was not inhibited by TyrA9,suggesting that besides of PYK2 signaling protein,PMA can also promote the proliferation of PBMCs and the expression of costimulatory molecules CD40L and CTLA4.
     8、The expression and activation of PYK2 in normal individuals PBMCs were significantly weaker than those of SLE patient group.Using PMA to stimulate PBMCs,The expression and activation of PYK2 in PBMCs from two groups were upregulated.However,pretreated with curcumin or TyrA9 before PMA stimulus,the expression and activation of PYK2 in PBMs from two groups were decreased.So curcumin can play a role like as tyrosine kinase inhibitor.
     9、PMA induced the upregulation of CD40L,CTLA4 mRNA and protein in PBMCs from SLE as well as normal individuals.Pretreated with curcumin,the expression of CD40L,CTLA mRNA and protein in PBMCs from SLE and normal groups was inhibited.however,TyrA9,PYK2 inhibitor,can only inhibit the expression of CD40L,CTLA4 mRNA and protein in PBMCs from SLE patients,but not from normal groups.Which implys that curcumin may be multi-target inhibitors.
     10、Curcumin supressed the proliferation of PBMCs through inhibiting the activation of PYK2,So we are promising curcumin may be therapeutic drugs for future interventions in lupus nephritis inflammation.
     11、In SLE group,the inhibition rate of PYK2 activation caused by curcumin showed a negative correlation with the level of serum complements (P<0.05) and a positive correlation with quantity of 24 hours' urinary protein(P<0.01,r=0.63). Those results suggests that the inhibition of curcumin in patients with SLE was related with patients'condition,especially SLE patients with renal injury.
引文
1.Avraham H,Park SH,Schinkmann K,Avraham S.RAFTK/Pyk2-mediated cellular signaling.Cell signal.2000;12(3):123-133.
    2.Basile JR,Ahami T,Gutkind JS.Semaphorin 4D/plexin-B1 induces endo-thelial cell migration through the activation of PYK2,Src,and the phosphatidy-linositol 3-kinase-Akt path way.Mol Cell Biol.2005;25(16):6889-6898.
    3.Park SY,Li H,Avraham S.RAFTK/Pyk2 regulates EGF-induced PC12 cell spreading and movement.Cell Signal 2007;19(2):289-300.
    4.Boutahar N,Guignandon A,VicoL,Lafage-Proust MH.Mechanicals train on osteoblasts activates autophosphorylation of focal adhesion kinase and praline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation.J Biol Chem.2004; 279(29):30588-30599.
    5.Sun L,Feng S,Resendiz JC,Lu X,Durante W,Kroll MH.Role of the Pyk2-MAP kinase-cPLA2 signaling pathway in shear-dependent platelet aggregation.Ann Biomed Eng.2004;32(9):1193-1201.
    6.Derbyshire ZE,Halfter UM,Heimark RL,Sy TH,Vaillancourt RR. Angiotensin Ⅱ stimulated transctiption of cyclooxygenase Ⅱ is regulated by a novel kinase cascade involving Pyk2,MEKK4 and annexin Ⅱ.Mol Cell Biochem.2005; 271(1-2):77-90
    7.Halfter UM,Derbyshire ZE,Vaillancourt RR.Interferon gamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin II and SHP2 in keratinocytes.J Biochem.2004;7(pt1):923-931
    8.Miyazaki T,Takaoka A,Nogueira L,Dikic I,Fujii H,Tsujino S,Mitani Y, Maeda M, Schlessinger J,Taniguchi T.Pyk2 is a downstream mediator of the IL-2 receptor-coupled Jak signaling pathway.Genes Dev.1998;12(6):770-775.
    9.Shi CS and Kehrl JA.Pyk2 amplifies epidermal growth factor and c-Src-induced Stat3 activation.J Biol Chem.2004;279(17):17224-17231
    10.Hu Y,Hu X,Boumsell L,Ivashkiv LB.IFN-gamma and STAT1 arrest monocyte migration and modulate RAC/CDC42 pathways.J Immunol.2008;180(12):8057 -8065.
    11.Benbernou N,Muegge K,Durum SK.Interleukin(IL)-7 induces rapid activation of Pyk2,which is bound to Janus kinase 1 and IL-7Ralpha.J Biol Chem.2000;275 (10):7060-7065
    12.Takaoka A,Tanaka N,Mitani Y,Miyazaki T,Fujii H,Sato M,Kovarik P Decker T,Schlessinger J,Taniguchi T.Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Statl in IFN-gamma,but not IFN-alpha, signaling.EMBO J.1999; 18(9):2480-2488.
    13.Wang L,Tassiulas I,Park-Min KH,Reid AC,Gil-Henn H,Schlessinger J,Baron R,Zhang JJ,Ivashkiv LB.'Tuning' of type Ⅰ interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages.Nat Immunol.2008;9(2):186-193.
    14.Okigaki M,Davis C,Falasca M,Harroch S,Felsenfeld DP,Sheetz MP, Schlessinger J.Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration.Proc Natl Acad Sci USA.2003; 100(19):10,740-10,745.
    15.McLeod SJ,Shum AJ,Lee RL,Takei F,Gold MR.The Rap GTPases regulate integrin-mediated adhesion, cell spreading,actin polymerization,and Pyk2 tyrosine phosphorylation in B lymphocytes.J Biol Chem.2004;279(13):12,009-12,019.
    16.Wittchen ES,van Buul JD,Burridge K,Worthylake RA.Trading spaces: Rap,Rac,and Rho as architects of transendothelial migration.Curr Opin Hematol. 2005;12(1):14-21.
    17.Katagiri T,Takahashi T,Sasaki T,Nakamura S,Hattori S.Protein-tyrosine kinase Pyk2 is involved in interleukin-2 production by Jurkat T cells via its tyrosine 402.J Biol Chem.2000;275(26):19,645-19,652.
    18.Gismondi A,Jacobelli J,Mainiero F,Paolini R,Piccoli M,Frati L,Santoni A.Cutting edge:functional role for proline-rich tyrosine kinase 2 in NK cell-mediated natural cytotoxicity.J Immunol.2000;164(5):2272-2276.
    19.Sancho D,Nieto M,Llano M,et al.The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing.J Cell Biol.2000;149(6):1249-1262.
    20.Watson JM,Harding TW,Golubovskaya V,et al.Inhibition of the calcium-dependent tyrosine kinase(CADTK) blocks monocyte spreading and motility.J Biol Chem.2001;276(5):3536-3542.
    21.Rodriguez-Fernandez JL,Gomez M,Luque A,Hogg N,Sanchez-Madrid F, Cabanas C.The interaction of activated integrin lymphocyte function- associated antigen 1 with ligand intercellular adhesion molecule 1 induces activation and redistribution of focal adhesion kinase and proline-rich tyrosine kinase 2 in T lymphocytes.Mol Biol Cell.1999; 10(6):1891-1907.
    22.Sancho D,Montoya MC,Monjas A,et al.TCR engagement induces proline- rich tyrosine kinase-2(Pyk2) translocation to the T cell-APC interface independently of Pyk2 activity and in an immunoreceptor tyrosinebased activation motif-mediated fashion.J Immunol.2002;169(1):292-300.
    23.Doucey MA,Legler DF,Faroudi M,et al.The betal and beta3 integrins promote T cell receptor-mediated cytotoxic T lymphocyte activation.J Biol Chem.2003; 278(29):26,983-26,991.
    24.Puente LQOstergaard HL.Beta 1/beta 3 integrin ligation is uncoupled from ERK1/ERK2 activation in cytotoxic T lymphocytes.J Leukoc Biol.2003;73(3): 391-398.
    25.Qian D,Lev S,van Oers NS,Dikic I,Schlessinger J,Weiss A.Tyrosine phosphorylation of Pyk2 is selectively regulated by Fyn during TCR signaling.J Exp Med.1997;185(7):1253-1259.
    26.Li R,Wong N,Jabali MD,Johnson P.CD44-initiated cell spreading induces Pyk2 phosphorylation, is mediated by Src family kinases, and is negatively regulated by CD45.J Biol Chem.2001;276(31):28,767-28,773.
    27.Davis CB,Dikic I,Unutmaz D,et al.Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5.J Exp Med.1997; 186 (10):1793-1798.
    28.Kotzin BL. Systemic lupus erythematosus. Cell.1996;85(3):303-306.
    29.Nakayamada S,Saito K,Nakano K,Tanaka Y.Activation signal transduction by betal integrin in T cells from patients with systemic lupus erythematosus.Arthritis Rheum.2007;56(5):1559-1568.
    30.Gutenberg A, Bruck W, Buchfelder M, Ludwig HC.Expression of tyrosine kinases FAK and Pyk2 in 331 human astrocytomas.Acta Neuropathol.2004; 108(3):224-230.
    31.Lipinski CA,Tran NL, Menashi E,Rohl C,Kloss J,Bay RC,Berens ME, Loftus JC.The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia.2005;7(5):435-445.
    32.Zhang S,Qiu X,Gu Y,Wang E.Up-regulation of proline-rich tyrosine kinase 2 in non-small cell lung cancer.Lung Cancer.2008;62(3):295-301.
    33.Bayer AL,Heidkamp MC,Patel N,Porter MJ,Engman SJ,Samarel AM.PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy.Am J Physiol Heart Circ Physiol.2002; 283(2):H695-706
    34.Fisslthaler B,Loot AE,Mohamed A,Busse R,Fleming I.Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin.Circ Res.2008,102(12):1520-1528.
    35.Anand AR,Cucchiarini M,Terwilliger EF,Ganju RK.The tyrosine kinase Pyk2 mediates lipopolysaccharide-induced IL-8 expression in human endothelial cells.J Immunol.2008; 180(8):5636-5644.
    36.Shahrara S,Castro-Rueda HP,Haines GK,Koch AE.Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues.Arthritis Res Ther.2007;9(5):R112.
    37.Bouchard MJ,Wang LH,Schneider RJ.Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science.2001; 294(5550):2376-2378.
    38.Yamamoto S,Shimizu S,Kiyonaka S,et al.TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med.2008;14(7):738-747.
    39.Sasaki H,Nagura K,Ishino M,Tobioka H,Kotani K,Sasaki T.Cloning and characterization of cell adhesion kinase β,a novel protein-tyrosine kinase of the focal adhesion kinase subfamily.Journal of Biological Chemistry.1995;270(36): 21206-21219.
    40.Avraham S,London R,Fu Y,Ota S,Hiregowdara D,Li J,Jiang S,Pasztor LM, White RA,Groopman JE,Avraham H.Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK)from megakaryocytes and brain. Journal of Biological Chemistry.1995;270(46):27742-27751.
    41.Li X,Earp HS.Paxillin is tyrosine-phosphorylated by and preferentially associates With the calcium-dependent tyrosine kinase in rat live repitheilal cells.J Biol Chem.1997,272(22):14341-14348.
    42.Lev S,Moreno H,Martinez R,Canoll P,Peles E,Musacchio JM,et al.Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions.Nature.1995;376(6543):737-745.
    43.Zheng CH,Xin Z,Bian ZC,et al.Diferential regulation of PYK2 and focal adhesion kinase (FAK).The C-terminal domain of FAK confers response to cell adhesion.J Cell Biol.1998;273(4):2384-2389.
    44.Xiong WC,MacklemM,Parsons JT.Expression and characterization of splice variants of PYK2,a focal adhesion kinase-related protein.J Cell Sci 1998; 111(pt14):1981-1991.
    45.Du QSRen SR,Xie-Y,Wang Q,Mei L,Xiong WC.Inhibition of PYK2-induced actin cytoskeleton reorganization,PYK2 autophosphorylation and focal adhesion targeting by FAK.J Cell Sci.2001;114(ptl6):2977-2987.
    46.Weis SM,Lim ST,Lutu-Fuga KM,Barnes LA,Chen XL,Gothert JR,Shen TL, Guan JL,Schlaepfer DD,Cheresh DA.Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK.J Cell Biol.2008; 181(1):43-50.
    47.Lim Y,Lim ST,Tomar A,Gardel M,Bernard-Trifilo JA,Chen XL,Uryu SA, Canete-Soler R,Zhai J,Lin H,Schlaepfer WW,Nalbant P,Bokoch G,Ilic D, Waterman-Storer C,Schlaepfer DD.PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity,focal adhesion formation,and cell motility.J Cell Biol.2008;180(1):187-203.
    48.Alier KA,Morris BJ.Divergent regulation of Pyk2/CAKbeta phos- phorylation by Ca(2+) and cAMP in the hippocampus.Biochim Biophys Acta.2005; 1475(3): 342-349.
    49.Dikic I,Tokiwa G,Lev S,Courtneidge SA,Schlessinger J.A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.Nature. 1996;383(6600):547-550.
    50.Park SY,Avraham HK,Avraham S.RAFTK/Pyk2 activation is mediated by trans-acting autophosphorylation in a Src-independent manner.J Biol Chem.2004; 279(32):33315-33322.
    51.Wu SS,Jacamo RO,Vong SK,Rozengurt E.Differential regulation of Pyk2 phosphorylation at Tyr-402 and Tyr-580 in intestinal epithelial cells:roles of calcium,Src,Rho kinase,and the cytoskeleton.Cell Signal.2006,18(11):1932-1940.
    52.Berg NN,Ostergaard HL.T cell receptor engagement induces tyrosine phosphorylation of FAK and Pyk2 and their association with Lck.J Immunol. 1997;159(4):1753-1757.
    53.Tsuchida M,Manthei ER,Alam T,Knechtle SJ,Hamawy MM.T cell activation up-regulates the expression of the focal adhesion kinase Pyk2:opposing roles for the activation of protein kinase C and the increase in intracellular Ca2+.J Immunol.1999;163(12):6640-6650.
    54.Meyer AN,Gastwirt RF,Schlaepfer DD,Donoghue DJ.The cytoplasmic tyrosine kinase Pyk2 as a novel effector of fibroblast growth factor receptor3 activation.J Biol Chem,2004,279(27):28450-28457.
    55.Davies PF.Multiple signaling pathways in flow-mediated endothelial mechano-transduction.Arterioscler Thromb Vase Biol.2002;22(11):1755-1757.
    56.Zhang S,Guo D,Jiang L,Zhang Q,Qiu X,Wang E.SOCS3 inhibiting migration of A549 cells correl ates with PYK2 signaling in vitro.BMC Cancer.2008;8:150.
    57.Boutahar N,GuignandonA,VicoL,Lafage-Proust MH.Mechanicals train on osteoblasts activates autophosphorylation of focal adhesion kinase and praline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation.J Biol Chem.2004;279(29):30588-30599.
    58.Derbyshire ZE,Halfter UM,Heimark RL,Sy TH,Vaillancourt RR.Angio-tensin Ⅱ stimulated transctiption of cyclooxygenase Ⅱ is regulated by a novel kinase cascade involving Pyk2,MEKK4 and annexin II.Mol Cell Biochem.2005; 271(1-2):77-90.
    59.Halfter UM,Derbyshire ZE,Vaillancourt RR.Interferon gamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin Ⅱ and SHP2 in keratinocytes.Biochem J.2005;388(ptl):17-28.
    60.Ohtsu H,Mifune M,Frank GD,Saito S,Inagami T,Kim-Mitsuyama S,Takuwa Y,Sasaki T,Rothstein JD,Suzuki H,Nakashima H,Woolfolk EA,Motley ED,Eguchi S.Signal-crolltalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II.ArteriosclerThromb Vase Biol.2005;25(9):1831-1836.
    61.Park SY,Li H,Avraham S.RAFTK/Pyk2 regulates EGF-induced PC12 cell spreading and movement.Cell Signal.2007;19(2):289-300.
    62.Ying WZ,Aaron K,Sanders PW.Mechanism of Dietary Salt-Mediated Increase in Intravascular Production of TGF-betal.Am J Physiol Renal Physiol.2008; 295(2):F406-414.
    63.Kapasi AA,Franki N,Ding QSinghal PC.Human glomerular epithelial cell express CD4 and interaction with gp120 protein promotes PYK2 tyrosine phosphorylation.Mol Cell Biol Res Commun.1999; 1(2):140-143.
    64.Sorokin A,Kozlowski P,Graves L,Philip A.Protein-tyrosine kinase Pyk2 mediates endothelin-induced p38 MAPK activation in glomerular mesangial cells.J Biol Chem.2001;276(24):21521-21528.
    65.Nakamura I,Duong le T,Rodan SB,Rodan GA.Involvement of alpha(v) beta3 integrins in osteoclast function.J Bone Miner Metab.2007;25(6):337-344.
    66.Ostergaard HL,Lysechko TL.Focal adhesion kinase-related protein tyrosine kinase Pyk2 in T-cell activation and function.Immunol Res.2005; 31(3):267-282.
    67.陈建华,段得鉴.狼疮性肾炎的临床和病理分析.实用诊断与治疗杂志,2007,21(11):859-860.
    68.Takagi C,Ueki K,Ikeuchi H,Kuroiwa T,Kaneko Y,Tsukada Y,Maezawa A,Mitaka T,Sasaki T,Nojima Y.Increased expression of cell adhesion kinase beta in human and rat crescentic glomerulonephritis.Am J Kidney Dis.2002;39(1): 174-182.
    69.Trouw LA,Seelen MA,Visseren R,et al.Anti-Clq antibodies in nurine lupus nephritis[J].Clin Exp Immunol.2004;135(1):41-48.
    70.Amoura Z,Chabre H,Koutouzov S et al.Nucleosome-restricted antibodies are detected before anti-dsDNA and/or antihistone antibodies in serum of MRL-Mp lpr/lpr and+/+mice, and are present in kidney eluates of lupus mice with proteinuria.Arthritis Rheum.1994,37(11):1684-16888.
    71.Su Y,Jia RL,Han L,Li ZG.Role of anti-nucleosome antibody in the diagnosis of systemic lupus erythematosus.Clin Immunol.2007,122(1):115-120.
    72.Banchereau J,Bazan F,Blanchard D,Briere F,Galizzi JP,van Kooten C,Liu YJ, Rousset F,Saeland S.The CD40 antigen and its ligand.Annu Rev Immunol.1994; 12:881-922.
    73.Dayal AK,Kammer GM.The T cell enigma in lupus.Arthritis Rheum.1996; 39(1):23-33.
    74.Juang YT,Wang Y,Solomou EE,Li Y,Mawrin C,Tenbrock K,et al.Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV.J Clin Invest.2005;115(4): 996-1005.
    75.Yi Y,McNerney M,Datta SK.Regulatory defects in Cbl and mitogen- activated protein kinase(extracellular signal-related kinase) pathways cause persistent hyperexpression of CD40 ligand in human lupus T cells.J Immunol.2000;165(11): 6627-6634.
    76.Koshy M,Berger D,Crow MK.Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes.J Clin Invest.1996;98(3):826-837.
    77.Zhang J,Roschke V,Baker KP,Wang Z,Alarcon GS,Fessler BJ,et al.Cutting edge:A role for B lymphocyte stimulator in systemic lupus erythematosus.J Immunol.2001;166(1):6-10.
    78.Ma J,Xu J,Madaio MP,Peng Q,Zhang J,Grewal IS,Flavell RA,Craft J. Autoimmune lpr/lpr mice deficient in CD40 ligand:spontaneous Ig class switching with dichotomy of autoantibody responses.J Immunol.1996; 157(1):417-426.
    79.Mohan C,Shi Y,Laman JD,Datta SK.Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis.J Immunol.1995; 154(3): 1470-1480.
    80.Desai-Mehta A,Lu L,Ramsey-Goldman R,Datta SK.Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production.J Clin.Invest.1996;97(9):2063-2073.
    81.Koshy M,Berger D,Crow MK.Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes.J Clin Invest.1996.98(3):826-837.
    82.Blossom S,Chu EB,Weigle WO,Gilbert KM.CD40 ligand expressed on B cells in the BXSB mouse model of systemic lupus erythematosus.J Immunol; 1997; 159(9):4580-4586.
    83.Higuehi T,Aiba Y,Nomura T,et al.Cutting edge:ectopie expression of CD40 ligand on B cells induces lupus-like autoimmune disease.J Immunol;2002; 168(1):9-12.
    84.Krummel MF,Allison JP.CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation.J Exp Med.1995;182(2):459-465.
    85.Blair PJ,Riley JL,Levine BL,Lee KP,Craighead N,Francomano T,et al.CTLA-4 ligation delivers a unique signal to resting human CD4 Tcells that inhibits interleukin-2 secretion but allows Bcl-X(L) induction.J Immunol.1998; 160(1): 12-15.
    86.Ueda H,Howson JM,Esposito L et al.Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease.Nature.2003;423(6939):506-511.
    87.Liu MF,Wang CR,Chen PC,Fung LL.Increased expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus.Scand J Immunol,2003;57(6):568-572.
    88.Wong CK,Lit LC,Tam LS,Li EK,Lam CW.Aberrant production of soluble costimulatory molecules CTLA-4,CD28,CD80 and CD86 in patients with systemic lupus erythematosus.Rheumatology (Oxford).2005;44(8):989-994.
    89.Waterhouse P,Penninger JM,Timms E et al.Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4.Science.1995;270(5238):985-988.
    90.Finck BK,Linsley PS,Wofsy D.Treatment of murine lupus with CTLA4Ig. Science; 1994;265(5176):1225-1227.
    91.Mihara M,Tan I,Chuzhin Y,et al.CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus.J Clin Invest.2000; 106(1): 91-101.
    92.Walunas TL,Lenschow DJ,Bakker CY,Linsley PS,Freeman GJ,Greene JM,et al.CTLA-4 can function as a negative regulator of T cell activation.Immunity. 1994;1(5):405-413.
    1.Velasquez X,Verdejo U,Massardo L,Martinez ME,Arriagada S,Rosenberg H, Valdivieso A,Jacobelli S.Outcome of Chilean Patients with Lupus Nephritis Response to Intravenous Cyclophosphamide.J Clin Rheumatol.2003;9(1):7-14.
    2.Marmont AM,van Lint MT,Gualandi F,Bacigalupo A.Autologous marrow stem cell for severe systemic lupus erythematosus of long duration.Lupus.1997;6(6): 545-548.
    3.Ikehara S.Bone marrow transplantation for autoimmune diseases.Acta Haematol. 1998;99(3):116-132.
    4.Musso M,Porretto F,Crescimanno A,et al.Intense immunosuppressive therapy followed by autologous peripheral blood selected progenitor cell reinfusion for severe autoimmune disease.Am J Hematol.2001;66(2):702-707.
    5.Sahu N,August A.ITK inhibitors in inflammation and immune-mediated disorders.Curr Top Med Chem.2009;9(8):690-703.
    6.Wong WS.Inhibitors of the tyrosine kinase signaling cascade for asthma. Curr Opin Pharmacol.2005;5(3):264-271.
    7.Wong WS,Leong KP.Tyrosine kinase inhibitors:a new approach for asthma.Biochim Biophys Acta.2004;1697(1-2):53-69.
    8.Luskova P,Draber P.Modulation of the Fcepsilon receptor I signaling by tyrosine kinase inhibitors:search for therapeutic targets of inflammatory and allergy diseases.Curr Pharm Des.2004; 10(15):1727-1737.
    9.Oppenheimer A.Turmeric(curcumin) in biliary diseases.Lancet.1937;229:619-621.
    10.Lin YG,Kunnumakkara AB,Nair A,Merritt WM,Han LY,Armaiz-Pena GN, Kamat AA,Spannuth WA,Gershenson DM,Lutgendorf SK,Aggarwal BB, Sood AK.Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway.Clin Cancer Res.2007;13(11): 3423-3430.
    11.Yao QH,Wang DQ,Cui CC,Yuan ZY,Chen SB,Yao XW, Wang JK,and Lian JF.Curcumin ameliorates left ventricular function in rabbits with pressure overload:inhibition of the remodeling of the left ventricular collagen network associated with suppression of myocardial tumor necrosis factor-alpha and matrix metallo-proteinase-2 expression.Biol Pharm Bull.2004,27(2):198-202.
    12.Wessler S,Muenzner P,Meyer TF,Naumann M.The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-kappaB signaling,release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection.Biol Chem.2005;386(5):481-490.
    13.Natarajan C,Bright JJ.Curcumin inhibits experimental allergic encephalo-myelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol.2002; 168(12):6506-6513.
    14.Park C,Moon DO,Choi IW,Choi BT,Nam TJ,Rhu CH,Kwon TK,Lee WH, Kim GY,Choi YH.Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis.Int J Mol Med.2007;20(3):365-372.
    15.Rasmussen C,Kvist K.A Simple and Efficient Separation of the Curcumins, the Antiprotozoal Constituents of Curcuma longa. Planta Med.2000;66(4):396-397.
    16.何顺志,丛晓东,金蓉鸾.中国姜黄属植物根茎中姜黄素类化合物含量测定.中国药科大学学报.1990;21(2):95-98.
    17.赵德永,杨模坤.姜黄及其制剂中姜黄素类化合物的高效液相色谱分离及测定.药学学报.1986;2(5):382-385.
    18.Wang YJ,Pan MH,Cheng AL,Lin LI,Ho YS,Hsieh CY,and Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products.J Pharm Biomed Anal.1997; 15(2):1867-1876.
    19.Ireson C,Orr S,Jones DJ,et al.Characterization of metab-olites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prosta-glandin E2 production.Cancer Res.2001;61(3):1058-1064.
    20.Chen YS,Ho CC,Cheny CC,et al.Curcumin inhibited the arylamines N-acetyltransferase activity,gene expression and DNA adduct formation in human lung cancer cells (A549).Toxicol In Vitro.2003;17(3):323-333.
    21.Lin CC,Lu YP,Lou YR,et al.Inhibition by dietary dibenzoylmethane of mammary gland proliferation,for mation of DMBA-DNA adducts in mammary glands,and mammary tumorigenesis in Sencar mice.Cancer Lett.2001;168(2): 125-132..
    22.Pan MH,Chang WL,Lin-Shiau SY,et al.Induction of apoptosis by garcinol and curcumln through cytochrome crelease and activation of caspases in human leukemia HL60 cells.J Agric Food Chem.2001;49(3):1464-1474.
    23.Anto RJ,Mukhopadhyay A,Denning K,et al.Curcumin (diferuloylmethane) induces apoptosis through activation of caspas-8,BID cleavage and cyto-chrome crelease:its suppression by ectopic expression of bcl-2 and bcl-xl.Carcinogenesis. 2002;23(1):143-150.
    24.Kim JH,Shim JS,Lee SK,et al.Microarray based analysis of antiangiogenic activity of demethoxycureumin on human umbilieal vein endothelial ceils:crucial involvement of the down-regulation of matrix metalloproteinase.Jpn J Cancer Res.2002.93(12):1378-1385.
    25.Gupta B,Ghosh B.Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilieal vein endothelial cells.Int J Immuno-pharmacol.1999;21(11):745-757.
    26.Kunihiko Okada,Chantima Wangpoengtrakul,Tomoyuki Tanaka,et al. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice.J Nutr.2001;131(8):2090-2095.
    27.Eybl V,Kotyzova D,Bludovska M.The effect of curcumin on cadmiuminduced oxidative damage and trace elements level in the liver of rats and mice.Toxicol Lett.2004;151(1):79-85.
    28.Punithavathi D,Venkatesan N,Babu M.Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats.Br J Pharmacol.2000;131(2):169-172.
    29.Xu J,Fu Y,Chen A.Activation of peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth.Am J Physiol Gastrointest Liver Physiol.2003;285(1):G20-30.
    30.Gadeke J,Noble NA,Border WA.Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells.Kidney Int.2004;66(1):112-120.
    31.Zhang F,Altorki NK,Mestre JR,Subbaramaiah K,and Dannenberg AJ. Curcumin inhibits cyclooxygenase-2 transcription in bile acid and phorbol ester-treated human gastrointestinal epithelial cells.Carcinogenesis.1999;20(3):445-451.
    32.Arafa HM.Curcumin attenuates diet-induced hypercholesterolemia in rats. Med Sci Monit.2005;11(7):BR228-234.
    33.Olszanechi R,Jawien J,Gajda M,et al.Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice.J Physiol Pharmacol.2005;56(4):627-635.
    34.Farhangkhoee H,Khan ZA,Chen S,and Chakrabarti S.Differential effects of curcumin on vasoactive factors in the diabetic rat heart.Nutr Metab (Lond). 2006;3:27.
    35.Yao QH,Wang DQ,Cui CC,Yuan ZY,Chen SB,Yao XW,Wang JK,and Lian JF.Curcumin ameliorates left ventricular function in rabbits with pressure overload:inhibition of the remodeling of the left ventricular collagen network associated with suppression of myocardial tumor necrosis factor-alpha and matrix metalloproteinase-2 expression.Biol Pharm Bull.2004;27(2):198-202.
    36.Yeh CH,Chen TP,Wu YC,Lin YM,and Jing LP.Inhibition of NFkappaB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion.J Surg Res. 2005; 125(1):109-116.
    37.Ramirez-Tortosa MC,Mesa MD,Aguilera MC,Quiles JL,Baro L,Ramirez-Tortosa CL,Martinez-Victoria E,and Gil A.Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis.Atherosclerosis.1999.147(2):371-378.
    38.Lim GP,Chu T,Yang F,Beech W,Frautschy SA,and Cole GM.The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.J Neurosci.2001;21(21):8370-8377.
    39.Mythri RB,Jagatha B,Pradhan N,Andersen J,and Bharath MM.Mito-chondrial complex I inhibition in Parkinson's disease:how can curcumin protect mitochondria?Antioxid Redox Signal.2007;9(3):399-408.
    40.Park C,Moon DO,Choi IW,Choi BT,Nam TJ,Rhu CH,Kwon TK,Lee WH, Kim GY,Choi YH.Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis.Int J Mol Med.2007;20(3):365-372.
    41.Khanna D,Sethi G,Ahn KS,Pandey MK,Kunnumakkara AB,Sung B,Aggarwal A,Aggarwal BB.Natural products as a gold mine for arthritis treatment.Curr Opin Pharmacol.2007;7(3):344-351.
    42.Lukita-Atmadja W,Ito Y,Baker GL,McCuskey RS.Effect of curcuminoids as anti-inflammatory agents on the hepatic microvascular response to endotoxin. Shock.2002;17(5):399-403.
    43.Moon DO,Kim MO,Lee HJ,Choi YH,Park YM,Heo MS,Kim GY. Curcumin attenuates ovalbumin-induced airway inflammation by regulating nitric oxide. Biochem Biophys Res Commun.2008;375(2):275-279.
    44.Ranjan D,Siquijor A,Johnston TD,Wu G,Nagabhuskahn M:The effect of curcumin on human B-cell immortalization by Epstein-Barr virus.Am Surg. 1998;64(1):47-51.
    45.Singh S and Aggarwal BB.Activation of transcription factor NFkappa B is suppressed by curcumin (diferuloylmethane) [corrected] J Biol Chem.1995; 270(4):24995-25000.
    46.Balogun E,Hoque M,Gong P,Killeen E,Green CJ,Foresti R,Alam J,and Motterlini R.Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element.Biochem J.2003;371(pt3):887-895.
    47.Chen A and Xu J.Activation of PPAR {gamma} by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol.2005;288(3):G447-G456.
    48.Chen YR and Tan TH.Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin.Oncogene.1998;17(2):173-178.
    49.Woo MS,Jung SH,Kim SY,Hyun JW,Ko KH,Kim WK,andKim HS.Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells.Biochem Biophys Res Commun.2005;335(4):1017-1025.
    50.Jagetia GC and Aggarwal BB. "Spicing up" of the immune system by curcumin.J Clin Immuno.2007;27(1):19-35.
    51.Gao X,Kuo J,Jiang H,Deeb D,Liu Y,Divine G,Chapman RA,Dulchavsky SA,and Gautam SC.Immunomodulatory activity of curcumin:suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity,and cytokine production in vitro.Biochem Pharmacol.2004;68(1):51-61.
    52.Yadav VS,Mishra KP,Singh DP,Mehrotra S,and Singh VK.Immuno-modulatory effects of curcumin.Immunopharmacol Immunotoxicol.2005;27(3): 485-497.
    53.Churchill M,Chadburn A,Bilinski RT,and Bertagnolli MM.Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile.J Surg Res.2000;89(2):169-175.
    54.Skommer J,Wlodkowic D,and Pelkonen J.Cellular foundation of curcumin-induced apoptosis in follicular lymphoma cell lines.Exp Hematol.2006;34(4): 463-474.
    55.Salsa H,Kogure K and Terada H.Structural basis of potent antiperoxidative activity of the triterpene celastrol in mitochondria:effect of negative membrane surfacecharge on lipid peroxidation. Free Radical Biol.1994;17(3):201-207.
    56.Morin D,Barthelemy S,Zini R,Labidalle S,and Tillement JP.Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thioloxidation.FEBS Lett.2001;495(1-2):131-136.
    57.Korutla L,Cheung JY,Mendelsohn J and Kumar R.Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin.Carcinogenesis.1995; 16(8):1741-1745.
    58.Leu TH and Maa MC.The molecular mechanisms for the antitumorigenic effect of curcumin. Curr Med Chem-Anti-Cancer Agent.2002;2(3):357-370.
    59.Leu TH,Su SL,Chuang YC,Maa MC.Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity.Biochem Pharmacol.2003;66(12):2323- 2331.
    60.Wang L,Tassiulas I,Park-Min KH,Reid AC,Gil-Henn H,Schlessinger J,Baron R,Zhang JJ,Ivashkiv LB.'Tuning' of type Ⅰ interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages.Nat Immunol.2008;9(2): 186-193.
    61.Ranjan D,Chen C,Johnston TD,Jeon H,Nagabhushan M:Curcumin inhibits mitogen stimulated lymphocyte proliferation,NF-B activation,and IL-2 signaling.J Surg Res.2004;121(2):171-177.
    62.Ranjan D,Johnston TD,Wu G,Elliott L,Bondada S,Nagabhushan M.Curcumin blocks cyclosporine A-resistant CD28.costimulatory pathway of human T-cell proliferation.J Surg Res.1998;77(2):174-178.
    63.Ranjan D,Siquijor A,Johnston TD,Wu G,Nagabhuskahn M:The effect of curcumin on human B-cell immortalization by Epstein-Barr virus.Am Surg. 1998;64(1):47-51.
    64.Han SS,Chung ST,Robertson DA,Ranjan D,Bondada S.Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc,bcl-XL,NF-kappa B,and p53.Clin Immunol.1999;93(2):152-161.
    65.Shoskes DA.Effect of bioflavonoids quercetin and curcumin on ischemic renal injury:a new class of renoprotective agents.Transplantation.1998;66(2):147-521.
    66.Jones EA,Shoskes DA.The effect of mycophenolate mofetil and polyphenolic bioflavonoids on renal ischemia reperfusion injury and repair.J Urol.2000; 163(3): 999-1004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700