姜黄素影响HT-29结肠癌细胞生长、增殖的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姜黄素是从天然植物—姜黄根茎中提取的一种多酚,具有抗氧化、消炎、抗肿瘤、预防老年性痴呆、治疗风湿等多种功效。本论文旨在研究姜黄素对HT-29结肠癌细胞生长、增殖及细胞存活率的影响,并在分子水平上研究姜黄素对HT-29细胞线粒体凋亡途径、β-catenin/Tcf-4信号途径活性的影响,从而探讨姜黄素抑制细胞生长、增殖的分子机制。
     本论文首先用倒置显微镜观察了10-80μM姜黄素处理对HT-29细胞生长的影响,结果发现姜黄素处理能够显著抑制细胞的生长。用Hoechst 33258荧光染料染色也发现,姜黄素能够诱导HT-29细胞核浓缩,诱导细胞凋亡。对HT-29细胞线粒体膜电位及caspase-3活性的测定表明,10-80μM的姜黄素可以导致线粒体膜电位显著下降(P<0.05),caspase-3的活性显著提高(P<0.05)。
     为了研究姜黄素抑制HT-29细胞生长增殖,诱导其死亡的分子机理,本研究运用RT-PCR技术研究了细胞线粒体凋亡途径相关蛋白mRNA的水平,结果表明,用高于40μM的姜黄素处理HT-29细胞,能够显著降低细胞中抗凋亡蛋白Bcl-2、Bcl-XL、survivin mRNA的水平(P<0.05),促凋亡蛋白Bax mRNA的水平会显著升高(P<0.05),caspase-3 mRNA的水平则没有显著变化。Western-blotting结果则表明,10-80μM的姜黄素可以导致细胞中促凋亡蛋白Bad与Bax的水平显著升高,凋亡抑制蛋白Bcl-2、Bcl-xL及survivin的水平则明显下降;40μM以上的姜黄素处理HT-29细胞,可以激活其caspase-3,诱导PARP降解;Western-blotting结果还表明,10μM以上的姜黄素可以导致HT-29细胞线粒体细胞色素c的释放。以上结果表明,姜黄素可能通过线粒体途径诱导HT-29细胞凋亡。
     β-catenin/Tcf-4信号途径在大多数结肠癌细胞中异常激活,该通路可以激活多种原癌基因的表达,促进结肠癌细胞株生长、分化,为了研究姜黄素是否通过影响该信号途径的活性,抑制肿瘤细胞生长、分化,并可能诱导其凋亡。本论文用Western-blotting技术研究了姜黄素对细胞内β-catenin水平的影响,结果发现,姜黄素能够导致HT-29细胞内β-catenin裂解,从而降低细胞总β-catenin的水平,接着我们将免疫共沉淀技术(IP)和western-blotting技术相结合,研究了姜黄素对细胞核内β-catenin/Tcf-4复合物水平的影响,结果发现,姜黄素可以降低核内β-catenin/Tcf-4复合物的水平。此外,RT-PCR结果也表明,姜黄素处理能够显著降低β-catenin/Tcf-4的靶基因c-myc与cyclinD1 mRNA及蛋白质的水平(P<0.05),这说明姜黄能够下调β-catenin/Tcf-4的转录激活活性。用caspase-3的特异性小分子抑制剂Z-DEVD-FMK预处理HT-29细胞,则发现姜黄素诱导的β-catenin断裂被抑制;而β-catenin/Tcf-4下游靶基因的表达则不受Z-DEVD-FMK处理的影响,这说明,姜黄素诱导的HT-29细胞内β-catenin断裂是由caspase-3介导的,姜黄素诱导的β-catenin/Tcf-4转录激活能力下降则与caspase-3无关。
     本论文运用RT-PCR及western-blotting技术进一步研究了β-catenin/Tcf-4转录激活的靶基因PPARδ、VEGF、COX-2、14-3-3ε等的表达情况,结果表明,40-80μM的姜黄素处理可以显著下调靶基因PPARδmRNA及蛋白质的水平(P<0.05),受PPARδ调节的基因14-3-3ε的表达水平也显著下降(P<0.05),而14-3-3ε在细胞中可以与促凋亡蛋白Bad结合,从而抑制凋亡,姜黄素下调14-3-3ε的水平可能与Bad的水平升高有关。同时,研究还发现,姜黄素处理可以显著下调β-catenin/Tcf-4信号路径VEGF和COX-2二个靶基因的水平,VEGF及COX-2均与结肠癌细胞的增殖、分化及血管形成密切相关,这进一步说明了姜黄素可能通过下调β-catenin/Tcf-4信号途径活性,来抑制结肠癌肿瘤细胞的生长与增殖。
     为了进一步研究姜黄素抑制HT-29细胞生长、增殖的分子机制,本论文研究了姜黄素的抗氧化及对HT-29细胞内活性氧水平的影响。用化学体系进行的实验证明,姜黄素可以猝灭DPPH、ABTS~(·+)、O2~(·-)、·OH等自由基,抑制亚油酸的过氧化反应,保护pBR322质粒DNA免受羟自由基的氧化损伤。用10-80μM姜黄素处理HT-29细胞后,我们测定了细胞内活性氧(ROS)及谷胱甘肽的水平,结果发现,姜黄素处理可以显著提高HT-29细胞内活性氧的水平,并激活caspase-3,下调Bcl-2的表达水平,诱导HT-29细胞凋亡(P<0.05)。为研究姜黄素诱导的caspase-3激活及细胞凋亡是否与其刺激的胞内活性氧水平升高有关,本研究用抗氧化剂N-乙酰半胱氨酸(NAC)和过氧化氢酶(catalase)处理,以消除自由基,结果发现,NAC和catalase处理后,姜黄素不能诱导caspase-3激活,姜黄素处理导致的细胞存活率下降也被抑制。
     本论文研究表明,姜黄素可能是通过刺激HT-29细胞产生高水平的活性氧,激活caspase-3,从而激活HT-29细胞线粒体凋亡途径;姜黄素还可以通过不依赖于caspase-3方式,下调β-catenin/Tcf-4信号活性,抑制其下游靶基因的表达,从而抑制HT-29结肠癌细胞的生长、增殖。
Curcumin is an important polyphenol extracted from the rhizomes of Curcuma longa L.Several studies have shown curcumin exerts antioxidant,anti-inflammatory, anti-carcinogenic,Alzheimer's preventional and antiarthritic activities.This study will focus on the molecular mechanisms of the effects of curcumin on the growth and proliferation of HT-29 cells.
     In this study,we observed treatment with 10-80μM curucmin inhibited the growth of HT-29 cells by microscopic wounding assay.Hoechst 33258 staining showed that curcumin significantly induced apoptosis of HT-29 cells.Exposure to 10-80μM curucmin also markedly induced the mitochondrial membrane potential(ΔΨm) collapse and activation of caspase-3(P<0.05).
     To investigate the mechanisms of curcumin induced apoptosis of HT-29 cells,the release of cytochrome c from the mitochondria and the apoptosis-related proteins such as Bax,Bcl-2,Bcl-xL,Bad,caspase-3,PARP,and survivin were determined by western blotting analysis and their mRNA expressions were assayed by reverse transcriptase-polymerase chain reaction(RT-PCR).A significant decrease in expression of the anti-apoptotic protein such as Bcl-2,Bcl-xL and survivin was observed after exposure to 10-80μM curcumin(P<0.05),while the levels of pro-apoptotic protein such as Bax and Bad increased in the curcumin-treated cells (P<0.05).Curcumin also induced the release of cytochrome c,the activation of caspase-3,and the cleavage of PARP in a dose-dependent manner(P<0.05).These data suggested that curcumin induced the HT-29 cell apoptosis possibly was via the mitochondria mediated pathway.
     Irregular activation ofβ-catenin/Tcf-4 signaling pathway occurs in many colorectal cancer cells.We studied the effects of curcumin on the level ofβ-catenin in HT-29 cells by western-blotting.The results showed that incubation with 20-80μM curcumin could induce cleavage ofβ-catenin.The level ofβ-catenin/Tcf-4 complex in HT-29 cell nucleus was studied by co-immunoprecipitation and western blotting.The expression of the target genes such as c-myc and cyclinD1 was investigated by RT-PCR and western blotting.The results showed that the association ofβ-catenin with Tcf-4 in nucleus could be inhibited by curcumin(P<0.05).The expression of c-myc and cyclinD1 was also downregulated by curcumin.Pretreatement of HT-29 cells with Z-DEVD-FMK,a specific inhibitor of caspase-3,could inhibit the curcumin induced cleavage ofβ-catenin.However,curcumin induced downregulation of c-myc and cyclinD1 could not be blocked by Z-DEVD-FMK.These results suggested curcumin could induce the cleavage ofβ-catenin by activition of caspases and downregulate the activity ofβ-catenin/Tcf signaling pathway independent of the caspases in HT-29 cells.
     We also studied the expression of the target genes ofβ-catenin/Tcf-4 signaling pathway such as PPARδ,VEGF,COX-2 and 14-3-3εin HT-29 cells.The results showed that curcumin treatment decreased the expression of PPARδ,VEGF,COX-2 and 14-3-3ε(P<0.05).In cytoplasm,14-3-3εcan associate with the pro-apoptotic protein,Bad,and inhibit the pro-apoptotic activity of Bad.Our results showed curcumin might increase the level of Bad by down-regulation of 14-3-3εin HT-29 cells.
     To investigate the molecular mechanism of curcumin induced HT-29 cell death and growth inhibiton,we studied the anti-oxidant and pro-oxidant activities of curcumin. The in vitro assay showed curcumin had an effective DPPH~·scavenging,ABTS~+ scavenging,superoxide anion radical scavenging,hydroxyl free radical scavenging, ferric ions(Fe~(3+)) reducing power activities.Curcumin could also inhibit the peroxidation of linoleic acid and the oxidative damage of pBR322 DNA induced by hydroxyl free radical.The in vivo assay showed curcumin could increase the levels of the reactive oxygen species(ROS) and glutathion in HT-29 cells(P<0.05). N-acetylcysteine(NAC) and catalase pretreatment could significantly inhibit curucmin induced increase of ROS and caspase-3 activation(P<0.05),which indicated curcumin indcued HT-29 cell apoptosis might be mediated by the stimulated increase of ROS.
引文
1.GOEL A,KUNNUMAKKARA A B,AGGARWAL B B.Curcumin as "Curecumin":From kitchen to clinic[J].Biochem.Pharmacol.,2008,75(4):787-809.
    2.KIUCHI F,GOTO Y,SUGIMOTO N,et al.Nematocidal activity of turmeric:synergistic action of curcuminoids[J].Chem.Pharm.Bull(Tokyo).,1993,41(9):1640-1643.
    3.AGGARWAL B B,SURH,Y J,SHISHODIA S.The molecular targets and therapeutic uses of curcumin in health and disease[M].Adv.Exp.Med.Biol.,2007,595.Springer publication.
    4.DAYBE F V.Uber Curcumin.den Farbstoff der Curcumawurzzel Ber,1870,3:609.
    5.GOVINDARAJAN V S.Turmeric-chemistry,technology,and quality[J].Crit.Rev.Food Sci.Nutr.,1980,12:199-301.
    6.AMMON H P,WAHL M A.Pharmacology of Curcuma longa[J].Planta.Med.,1991,57:1-7.
    7.ARAUJO C C,LEON L L.Biological activities of Curcuma longa L[J].Mem.Inst.Oswaldo Cruz,2001,96(5):723-728.
    8.AGGARWAL B B,TAKADA Y,OOMMEN O V.From chemoprevention to chemotherapy:common targets and common goals[J].Expert Opin.Investig.Drugs,2004,13(10):1327-1338.
    9.SREEJAYAN RAO M N.Nitric oxide scavenging by curcuminoids[J].J.Pharm.Pharmacol.,1997,49(1):105-107.
    10.BROUET I,OHSHIMA H.Curcumin,an anti-tumour promoter and anti-inflammatory agent,inhibits induction of nitric oxide synthase in activated macrophages[J].Biochem.Biophys.Res.Commun.,1995,206(2):533-540.
    11.DIKSHIT M,RASTOGI L,SHUKLA R,et al.Prevention of ischaemia-induced biochemical changes by curcumin & quinidine in the cat heart[J],Indian J.Med.Res.,1995,101:31-35.
    12.RAO C V,RIVENSON A,SIMI B,et al.Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound[J].Cancer Res., 1995, 55(2):259-266.
    
    13. LIMTRAKUL P, LIPIGORNGOSON S, NAMWONG O, et al. Inhibitory effect of dietary curcumin on skin carcinogenesis in mice[J]. Cancer Lett.,1997,116(2):197-203.
    
    14. KISO Y, SUZUKI Y, WATANABE N, et al. Antihepatotoxic principles of Curcuma longa rhizomes[J]. Planta Med., 1983,49(3): 185-187.
    
    15. SRIVASTAVA R, DIKSHIT M, SRIMAL R C, et al. Anti-thrombotic effect of curcumin[J]. Thromb Res., 1985,40(3):413-417.
    
    16. NIRMALA C, PUVANAKRISHNAN R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats[J]. Mol. Cell Biochem., 1996,159(2):85-93.
    
    17. VENKATESAN N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats[J]. Br. J. Pharmacol., 1998, 124(3):425-427.
    
    18. DEODHAR S D, SETHI R, SRIMAL R C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane) [J].Indian J. Med. Res., 1980, 71:632-634.
    
    19. SHANKAR T N, SHANTHA N V, RAMESH H P, et al. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs & monkeys[J].Indian J. Exp. Biol., 1980,18(l):73-75.
    
    20. QURESHI S, SHAH A H, AGEEL AM. Toxicity studies on Alpin galanga and Curcuma longa[J]. Planta Med., 1992, 58(2):124-127.
    
    21. LAO C D, RUFfiN M T, NORMOLLE D, et al. Dose escalation of a curcuminoid formulation[J]. BMC Complement Altern. Med., 2006,6:10.
    
    22. AGGARWAL B B, KUMAR A, BHARTI A C. Anticancer potential of curcumin: preclinical and clinical studies[J]. Anticancer Res., 2003, 23(1 A):363-398.
    
    23. WANG Y J, PAN M H, CHENG A L, et al. Stability of curcumin in buffer solutions and characterization of its degradation products[J]. J. Pharm. Biomed. Anal.,1997, 15(12):1867-1876.
    
    24. OETARI S, SUDIBYO M, COMMANDEUR J N. et al. Effects of curcumin on cytochrome P450 and glutathione-S-transferase activities in rat liver[J]. Biochem. Pharmacol, 1996, 51(1):39-45.
    
    25. SOMPARN P, PHISALAPHONG C, NAKORNCHAI S, et al. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives[J].Biol. Pharm. Bull, 2007, 30(174):74-78.
    
    26. PARI L, MURUGAN P. Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats[J]. J. Med. Food, 2007,10(2):323-329.
    
    27. MURUGAN P, PARI L. Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats[J]. Life Sci., 2006,79(18):1720-1728.
    
    28. SHEN L, JI H F. Theoretical study on physicochemical properties of curcumin[J].Spectrochim. ActaA Mol Biomol. Spectrosc., 2007, 67(3-4):619-623.
    
    29. SATOSKAR R R, SHAH S J, SHENOY SG. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation[J]. Int. J. Gin. Pharmacol Ther. Toxicol, 1986,24(12):651-654.
    
    30. DEODHAR S D, SETHI R, SRIMAL R C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane) [J]. Indian J. Med. Res., 1980, 71:632-634.
    
    31. SONI K B, KUTTAN R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers[J]. Indian J. Physiol Pharmacol, 1992, 36(4):273-275.
    
    32. RAMIREZ B A, SOLER A, CARRION-GUTIERREZ M A, et al. An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen[J]. Mech. Ageing Dev., 2000, 114(3):207-210.
    
    33. RASYID A, LELO A. The effect of curcumin and placebo on human gall-bladder function: an ultrasound study[J]. Aliment Pharmacol. Ther., 1999,13:245-249.
    
    34. BUNDY R, WALKER A F, MIDDLETON R W, et al. Turmeric extract may improve irritable bowel syndrome symptomology in otherwise healthy adults: a pilot study[J]. JAltern. Complement Med., 2004, 10(6): 1015-1018.
    
    35. HOLT P R, KATZ S, KIRSHOFF R. Curcumin therapy in inflammatory bowel disease: a pilot study[J]. Dig. Dis. Sci., 2005. 50:2191-2193.
    
    36. HANAI H, IIDA T, TAKEUCHI K, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial[J].Clin. Gastroenterol. Hepatol., 2006,4(12):1502-1506.
    
    37. SHOSKES D, LAPIERRE C, CRUZ-CORREA M, et al. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial[J]. Transplantation, 2005,80(11):1556-1559.
    
    38. YANG F, LIM G P, BEGUM AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo[J]. J. Biol.Chem., 2005, 280(7):5892-5901.
    
    39. NG T P, CHIAM P C, LEE T, et al. Curry consumption and cognitive function in the elderly[J]. Am. J. Epidemiol., 2006,164(9):898-906.
    
    40. HENG M C, SONG M K, HARKER J, et al. Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters[J]. Br. J. Dermatol.,2000, 143:937-949.
    
    41. DU B, JIANG L, XIA Q, et al. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29[J].Chemotherapy, 2006, 52 (1): 23-28.
    
    42. LEV-ARI S, STRIER L, KAZANOV D, et al. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells[J]. Clin. Cancer Res.,2005,11(18): 6738-6744.
    
    43. LEV-ARI S, ZINGER H, KAZANOV D, et al. Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells[J]. Biomed. Pharmacother., 2005, 59 (Suppl. 2):S276-S280.
    
    44. NOTARBARTOLO M, POMA P, PERRI D, et al. Antitumor effects of curcumin,alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells.Analysis of their possible relationship to changes in NF- NotarbartoloKB activation levels and in IAP gene expression[J]. Cancer Lett.. 2005, 224 (1): 53-65.
    
    45. KOO J Y, KIM H J, JUNG K O, et al. Curcumin inhibits the growth of AGS human gastric carcinoma cells in vitro and shows synergism with 5-fluorouracil[J]. J.Med. Food, 2004, 7 (2): 117-121.
    
    46. CHAN M M, FONG D, SOPRANO K J, et al. Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents[J]. J. Cell. Physiol, 2003, 194 (1): 63-70.
    
    47. HOUR T C, CHEN J, HUANG C Y, et al. Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21(WAFl/CIP1) and C/EBPbeta expressions and suppressing NF-kappaB activation[J]. Prostate, 2002, 51(3):211-218.
    
    48. LIU Y, CHANG R L, CUI X X, et al. Synergistic effects of curcumin on all-trans retinoic acid- and 1 alpha, 25-dihydroxyvitamin D3-induced differentiation in human promyelocytic leukemia HL-60 cells[J]. Oncol. Res., 1997, 9(1): 19-29.
    
    49. RAO C V, SIMI B, REDDY B S. Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon[J].Carcinogenesis, 1993,14(11):2219-2225.
    
    50. HUANG M T, LOU Y R, MA W, et al. Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice[J]. Cancer Res., 1994,54:5841-5847.
    
    51. KIM J M, ARAKI S, KIM D J, et al. Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation[J].Carcinogenesis, 1998,19:81-85.
    
    52. USHIDA J, SUGIE S, KAWABATA K, et al. Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats[J]. Jpn. J. Cancer Res., 2000, 91:893-898.
    
    53. PERKINS S, VERSCHOYLE R D, HILL K, et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis[J]. Cancer Epidemiol. Biomarkers Prev., 2002, ll(6):535-540.
    
    54. HECHT S S, KENNEY P M, WANG M, et al. Evaluation of butylated hydroxyanisole,myo-inositol,curcumin,esculetin,resveratrol and lycopene as inhibitors of benzo[a]pyrene plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanoneinduced lung tumorigenesis inA/J mice[J].Cancer Lett.,1999,137:123-130.
    55.HUANG M T,LOU Y R,XIE J G,et al.Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice[J].Carcinogenesis,1998,19(9):1697-1700.
    56.SINGLETARY K,MACDONALD C,WALLIG M,et al.Inhibition of 7,12-dimethylbenz[a]anthracene(DMBA)-induced mammary tumorigenesis and DMBA-DNA adduct formation by curcumin[J].Cancer Lett.,1996,103(2):137-141.
    57.SINGH S,AGGARWAL B B.Activation of transcription factor Nuclear Factor-kappa B is suppressed by curcumin[J].J.Biol.Chem.,1995,270(42):24995-25000.
    58.SUH J,RABSON A B.NF-kB activation in human prostate cancer:important mediator or epiphenomenon[J].J.Cell Biochem.,2004,91(1):100-117.
    59.ISMAIL H A,LESSARD L,MES-MASSON A M.Expression of NF-κB in prostate cancer lymph node metastases[J].Prostate,2004,58(3):308-313.
    60.PAHL H L.Activators and target genes of Rel/NF-κB transcription factors[J].Oncogene,1999,18(49):6853-6866.
    61.GARG A,AGGARWAL B B.Nuclear transcription factor-kappaB as a target for cancer drug development[J].Leukemia,2002,16(6):1053-1068.
    62.BALDWIN A S.Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB[J].J.Clin.Invest.,2001,107(3):241-246.
    63.COLLETT G P,CAMPBELL F C.Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells[J].Carcinogenesis,2004,25(11):2183-2189.
    64.TOMITA M,KAWAKAMI H,UCHIHARA J N,et al.Curcumin suppresses constitutive activation of AP-1 by downregulation of JunD protein in HTLV-1-infected T-cell lines[J].Leuk.Res.,2006,30(3):313-321.
    65.LIMTRAKUL P,LIPIGORNGOSON S,NAMWONG O,et al.Inhibitory effect of dietary curcumin on skin carcinogenesis in mice[J].Cancer Lett.,1997,116(2):197-203.
    66.LIMTRAKUL P,ANUCHAPREEDA S,LIPIGORNGOSON S,et al.Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin[J].BMC.Cancer,2001,1:1.
    67.FORMAN B M,CHEN J,EVANS R M.The peroxisome proliferator-activated receptors:ligands and activators[J].Ann.N Y Acad.Sci.,1996,804(1):266-275.
    68.KONOPLEVA M,ELSTNER,E,MCQUEEN T J,et al.Peroxisome proliferator-activated receptor gamma and retinoid X receptor ligands are potent inducers of differentiation and apoptosis in leukemias[J].Mol.Cancer.Ther.,2004,3(10):1249-1262.
    69.SIDDIQUI A M,CUI X,WU R.The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-γ[J].Crit.Care Med.,2006,34(7):1874-1882.
    70.LEE Y K,LEE W S,HWANG J T,et al.Curcumin Exerts Antidifferentiation Effect through AMPKα-PPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKα-COX-2 in cancer cells[J].J.Agric.Food Chem.,2009,57(1):305-310.
    71.CHENG Y,PING J,XU L.Effects of curcumin on peroxisome proliferator-activated receptor γ expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells[J].Chin.Med.J(Engl).,2007,12(1):794-801.
    68.CHEN A,XU J.Activation of PPARγ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR[J].Am.J.Physiol.Gastrointest.Liver Physiol.,2005,288:G447-G456.
    72.JACOB A,WU R,ZHOU M,et al.Mechanism of the anti-inflammatory effect of curcumin:PPAR-γ activation[M].PPAR Research,Hindawi Publishing Corporation,2007,89369.
    73.LENGYEL E,SAWADA K,SALGIA R.Tyrosine kinase mutations in human cancer[J]. Curr. Mol. Med., 2007, 7(l):77-84.
    
    74. TIKHOMIROV 0, CARPENTER G. Identification of ErbB-2 kinase domain motifs required for geldanamycin-induced degradation[J]. Cancer Res., 2003,63(1):39-43.
    
    75. AOKI H, TAKADA Y, KONDO S, et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy:role of Akt and ERK signaling pathways[J]. Mol. Pharmacol., 2007, 72(1):29-39.
    
    76. AGGARWAL B B, BHATT I D, ICHIKAWA H, et al. Curcumin-boiological and medicinal properties. Turmeric: the genus Curcuma[C]. Taylor and Francis Group,2006: 297-368.
    
    77. SHISHODIA S, SINGH T, CHATURVEDI M M. Modulation of transcription factors by curcumin[J]. Adv. Exp. Med. Biol., 2007, 595:127-148.
    
    78. MITRA A, CHAKRABARTI J, BANERJI A, et al. Curcumin, a potential inhibitor of MMP-2 in human laryngeal squamous carcinoma cells HEp2[J]. J.Environ. Pathol. Toxicol. Oncol., 2006,25(4):679-690.
    
    79. CHO J W, LEE K S, KIM C W. Curcumin attenuates the expression of IL-1beta,IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells;NF-kappaB and MAPKs as potential upstream targets[J]. Int. J. Mol. Med., 2007,19(3): 469-474.
    
    80. AGGARWAL S, ICHIKAWA H, TAKADA Y, et al. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaB alpha kinase and Akt activation[J]. Mol. Pharmacol., 2006, 69(1):195-206.
    
    81. LI M, ZHANG Z, HILL D L, et al. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway[J]. Cancer Res., 2007,67:1988-1996.
    
    82. SONG G, MAO Y B, CAI Q F. et al. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression[Jj. Braz. J. Med. Biol. Res., 2005. 38(12):1791-1798.
    83. LIONTAS A, YEGER H. Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma[J]. Anticancer Res.,2004, 24(2B):987-998.
    
    84. GAEDEKE J, NOBLE N A, BORDER W A. Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1[J].Kidney Int., 2005, 68:2042-2409.
    
    85. PISANI P, BRAY F, PARKIN D M. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population[J]. Int. J. Cancer, 2002,97 (16):72-81.
    
    86. CALVERT P M, FRUCHT H. The genetics of colorectal cancer[J]. Ann. Intern.Med., 2002,137:603-612.
    
    87. POTTER J D. Colorectal cancer: molecules and populations[J]. J.Natl. Cancer Inst., 1999, 91 (11): 916-932.
    
    88. THUN M J, HENLEY S J, PATRONO C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues[J]. J. Natl.Cancer Inst., 2002, 94 (4):252-266.
    
    89. JOHNSON J J, MUKHTAR H. Curcumin for chemoprevention of colon cancer[J]. Cancer Lett., 2007,255 (2):170-181.
    
    90. KIM D G, YOU K R, LIU M J, et al. GADD153-mediated anticancer effects of N-(4-hydroxyphe-nyl)retinamide on human hepatoma cells[J]. J. Biol. Chem.,2002,277(41):38930-38938.
    
    91. LENGWEHASATIT I, DICKSON A J. Analysis of the role of GADD153 in the control of apoptosis in NS0 myeloma cells[J]. Biotechnol. Bioeng., 2002, 80(7):719-730.
    
    92. MAYTIN E V, UBEDA M, LIN J C, et al. Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms[J]. Exp. Cell Res., 2001, 267:193-204.
    
    93. SCOTT D W. LOO G. Curcumin-induced GADD153 gene up-regulation in human colon cancer cells[J]. Carcinogenesis, 2004, 25(11):2155-2164.
    
    94. RASHMI R, SANTHOSH KUMAR T R. KARUNAGARAN D. Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases[J].FEBS Lett., 2003, 538 (1): 19-24.
    
    95. JAISWAL A S, MARLOW B P, GUPTA N, et al. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-nduced growth arrest and apoptosis in colon cancer cells[J].Oncogene, 2002,21 (55):8414-8427.
    
    96. MORAGODA L, JASZEWSKI R, MAJUMDAR A P. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells[J].Anticancer Res., 2001,21 (2A): 873-878.
    
    97. THALOOR D, SINGH A K, SIDHU G S, et al. Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin[J]. Cell Growth Differ., 1998, 9(4): 305-312.
    
    98. ARBISER J L, KLAUBER N, ROHAN R, et al. Curcumin is an in vivo inhibitor of angiogenesis[J]. Mol. Med., 1998,4(6):376-383.
    
    99. BINION D G, OTTERSON M F, RAFIEE P. Curcumin inhibits VEGF mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition[J]. Gut, 2008, 57(11):1509-1517.
    
    100. CHEN H W, LEE J Y, HUANG J Y, et al. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1[J]. Cancer Res., 2008,68(18):7428-7438.
    
    101. AGGARWAL S, ICHIKAWA H, TAKADA Y, et al. Curcumin (Diferuloylmethane) downregulates expression of cell proliferation, antiapoptotic and metastatic gene products through suppression of IκBα kinase and AKT activation[J]. Mol. Pharmacol., 2006, 69(l):195-206.
    
    102. JEONG W S, KIM I W, HU R. Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway[J].Pharm. Res.. 2004, 21(4):661-670.
    
    103. SU C C, CHEN G W, LIN J G. et al. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions[J].Anticancer Res., 2006,26 (2A):1281-1288.
    
    104. CHEN A, XU J, JOHNSON A C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1[J]. Oncogene, 2006, 25:278-287.
    
    105. LIN J K. Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by curcumin[J]. Arch.Pharm. Res., 2004,27 (7):683-692.
    
    106. GOPALAKRISHNA R, GUNDIMEDA U. Antioxidant regulation of protein kinase C in cancer prevention[J]. J. Nutr., 2002,132 (12):3819S-3823S.
    
    107. HUANG T S, LEE S C, LIN J K. Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells[J]. Proc. Natl Acad Sci.U.S.A., 1991,88(2):5292-5296.
    
    108. LU Y P, CAHNG R L, LOU Y R, et al. Effect of curcumin on TPA- and ultraviolet B light induced expression of c-jun and c-fos in JB6 cells and in mouse epidermis[J]. Carcinogenesis, 1994,15(10):2363-2370.
    
    109. YAMAMOTO Y, GAYNOR R B. Therapeutic potential of inhibition of the nf-kappab pathway in the treatment of inflammation and cancer[J]. J. Clin. Invest.,2001, 107 (2): 135-142.
    
    110. GILES R H,VAN ES J H, CLEVERS H. Caught up in Wnt storm:Wnt signaling in cancer[J]. Biochim. Biophys. Acta., 2003,1653(1):1-24.
    
    111. RYAN K M, BIRNIE G D. Myc oncogenes:the enigmatic family[J]. Biochem.J., 1996, 314 (Pt3):713-721.
    
    112. HE T C, SPARKS A B, RAGO C, et al. Identification of c-myc as a target of the APC pathway[J]. Science, 1998, 281 (5382): 1509-1512.
    
    113. KINZLER K W, NILBERT M C, SU L K. Identification of FAP locusgenes from chromosome 5q21[J]. Science, 1991. 253 (5020):661-665.
    
    114. HILL C S. TREISMAN R. Transcriptional regulation by extracellular signals: mechanisms and specificity[J]. Cell, 1995, 80(2): 199-211.
    
    115. TOUALBI K, GULLER M C, MAURIZ J L, et al. Physical and functional cooperation between AP-1 and β-catenin for theregulation of TCF-dependent genes[J]. Oncogene, 2007, 26:3492-3502.
    
    116. ZHANG X, GASPARD J P, CHUNG D C. Regulation of vascular endothelial growth factor by the wnt and K-ras pathways in colonic neoplasia[J]. Cancer Res.,2001, 61(16):6050-6054.
    
    117. WU B, CRAMPTON S P, HUGHES C C. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration[J]. Immunity, 2007,26(2):227-239.
    
    118. DUBOIS R N, SHAO J, TSUJII M, et al. G1 delay in cells overexpressing prostaglandin endoperoxide synthase-2[J]. Cancer Res., 1996, 56: 733-737.
    
    119. OSHIMA M, DINCHUK J E, KARGMAN S L, et al. Suppression of intestinal polyposisin Apc~(Δ716) knockout mice by inhibition of cyclooxygenase 2(COX-2) [J].Cell, 1996,87:803-809.
    
    120. ARAKI Y, OKAMURA S, HUSSAIN S P, et al. Regulation of cyclooxygenase-2 expression by the wnt and Ras pathways[J]. Cancer Res., 2003,63(3):728-734.
    
    121. JAISWAL A S, MARLOW B P, GUPTA N, et al, P-Catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells[J].Oncogene, 2002,21:8414-8427
    
    122. PARK C H, HAHM E R, PARK S, et al. The inhibitory mechanism of curcumin and its derivative against (3-catenin/Tcf signaling[J]. FEBS Letters, 2005,579(13):2965-2971.
    
    123. AK T, GULCIN I. Antioxidant and radical scavenging properties of curcumin[J]. Chem. Biol. Interact., 2008, 174(1 ):27-37.
    
    124. DAS K C, DAS C K. Curcumin (diferuloylmethane), a singlet oxygen (~1O2) quencher[J]. Biochem. Biophys. Res. Commun.. 2002, 295 (1): 62-66.
    
    125. MANIKANDAN P. SUMITRA M. AISHWARYA S, et al. Curcumin modulates free radical quenching in myocardial ischaemia in rats[J].Int.J.Biochem.Cell Biol.,2004,36(10):1967-1980.
    126.MOTTERLINI R,FORESTI R,BASSI R,et al.Curcumin,an antioxidant and anti-inflammatory agent,induces herne oxygenase-land protects endothelial cells against oxidative stress[J].Free Radic.Biol.Med.,2000,28(8):1303-1312.
    127.COHLY H H P,TAYLOR A,ANGEL M F,et al.Effect of turmeric,turmerin and curcumin on H_2O_2-induced renal epithelial(LLC-PK1) cell injury[J].Free Radic.Biol.Med.,1998,24(1):49-54.
    128.SYNG-AI C,KUMARI A L,KHAR A.Effect of curcumin on normal and tumor cells:Role of glutathione and bcl-2[J].Mol.Cancer Ther.,2004,3(9):1101-1108.
    129.WOO J H,KIM Y H,CHOI Y J,et al.Molecular mechanisms of curcumin-induced cytotoxicity:induction of apoptosis through generation of reactive oxygen species,down-regulation of Bcl-XL and IAP,the release of cytoehrome c and inhibition of Akt[J].Carcinogenesis,2003,24(7):1199-1208.
    130.THAYYULLATHIL F,CHATHOTH S,HAGO A,et al.Rapid reactive oxygen species(ROS) generation induced by curcumin leads tocaspase-dependent and -independent apoptosis in L929 cells[J].Free Radic.Biol.Med.,2008,45(10):1403-1412.
    131.FANG J,LU J,HOLMGREN A.Thioredoxin reductase is irreversibly modified by curcumin[J].J.Biol.Chem.,2005,280(26):25284-25290.
    1. NEWMAN D J, CRAGG G M, SNADER K M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7): 1022-1037.
    
    2. BHAUMIK S, JYOTH1 M D, KHAR A. Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett., 2000,483(1):78-82.
    
    3. SEN S, SHARMA H, SINGH N. Curcumin enhances Vinorelbine-mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem. Biophys. Res.Commun., 2005, 331(4): 1245-1252.
    
    4. SHISHODIA S, AMIN H M, LAI R, et al. Curcumin (diferuloylmethane) inhibits constitutive NF-kB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol., 2005,70(5):700-713.
    
    5. AGGARWAL S, ICHIKAWA H, TAKADA Y, et al. Curcumin (Diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation. Mol.Pharmacol, 2006, 69(1): 195-206.
    
    6. PORN-ARES M I, CHOW S C, SLOTTE J P, et al. Induction of apoptosis and po-tentiation of TNF and Fas-mediated apoptosis in U937 cells by the xanthogenate compound D609. Exp. Cell Res., 1997, 235(1):48-54.
    
    7. PIWOCKA K, ZABLOCKI K, WIECKOWSKI M R, et al. A Novel Apoptosis-like Pathway, Independent of Mitochondria and Caspases, Induced by Curcumin in Human Lymphoblastoid T (Jurkat) Cells. Exp. Cell Res., 1999, 249(2):299-307.
    
    8. DESAI B N, MYERS B R, SCHREIBER S L. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl. Acad. Sci. U. S. A., 2002, 99(7): 4319-4324.
    
    9. SHANG T, JOSEPH J, HILLARD C J, et al. Death-associated protein kinase as a sensor of mitochondrial membrane potential: role of lysosome in mitochondrial toxin-induced cell death. J. Biol. Chem., 2005, 280(41): 34644-34653.
    10. KLUCK R M, BOSSY-WETZEL E, GREEN D R, et al. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis.Science, 1997, 275(5303): 1132-1136.
    
    11. TAN H Y, LIU J, WU S M, et al. Expression of a novel apoptosis inhibitor-survivin in colorectal carcinoma. World J. Gastroenterol., 2005, 11(30):4689-4692.
    
    12. PAN M H, CHANG W L, LIN-SHIAU S Y, et al. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J. Agric. Food Chem., 2001,49(3):1464-1474.
    
    13. SCOTT D W, LOO G. Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis, 2004,25(11):2155-2164.
    
    14. SHISHODIA S, SETHI G, AGGARWAL B B. Curcumin: getting back to the roots. Ann. N. Y. Acad. Sci., 2005, 1056: 206-217.
    
    15. WOO J H, KIM Y H, CHOI Y J, et al. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 2003, 24(7):1199-1208.
    
    16. CORY S, ADAMS J M. The Bcl-2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2(9): 647-656.
    
    17. WANG X. The expanding role of mitochondria in apoptosis. Genes Dev., 2001,15(22): 2922-2933.
    
    18. CHEN, C.Y., LIU, T.Z., LIU, Y.W., et al. 6-Shogaol (alkanone from Ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J. Agric. Food Chem., 2007,55(3):948-954.
    
    19. SALVIOLI S, ARDIZZONI A, FRANCESCHI C, et al. JC-1, but not DiOC_6(3) or rhodamine 123, is a reliable fluorescent probe to assess Δψ changes in intact cells:implications for studies on mitochondrial functionality during apoptosis. FEBS Lett.,1997, 411(1): 77-82.
    
    20. RASHMI R, SANTHOSH KUMAR T R. KARUNAGARAN D. Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases.FEBS Lett., 2003, 538(1): 19-24.
    
    21. CAO J, LIU Y, JIA L, et al. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic. Biol.Med., 2007,43(6): 968-975.
    
    22. LI P, NIJHAWAN D, BUDIHARDJO I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell,1997, 91(4): 479-489.
    
    23. REED J C. Bcl-2 family proteins. Oncogene, 1998, 17(25): 3225-3236.
    
    24. SUZUKI A, ITO T, HAYASHIDA M, et al. Survivin initiates procaspase-3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene, 2000, 19(10): 1346-1353.
    
    25. SONG G, MAO Y B, CAI Q F, et al. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz. J. Med. Biol. Res., 2005, 38(12):1791-1798.
    
    26. SHI M, CAI Q, YAO L, et al. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol. Internal., 2006, 30 (3):221-226
    
    27. LI F, BRATTAIN M G. Role of the survivin gene in pathophysiology. Am. J.Pathol.,2006,169(l):l-10.
    
    28. KHOR T O, GUL Y A, ITHNIN H, et al. A comparative study of the expression of Wnt-1, WISP-1, survivin and cyclin-D1 in colorectal carcinoma. Int. J. Colorectal Dis., 2006, (4): 291-300.
    
    29. Watson A J M. An overview of apoptosis and the prevention of colorectal cancer.Crit. Rev. Oncol. Hematol., 2006.57:107-121.
    
    29. CHADALAPAKA G, JUTOORU I, CHINTHARLAPALLI S, et al. Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res., 2008,68(13): 5345-5354.
    
    30. MOISEEVA E P. ALMEIDA G M, JONES G D D, et al. Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol. Cancer Ther., 2007,6(11):3071-3079.
    1.RUBINFELD B,ALBERT I,PORFIRI E,et al.Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly[J].Science,1996,272(5264):1023-1026.
    2.HE C,HU H,BRAREN R,et al.c-Myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo[J].Development,2008,135(14):2467-2477.
    3.MANN B,GELOS M,SIEDOW A,et al.Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas[J].Proc.Natl.Acad.Sci.,USA,1999,96(4):1603-1608.
    4.STAAL F J,NOORT M M,STROUS G J,et al.Wnt signals are transmitted through N-terminally dephosphorylated β-catenin[J].EMBO Rep.,2002,3(1):63-68.
    5.TETSU O,MCCORMICK F.β-Catenin regulates expression of cyclin D1 in colon carcinoma cells[J].Nature,1999,398(6726):422-426.
    6.ZHANG X,GASPARD J P,CHUNG D C.Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia[J].Cancer Res.,2001,61(16):6050-6054.
    7.POLAKIS P.Wnt signaling and cancer[J].Genes Dev.,2000,14(15):1837-1851.
    8.JAISWAL A S,MARLOW B P,GUPTA N,et al.β-Catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells[J].Oncogene,2002,21(55):8414-8427.
    9.PARK C H,HAHM E R,PARK S,et al.The inhibitory mechanism of curcumin and its derivative against β-catenin/Tcf signaling[J].FEBS Lett.,2005,579(13):2965-2971.
    10.BORDONARO M,MARIADASON J M.ASLAM F,et al.Butyrate-induced apoptotic cascade in colonic carcinoma cells:modulation of the β-catenin-Tcf pathway and concordance with effects of sulindac and trichostatin A but not curcumin[J]. Cell Growth Differ., 1999, l0(10):713-720.
    
    11. STEINHUSEN U, BADOCK V, BAUER A, et al. Apoptosis-induced cleavage of β-Catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential[J]. J. Biol. Chem., 2000, 275(21): 16345-16353.
    
    12. MOLENAAR M, WETERING M, OOSTERWEGEL M, et al. XTcf-3 transcription factor mediates P-catenin-induced axis formation in xenopus embryos[J].Cell,1996,86(3):391-399.
    
    13. ARBER N, DOKI Y, HAN E K, et al. Antisense to Cyclin Dl inhibits the growth and tumorigenicity of human colon cancer cells[J]. Cancer Res., 1997,57(8):1569-1574.
    
    14. BHAUMIK S, JYOTHI M D, KHA R A. Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells[J]. FEBS Lett., 2000,483(1):78-82.
    
    15. SEN S, SHARMA H, SINGH N. Curcumin enhances Vinorelbine-mediated apoptosis in NSCLC cells by the mitochondrial pathway[J]. Biochem. Biophys. Res.Commun., 2005, 331(4): 1245-1252.
    
    16. SCHORL C, SEDIVY J M. Loss of protooncogene c-Myc function impedes G_1 phase progression both before and after the restriction point[J]. Mol. Biol. Cell., 2003,14(3):823-835.
    
    17. ARBER N, HIBSHOOSH H, MOSS S F, et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis[J]. Gastroenterology,1996,110(3):669-674.
    
    18. ZHOU P, JIANG W, SHANG Y J, et al. Antisense of cyclin Dl inhibits growth and reverses the transformed phenotype of human exophageal cancer cells[J]. Oncogene, 1995,11:571.
    1. ROBINSON-RECHAVI M, ESCRIVA GARCIA H, LAUDET V. The nuclear receptor superfamily[J]. J. Cell Sci., 2003,116(4): 585-586
    
    2. MICHALIK L, DESVERGNE B, WAHLI W. Peroxisome proliferatoractivated receptors beta/delta: emerging roles for a previously neglected third family member[J].Curr. Opin. Lipidol., 2003, 14(2):129-135.
    
    3. LOWELL B B. (1999) An essential regulator of adipogenesis and modulator of fat cell function: PPARγ[J]. Cell, 99(3): 239-242.
    
    4. KERSTEN S, DESVERGNE B, WAHLI W. Roles of PPARs in health and disease[J]. Nature, 2000,405(6785): 421-424.
    
    5. LAZAR M A. Progress in cardiovascular biology: PPAR for the course[J]. Nat.Med., 2001,7(1): 23-24.
    
    6. HE T C, CHAN T A, VOGELSTEIN B, et al. PPAR5 Is an APC-Regulated Target ofNonsteroidal Anti-Inflammatory Drugs[J]. Cell, 1999,99(3):335-345.
    
    7. GUPTA R A, TAN J, KRAUSE W F, et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor 8 in colorectal cancer[J]. Proc. Natl. Acad.Sci. U. S. A., 2000, 97(24): 13275-13280
    
    8. GLINGHAMMAR B, SKOGSBERG J, HAMSTEN A, et al. PPARS activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells[J]. Biochem. Biophys. Res. Commun., 2003, 308(2): 361-368.
    
    9. STEPHEN R L, GUSTAFSSON M C, JARVIS M, et al. Activation of peroxisome proliferator-activated receptor δ stimulates the proliferation of human breast and prostate cancer cell lines[J]. Cancer Res., 2004, 64(9): 3162-3170.
    
    10. LIOU J Y, LEE S, GHELANI D, et al. Protection of endothelial survival by peroxisome proliferator-activated receptor-8 mediated 14-3-3 upregulation[J].Arterioscler Thromb Vasc. Biol., 2006, 26: 1481-1487.
    
    11. BRUNELLI L. CIESLIK KA, ALCORN JL, et al. Peroxisome proliferator-activated receptor-5 upregulates 14-3-3ε in human endothelial cells via CCAAT/Enhancer binding protein-p[J]. Circulation Research, 2007,100(5): e59-e71.
    
    12. XU L, HAN C, WU T. A novel positive feedback loop between peroxisome proliferator-activated receptor-5 andprostaglandin E2 signaling pathways for human cholangiocarcinoma cell growth[J]. J. Biol. Chem., 2006,281 (45): 33982-33996.
    
    13. MANN B, GELOS M, SIEDOW A, et al. Target genes of beta-catenin-T cell-factor/ lymphoid- enhancer-factor signaling in human colorectal carcinomas[J].Proc. Natl.Acad. Sci. U.S.A., 1999, 96:1603-1608
    
    14. ZHANG X, GASPARD J P, CHUNG D C. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia[J]. Cancer Res.,2001,61:6050-6054.
    
    15. HOWE L R, SUBBARAMAIAH K, CHUNG W J, et al. Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells[J]. Cancer Res., 1999, 59:1572-1527
    
    16. ARAKI Y, OKAMURA S, HUSSAIN S P, et al. Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways[J]. Cancer Res, 2003, 63:728-734
    
    17. PARK C H, HAHM E R, PARK S, et al. The inhibitory mechanism of curcumin and its derivative against β-catenin/Tcf signaling[J]. FEBS Lett., 2005,579(13):2965-2971.
    
    18. ZHA J, HARADA H, YANG E, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) [J].Cell, 1996, 87(4):619-628.
    
    19. ALON T, HEMO I, ITIN A, et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity[J]. Nat. Med., 1995, 1(10): 1024-1028.
    
    20. WANG D Z, WANG H B, GUO Y, et al. From the Cover: Crosstalk between peroxisome proliferator-activated receptor 5 and VEGF stimulates cancer progression[J]. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(50): 19069-19074.
    
    21. BINION D G. MARY F O, RAFIEE P. Curcumin inhibits VEGF mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition[J]. Gut, 2008. 57: 1509-1517.
    22. DESVERGNE B, WAHLI W. Peroxisome proliferator-activated receptors:nuclear control of metabolism[J]. Endocr. Rev., 1999,20: 649-688.
    
    23. KLIEWER S A, XU H E, LAMBERT M H, et al. Peroxisome proliferator-activated receptors: from genes to physiology[J]. Recent Prog. Horm.Res., 2001, 56: 239- 265.
    
    24. SPIEGELMAN B M. PPAR-gamma: adipogenic regulator and thiazolidine-dione receptor[J]. Diabetes, 1998,47(4): 507-514.
    
    25. SARRAF P, MUELLER E, JONES D, et al. Differentiation and reversal of malignant changes in colon cancer through PPARy[J]. Nat. Med., 1998, 4(9):1046-1052.
    
    26. BROCKMAN J A, GUPTA R A, DUBOIS R N. Activation of PPARy leads to inhibition of anchorage-independent growth of human colorectal cancer cells[J].Gastroenterology, 1998, 115(5): 1049-1055.
    
    27. BHAUMIK S, JYOTHI M D, KHA R A. Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells[J]. FEBS Lett., 2000,483(1):78-82.
    
    28. SEN S, SHARMA H, SINGH N. Curcumin enhances Vinorelbine-mediated apoptosis in NSCLC cells by the mitochondrial pathway[J]. Biochem. Biophys. Res.Commun., 2005, 331(4):1245-1252.
    
    29. CHEN A, XU J. Activation of PPARy by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR[J]. J. Physiol.Gastrointest. Liver Physiol., 2005, 288(3): G447-G456.
    
    30. ZHANG M, DENG C, ZHENG J, et al. Curcumin inhibits trinitrobenzene sulphonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma[J]. Int. Immunopharmacol., 2006,6(8):1233-1242.
    
    31. SHAO J, SHENG H, DUBOIS RN. Peroxisome proliferator-activated receptors modulate K-Ras-mediated transformation of intestinal epithelial Cells[J]. Cancer Res.,2002, 62(11): 3282-3288.
    
    32. TZIVION G, AVRUCH J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation[J]. J. Biol. Chem., 2002, 277(5): 3061-3064.
    
    33. CHADALAPAKA G, JUTOORU I., CHINTHARLAPALLI S., et al. Curcumin decreases specificity protein expression in bladder cancer cells[J], Cancer Res., 2008,68(13): 5345-5354.
    
    34. PREMANAND C, REMA M, SAMEER M Z, et al. Effect of curcumin on proliferation of human retinal endothelial cells under in vitro conditions[J]. Invest.Ophthalmol. Vis. Sci., 2006,47(5):2179-2184.
    
    35. TAMMELA T, ENHOLM B, ALITALO K, et al. The biology of vascular endothelial growth factors[J]. Cardiovascular Research., 2005, 65(3): 550-563.
    
    36. HULS G, KOORNSTRA J J, KLEIBEUKER J H. Non-steroidal anti-inflammatory drugs and molecular carcinogenesis of colorectal carcinomas[J].Lancet, 2003, 362 (9379):230-232.
    
    37. KOEHNE C H, DUBOIS R N. COX-2 inhibition and colorectal cancer[J]. Semin.Oncol., 2004, 31 (2 Suppl. 7): 12-21.
    
    38. DUBOIS R N, ABRAMSON S B, CROFFORD L, et al. Cyclooxygenase in biology and disease[J]. FASEB J., 1998,12 (12):1063-1073.
    
    39. FAN Y, MENG X H, CHEN W L, et al. Protective effect of curcumin against high glucose-induced endoplasmic reticulum stress by downregulation of COX-2 expression in huvecs[J]. Cell Biol. Int., 2008, 32(3): S14.
    
    40. LEV-ARI S, STRIER L, KAZANOV D, et al. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells[J]. Clin. Cancer Res.,2005,11(18): 6738-6744.
    1.BAE J H,PARK J W,KWON T K.Ruthenium red,inhibitor of mitochondrial Ca~(2+) uniporter,inhibits curcumin-induced apoptosis via the prevention of intracellular Ca~(2+) depletion and cytochrome c release[J].Biochem.Biophys.Res.Commun.,2003,303(4):1073-1079.
    2.PAL S,CHOUDHURI T,CHATTOPADHYAY S,et al.Mechanisms of curcumin-induced apoptosis of Ehrlich's ascites carcinoma cells[J].Biochem.Biophys.Res.Commun.,2001,288(3):658-665.
    3.SHANKAR S,CHEN Q,SARVA K,et al.Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells:molecular mechanisms of apoptosis,migration and angiogenesis[J].J.Mol.Signal.,2007,2:10.
    4.SHANKAR S,SRIVASTAVA R K.Involvement of Bcl-2 family members,phosphati-dylinositol 3'-kinase/AKT and mitochondrial p53 in curcumin-induced apoptosis in prostate cancer[J].Int.J.Oncol.,2007,30(4):905-918.
    5.KUO M L,HUANG T S,LIN J K.Curcumin,an antioxidant and anti-tumor promoter,induces apoptosis in human leukemia cells[J].Biochimica et Biophysica Acta,1996,1317(2):95-100.
    6.KIM M S,KANG H J,MOON A.Inhibition of invasion and induction of apoptosis by curcumin in H-ras-transformed MCF10A human breast epithelial cells[J].Arch.Pharm.Res.,2001,24(4):349-354.
    7.BHAUMIK S,ANJUM R,RANGARAJ N,et al.Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates[J].FEBS Letters,1999,456(2):311-314.
    8.FANG J,LU J,HOLMGREN A.Thioredoxin reductase is irreversibly modified by curcumin:a novel molecular mechanism for its anticancer activity[J].J.Biol.Chem.,2005,280(26):25284-25290.
    9.SYNG-AI C,KUMARI AL,KHAR A.Effect of curcumin on normal and tumor cells:role of glutathione and bcl-2[J].Mol.Cancer Ther.,2004.3:1101-1108.
    10. TUBA A, ILHAMI G. Antioxidant and radical scavenging properties of curcumin[J]. Chem. Biol. Interact., 2008, 174 (1): 27-37.
    
    11. SIDDHURAJU P, MOHAN P S, BECKER K. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp[J]. Food Chemistry, 2002,79(1):61-67.
    
    12. BLOIS M S. Antioxidant determinations by the use of a stable radical[J].Nature, 1958,26:1199-1200.
    
    13. GULCIN L. Comparison of in vitro antioxidant and antiradical activity of L-tyrosine and L-Dopa[J]. Amino Acids, 2007, 32 (3): 431-438.
    
    14. SHIRWAIKAR A, SHIRWAIKAR A, RAJENDRAN K, et al. In vitro antioxidant studies on the benzyl tetra tsoquinoline alkaloid berberine[J]. Biol. Pharm. Bull.,2006,29(9): 1906-1910.
    
    15. CHANG W S, LIN C C, CHUANG S C, et al. Superoxide anion scavenging effects of coumarins [J]. Am. J. Chin. Med., 1996, 24(1): 11-17.
    
    16. GOMES A J, LUNARD C N, GONZALEZ S, et al. The antioxidant action of Polypodium leucotomos extract and kojic acid: reactions with reactive oxygen species[J]. Braz. J. Med. Biol. Res., 2001, 34(11): 1487-1494.
    
    17. KIKUZAKI H, NAKATANI N. Antioxidant effects of some ginger constituents[J]. J. Food Sci., 1993, 58(6): 1407-1410.
    
    18. YEUNG S Y, LAN W H, HUANG C S, et al. Scavenging property of three cresol isomers against H_2O_2, hypochlorite, superoxide and hydroxyl radicals[J]. Food Chem.Toxicol., 2002, 40(10): 1403-1413.
    
    19. HAIL N J R, LOTAN R. Mitochondrial respiration is uniquely associated with the prooxidant and apoptotic effects of N-(4-hydroxyphenyl)retinamide[J]. J. Biol.Chem., 2001, 276(49): 45614-45621.
    
    20. THAYYULLATHIL F. CHATHOTH S, HAGO A, et al. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and-independent apoptosis in L929 cells[J]. Free Radic. Biol. Med.. 2008, 45 (10): 1403-1412.
    21.MOUNGJAROEN J,NIMMANNIT U,CALLERY P S,et al.Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation[J].J.Pharmacol.Exp.Ther.,2006,319(3):1062-1069.
    22.JUNG E M,LIM J H,LEE T J,et al.Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5(DR5)[J].Carcinogenesis,2005,26(11):1905-1913.
    23.SHARMA O P.Antioxidant activity of curcumin and related compounds[J].Biochem.Pharmacol.,1976,25(15):1811-1812.
    24.RAHMAN I,BISWAS S K,KIRKHAM P A.Regulation of inflammation and redox signaling by dietary polyphenols[J].Biochem.Pharmacol.,2006,72(11):439-452.
    25.JOE B,LOKESH B R.Role of capsaicin,curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages[J].Biochim.Biophys.Acta.,1994,1224(2):255-263.
    26.LIGERET H,BARTHELEMY S,ZINI R,et al.Effects of curcumin and curcumin derivatives on mitochondrial permeability transition pore[J].Free Radic.Biol.Med.,2004,36(7):919-929.
    27.MORIN D,BARTHELEMY S,ZINI R,et al.Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation[J].FEBS Lett.,2001,495(1-2):131-136.
    28.KANG J,CHEN J,SHI Y,et al.Curcumin-induced histone hypoacetylation:the role of reactive oxygen species[J].Biochem.Pharmacol.,2005,69(8):1205-1213.
    29.SCOTT DW,LOO G.Curcumin-induced GADD153 gene up-regulation in human colon cancer cells[J].Carcinogenesis,2004,25(11):2155-2164.
    30.SYNG-AI C,KUMARI A L,KHAR A..Effect of curcumin on normal and tumor cells:role of glutathione and bcl-2[J].Mol.Cancer Ther.,2004,3(9):1101-1108.
    31.SLATER A F.STEFAN C,NOVEL I,et al.Signalling mechanisms and oxidative stress in apoptosis[J].Toxicol Lett.,1995,82(83):149-153.
    32.DUMONT A,HENHER S P,HOFMANN T G,et al.Hydrogen peroxide-induced apoptosis is CD95-independent,requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB[J].Oncogene,1999,18:747-757.
    33.AWIKA J M,ROONEY L W,WU X,et al.Screening methods to measure antioxidant activity of Sorghum(Sorghumbicolor) and Sorghum product[J].J.Agric.Food Chem.,2003,51(23):6657-6662.
    34.DAS K C,DAS C K.Curcumin(diferuloylmethane),a singlet oxygen(~1O_2)quencher[J].Biochem.Biophys.Res.Commun.,2002,295:62-66.
    35.BARCLAY L R C,V1NQVIST M R,MUKAI K,et al.On the antioxidant mechanism of curcumin:classical methods are needed to determine antioxidant mechanism and activity[J].Org.Lett.,2000,2(18):2841-2843.
    36.CHEN W F,DENG S L,ZHOU B,et al.Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation:H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups[J].Free Radic.Biol.Med.,2006,40(3):526-535.
    37.JOVANOVIC S V,STEENKEN S,BOONE C W,et al.H-atom transfer is a preferred antioxidant mechanism of curcumin[J].J.Am.Chem.Soc.,1999,121(41):9677-9681.
    38.PRIYADARSINI K I,MALTY D K,NAIK G H,et al.Role of phenolic O-H and methylene hydrogen on the free radical reaction and antioxidant activity of curcumin[J].Free Radic.Biol.Med.,2003,35(5):475-484.
    39.WRIGHT J S.Predicting the antioxidant activity of curcumin and curcuminoids[J].J.Mol.Struct(Theochem).,2002,591(1-3):207-217.
    40.SHEN L,ZHANG HY,JI H F.Successful application of TD-DFT in transient absorption spectra assignment[J].Org.Lett.,2005.7(2):243-246.
    41.SANDUR S K,ICHIKAWA H,PANDEY M K.Kunnumakkara,A.B.,Sung,B.,Sethi,G.,Aggarwal,B.B.Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin(diferuloylmethane)[J].Free Radic.Biol.Med.,2007,43(4):568-580.
    42. HALLIWELL B, GUTTER1DGE J M C. Free radicals in biology and medicine[M]. Second Edit. London, Oxford: 1989.
    
    43. BISWAS S K, MCCLURE D, JIMENEZ LA, et al. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity[J]. Antioxid. Redox Signaling, 2005,7:32-41.
    
    44. HIGUCHI M, HONDA T, PROSKE R J, et al. Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases[J]. Oncogene,1998,17(21): 2753-2760.
    
    45. KIM B M, CHUNG H W. Hypoxia/reoxygenation induces apoptosis through a ROS-mediated caspase-8/Bid/Bax pathway in human lymphocytes[J]. Biochem.Biophys. Res. Commun., 2007, 363(3): 745-750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700