里氏木霉纤维素酶基因的克隆及在水稻中的过表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是自然界中含量最多的一种有机化合物。开展纤维素酶生物学研究是深入了解纤维素的代谢机制和利用纤维素的基础,特别是在利用木质纤维素生产生物乙醇方面,具有重要的理论意义和应用价值。本实验从里氏木霉(Trichoderma reeseri)中克隆纤维素酶基因,并在水稻中进行过量表达研究,获得如下主要结果。
     1.依据发表在GenBank中的基因序列,利用RT-PCR方法,从里氏木霉(Trichoderma reeseri)的cDNA中克隆到了完整的内切β-1,4-葡聚糖酶V(Endo-β-1,4-glucallaseV),内切β-1,4-葡聚糖酶IV(Endo-β-1,4-glucallaseIV)以及外切β-1,4-葡聚糖酶I(β-1,4-glucancellobiohydrolaseI)蛋白质编码区(coding sequence region,CDS)的cDNA。
     2.克隆到的里氏木霉EGV基因蛋白质编码区全长726bp,编码242个氨基酸。核酸序列与已发表的里氏木霉AS3.3711菌株的EGV蛋白质编码区cDNA序列相比有一个核苷酸的突变,推导的氨基酸序列也有一个氨基酸的突变,但是没有明显影响到蛋白质的活性。
     3.克隆到的里氏木霉EGIV基因蛋白质编码区cDNA全长1032bp,编码344个氨基酸,CBHI基因蛋白质编码区cDNA全长1542bp,编码514个氨基酸。所获得的EGIV基因和CBHI基因核酸序列和已发表的里氏木霉EGIV基因和CBHI基因的蛋白质编码序列相比完全一致。
     4.将EGV基因插入到双T-DNA载体pDTB中,构建载体pDTB-HA-EGV。将合成的定位于质体的信号肽Apo-SP插入到载体pDTB-HA-EGV中,构建载体pDTB-Apo-HA-EGV,并且通过红色荧光蛋白在洋葱表皮细胞的瞬时表达验证该信号肽的功能。
     5.用农杆菌介导的方法对水稻品种中花11进行转化,分别获得转化pDTB-HA-EGV载体的68个植株和转化pDTB-Apo-HA-EGV载体的97个植株。PCR检测和Southern杂交分析转基因植株,表明目的基因和抗除草剂基因均整合到水稻基因组中。通过对转基因水稻T_1代30个株系共计291棵植株的PCR检测,仅含目的基因的转基因植株27棵,占9.28%;仅含筛选标记的转基因植株20棵,占6.87%。结果表明使用双T-DNA载体共转化法去除转基因植物分子标记的策略有明显的效果。
     6.通过Western杂交检测到两个转基因株系的T_0代干枯秸秆和T_1代鲜活叶片中里氏木霉EGV基因发生了表达,有一定的蛋白产物。并且利用刚果红羧甲基纤维素平板检测到它们的蛋白抽提物中存在纤维素酶酶活,证明EGV基因的表达产物发生了正确的折叠,具有一定的活性,能够在一定的条件下降解外切纤维素酶的底物羧甲基纤维素。并且,在室温储藏了3个月的T_0代秸秆中稳定存在。该结果为在作物中定向表达纤维素酶,以期利用于木质纤维素生产生物乙醇提供了一定的证据。
Cellulose is one of the most abundant organic compounds in nature. Carring out of Biology research on cellulase is the base of understanding of the metabolic mechanism of cellulose and utilization of cellulose in depth, especially in the utilization of lignocellulose to produce bioethanol, which has important theoretical significance and application value. In this research, we cloned cellulase gene from Trichoderma reeseri through RT-PCR, and overexpressed it in rice. The main results are as follows:
     1. Based on the sequences of cellulase genes in GenBank, Designed specific oligonucletide primers then used the way of the reverse transcriptase-PCR (RT-PCR) to enriching the gene of Endo-β-1,4-glucallaseV, Endo-β-1,4-glucallaseIV andβ-1,4-glucancellobiohydrolaseI.
     2. The full-length CDS region of Trichoderma reeseri EGV is 726bp, encoding a polypeptide of 242 amino acids. There is one base difference when compared the EGV CDS to the known sequence of Trichoderma reeseri AS 3.3711 strain EGV CDS, producing one amino acids mutation, but the activity of protein wasn’t changed.
     3. The full-length CDS region of Trichoderma reeseri EGIV is1032bp, encoding a polypeptide of 344 amino acids. The full-length CDS region of Trichoderma reeseri is CBHI1542bp, encoding a polypeptide of 514 amino acids. There is no base difference when compared the Trichoderma reeseri EGIV and CBHI CDS to the known sequence respectively.
     4.We inserted EGV gene into the pre-build dual T-DNA vector pDTB to construct vector pDTB-HA-EG V, in accordance with co-transformation strategy to removal of molecular markers from transgenic plants. Because of subcellular expression of foreign proteins can increase protein levels and avoid the potential hazards on host,we construct vector pDTB-HA-EGV by inserting signal peptide Apo-SP targeting to the apoplast. We also test the function of Apo-SP by transient expression in onion epidermal cells.
     5. Mediated by Agrobacterium, the vector pDTB-HA-EGV and pDTB-HA-EGV were introduced into rice varieties Zhonghua11.We got 68 transgenic plants and 97 transgenic plants respectively. The transgenic plants were verified by PCR and Southern blotting, to display that objective gene and the herbicide resistant gene were integrated into the rice genome. Through PCR of 30 lines totaling 291 plants of T_1 progeny transgenic rice, there are 27 plants contain the objective gene only, accounts for 9.28%; and 20 plants contain selection marker gene only, accounts for 6.87%. The results show the significant effect of taking advantage of dual T-DNA vector to removal molecular markers in accordance with co-transformation strategy.
     6. The Trichoderma reesei EGV gene has expression in fresh leaves and dry straw of T_0 progeny of T_1 progeny transgenic rice by Western blot detection. There is cellulase activity in extractive by Congo Red-CMC plate detection, which prove that EGV gene expression product took place correct folding, has some activity, can degradate cellulose substrate CMC on a certain condition. Moreover, the cellulase is stable in T_0 progeny straw after 3 months storage at room temperature. The result provided reliable evidence of subcellular expression of cellulase in corp. and taking advantage of lignocellulose to produce bioethanol.
引文
1. Coughlan, M. and L. Ljungdahl, Biochemistry and genetics of cellulose degradation. Academic Press, London, 1988: 11–30.
    2. Manning, K. and D. Wood, Production and regulation of extracellular endocellulase by Agaricus bisporus. Microbiology, 1983. 129(6): 1839.
    3.农向,伍红,秦天莺, et al.,纤维素酶的研究进展.西南民族大学学报(自然科学版), 2005.
    4. Faith, X., M. Gary and W. Scharf, Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene, 2007. 395(1-2).
    5. Reese, E., R. Siu and H. Levinson, The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteriology, 1950. 59(4): 485.
    6. Jeffries, T., D. Eveleigh, J. Macmillan, et al., Enzymatic hydrolysis of the walls of yeasts cells and germinated fungal spores* 1. Biochimica et Biophysica Acta (BBA)-General Subjects, 1977. 499(1): 10-23.
    7. Van Tilbeurgh, H., P. Tomme, M. Claeyssens, et al., Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei:: Separation of functional domains. Febs Letters, 1986. 204(2): 223-227.
    8. Henrissat, B. and A. Bairoch, Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 1996. 316(Pt 2): 695.
    9. Henrissat, B. and P. Coutinho, Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods in enzymology, 2001.
    330: 183.
    10. Teeri, T., M. Penttil , S. Ker nen, et al., Structure, function, and genetics of cellulases. Biotechnology (Reading, Mass.), 1992. 21: 417.
    11. Teeri, T., A. Koivula, M. Linder, et al., Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochemical Society Transactions, 1998. 26(2): 173-177.
    12. Hasper, A., E. Dekkers, M. Van Mil, et al., EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Applied and Environmental Microbiology, 2002. 68(4): 1556.
    13.肖春玲,徐常新,微生物纤维素酶的应用研究.微生物学杂志, 2002. 22(002): 33-35.
    14.吴显荣,穆小民,纤维素酶分子生物学研究进展及趋向.生物工程进展, 1994. 14(004): 25-27.
    15. Wood, T. and S. McCrae, The purification and properties of the C1 component of Trichoderma koningii cellulase. Biochemical Journal, 1972. 128(5): 1183.
    16. Reese, E., Enzymatic hydrolysis of cellulose. Applied and Environmental Microbiology, 1956. 4(1): 39.
    17. Wood, T., The cellulase of Fusarium solani purification and specificity of the一(1, 4)一glucosidase components. Biochem, 1971. 121: 353-360.
    18. Warren, R., Microbial hydrolysis of polysaccharides. Annual Reviews in Microbiology, 1996. 50(1): 183-212.
    19.汪维云,纤维素科学及纤维素酶的研究进展.江苏理工大学学报:自然科学版, 1998. 19(003): 20-28.
    20. Wood, T., Properties of cellulolytic enzyme systems. Biochemical Society Transactions, 1985. 13(2): 407.
    21. Gow, L. and T. Wood, Breakdown of crystalline cellulose by synergistic action between cellulase components from Clostridium thermocellum and Trichoderma koningii. FEMS Microbiology Letters, 1988. 50(2-3): 247-252.
    22. Oguchi, M., T. Kanda and N. Akamatsu, Hexokinase of Angiostrongylus cantonensis: Presence of a glucokinase. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1979. 63(3): 335-340.
    23.鲁杰,石淑兰,邢效功, et al.,纤维废弃物酶解资源化利用的研究进展.天津造纸, 2004. 26(003): 8-15.
    24. Tomme, P., R. Warren and N. Gilkes, Cellulose hydrolysis by bacteria and fungi. Advances in microbial physiology, 1995. 37: 2-82.
    25. LR, Z., Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. Journal of Bacteriology, 2005. 187(1).
    26. Bhat, M., Cellulases and related enzymes in biotechnology. Biotechnology Advances, 2000. 18(5): 355-383.
    27. Sternberg, D. Production of cellulase by Trichoderma. 1976.
    28.余晓斌,李晓华,黑曲霉产纤维素酶的研究.生物技术, 1997. 7(004): 13-15.
    29. Li, L., J. Frohlich, P. Pfeiffer, et al., Termite gut symbiotic archaezoa are becoming living metabolic fossils. Eukaryotic cell, 2003. 2(5): 1091.
    30.王建荣,张曼夫,绿色木霉纤维素酶CBHII基因的结构研究.遗传学报, 1995. 22(001): 74-80.
    31.顾方媛,陈朝银,石家骥, et al.,纤维素酶的研究进展与发展趋势.微生物学杂志, 2008. 28(001): 83-87.
    32.陈阿娜,汤斌,纤维素酶高产菌株选育研究进展.安徽农学通报, 2006. 12(010): 64-64.
    33. Sticklen, M., Plant genetic engineering to improve biomass characteristics for biofuels. Current opinion in biotechnology, 2006. 17(3): 315-319.
    34. Fischer, R., E. Stoger, S. Schillberg, et al., Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 2004. 7(2): 152-158.
    35. Howard, J. and E. Hood, Bioindustrial and biopharmaceutical products produced in plants. Advances in agronomy, 2005. 85: 91-124.
    36. Teymouri, F., H. Alizadeh, L. Laureano-Pérez, et al., Effects of ammonia fiber explosion treatment on activity of endoglucanase from Acidothermus cellulolyticus in transgenic plant. Applied biochemistry and biotechnology, 2004. 116(1): 1183-1191.
    37. Ransom, C., V. Balan, G. Biswas, et al., Heterologous Acidothermus cellulolyticus 1, 4-β-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Applied Biochemistry and Biotecnology: 207-219.
    38. Oraby, H., B. Venkatesh, B. Dale, et al., Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic research, 2007. 16(6): 739-749.
    39. Sticklen, M., Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics, 2008. 9(6): 433-443.
    40. Horn, M., S. Woodard and J. Howard, Plant molecular farming: systems and products. Plant cell reports, 2004. 22(10): 711-720.
    41. Schillberg, S., S. Zimmermann, A. Voss, et al., Apoplastic and cytosolic expression of full‐size antibodies and antibody fragments in Nicotiana tabacum. Transgenic research, 1999. 8(4): 255-263.
    42. Schillberg, S., R. Fischer and N. Emans, Molecular farming of recombinant antibodies in plants. Cellular and molecular life sciences, 2003. 60(3): 433-445.
    43. Ziegler, M., S. Thomas and K. Danna, Accumulation of a thermostable endo-1, 4-β-D-glucanase in the apoplast of Arabidopsis thaliana leaves. Molecular Breeding, 2000. 6(1): 37-46.
    44. Peeters, N. and I. Small, Dual targeting to mitochondria and chloroplasts. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2001. 1541(1-2): 54-63.
    45. Kirk, T., J. Carlson, N. Ellstrand, et al., Biological Confinement of Genetically Engineered Organisms. 2004, Washington DC: National Academies Press.
    46. Okumura, S., M. Sawada, Y. Park, et al., Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic research, 2006. 15(5): 637-646.
    47. Dai, Z., B. Hooker, D. Anderson, et al., Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Molecular Breeding, 2000. 6(3): 277-285.
    48. Depicker, A., L. Herman, A. Jacobs, et al., Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Molecular and General Genetics MGG, 1985. 201(3): 477-484.
    49. Daley, M., V. Knauf, K. Summerfelt, et al., Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant cell reports, 1998. 17(6): 489-496.
    50. Komari, T., Y. Hiei, Y. Saito, et al., Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. The Plant Journal, 2003. 10(1): 165-174.
    51. Miller, M., L. Tagliani, N. Wang, et al., High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic research, 2002. 11(4): 381-396.
    52. Huang, S., L. Gilbertson, T. Adams, et al., Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic research, 2004. 13(5): 451-461.
    53. Dale, E. and D. Ow, Gene transfer with subsequent removal of the selection gene from the host genome. Proceedings of the National Academy of Sciences, 1991. 88(23): 10558.
    54. Ebinuma, H., K. Sugita, E. Matsunaga, et al., Systems for the removal of a selection marker and their combination with a positive marker. Plant cell reports, 2001. 20(5): 383-392.
    55. Coppoolse, E., M. de Vroomen, D. Roelofs, et al., Cre recombinase expression can result in phenotypic aberrations in plants. Plant molecular biology, 2003. 51(2): 263-279.
    56. Goldsbrough, A., C. Lastrella and J. Yoder, Transposition Mediated Re–positioning and Subsequent Elimination of Marker Genes from Transgenic Tomato. Nature Biotechnology, 1993. 11(11): 1286-1292.
    57. Ebinuma, H., K. Sugita, E. Matsunaga, et al., Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proceedings of the National Academy of Sciences, 1997. 94(6): 2117.
    58. Puchta, H., Towards the ideal GMP: homologous recombination and marker gene excision. Journal of plant physiology, 2003. 160(7): 743-754.
    59. Tinoco, M., G. Vianna, S. Abud, et al., Radiation as a tool to remove selective marker genes from transgenic soybean plants. Biologia Plantarum, 2006. 50(1): 146-148.
    60.张晶,周长梅,无选择标记转基因植物研究进展.东北农业大学学报, 2004. 35(004): 496-499.
    61. Sugita, K., T. Kasahara, E. Matsunaga, et al., A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. The Plant Journal, 2000. 22(5): 461-469.
    62. Hohn, B., A. Levy and H. Puchta, Elimination of selection markers from transgenic plants. Current opinion in biotechnology, 2001. 12(2): 139-143.
    63. Joersbo, M., I. Donaldson, J. Kreiberg, et al., Analysis of mannose selection used for transformation of sugar beet. Molecular Breeding, 1998. 4(2): 111-117.
    64. Lucca, P., X. Ye and I. Potrykus, Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Molecular Breeding, 2001. 7(1): 43-49.
    65. Haldrup, A., S. Petersen and F. Okkels, The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant molecular biology, 1998. 37(2): 287-296.
    66. Wood, P. and R. Fulcher, Interaction of some dyes with cereal -glucans. Cereal Chem, 1978. 55(6): 952-966.
    67. Wood, P., The Interaction of Direct Dyes with Water Soluble Substituted Celluloses and Cereal -Glucans. Industrial & Engineering Chemistry Product Research and Development, 1980. 19(1): 19-23.
    68. Wood, P., Specificity in the interaction of direct dyes with polysaccharides* 1. Carbohydrate Research, 1980. 85(2): 271-287.
    69. Sambrook, J., E. Fritsch, T. Maniatis, et al.,第三版. 2002,北京:科学出版社.
    70. Valvekens, D., M. Montagu and M. Lijsebettens, Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences, 1988. 85(15): 5536.
    71.王关林,方宏筠,植物基因工程. K].北京:科学出版社, 2002.742~ 749.
    72. Cheng, M., B. Lowe, T. Spencer, et al., Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular & Developmental Biology-Plant, 2004. 40(1): 31-45.
    73.吴殿星,胡繁荣,植物组织培养. 2004,上海:上海交通大学出版社.
    74.丁力,丁月云,应用农杆菌转化水稻的研究.高技术通讯, 1998. 8(011): 49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700